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PREFACE

This book is a continugtion of the author’'s Calculus, Volume I, Second Edition. The
present volume has been written with the same underlying philosophy thet prevaled in the
first. Sound training in technique is combined with a strong theoretical development.
Every effort has been made to convey the spirit of modern mathematics without undue
emphasis on formalization. As in Volume |, higoricd remarks ae included to give the
sudent a sense of participation in the evolution of idees

The second volume is divided into three parts, entitted Linear Analysis, Nonlinear
Analysis, and Special Topics. The last two chapters of Volume | have been repested as the
fird two chapters of Volume Il so that dl the materid on linear dgebra will be complete
in one volume

Part 1 contains an introduction to linear algebra, including linear transformations,
matrices, determinants, eigenvalues, and quadratic forms. Applications are given to
andyss, in paticular to the dudy of linear differentid equations Systems of differentid
equaions are treated with the help of matrix cdculus Exigence and uniqueness theorems
are proved by Picard’s method of successve gpproximations, which is dso cagt in the
language of contraction operators.

Pat 2 discusses the cdculus of functions of severa variables. Differentid caculus is
unified and smplified with the ad of linear dgebra It incudes chain rules for scdar and
vector fidds, and applications to partiad differentid eguations and extremum problems.
Integral calculus includes line integrals, multiple integrals, and surface integrals, with
gpplications to vector andyss. Here the treetment is dong more or less classcd lines and
does not include a forma devdopment of differentid forms.

The specia topics trested in Part 3 are Probability and Numerical Analysis. The materid
on probability is divided into two chapters, one deding with finite or countably infinite
sample spaces; the other with uncountable sample spaces, random variables, and dis-
tribution functions. The use of the cdculus is illudrated in the sudy of both one and
two-dimensond random  variables.

The last chapter contains an introduction to numerical analysis, the chief emphasis
being on different kinds of polynomid gpproximation. Here again the idess are unified
by the notation and terminology of liner dgebra The book concludes with a treatment of
approximate integration formulas, such as Simpson’s rule, and a discussion of Euler’'s
summation formula.



vin Preface

There is ample materid in this volume for a full year's course meeting three or four times
per week. It presupposes a knowledge of onevariable caculus as covered in most first-year
cdculus courses. The author has taught this materia in a course with two lectures and two
recitation periods per week, allowing about ten weeks for each part and omitting the
starred  sections.

This second volume has been planned so that many chapters can be omitted for a variety
of chorter courses. For example, the last chapter of each pat can be skipped without
disupting the continuity of the presentation. Part 1 by itsdf provides materiad for a com-
bined course in liner dgebra and ordinary differentid equations. The individud ingtructor
can choose topics to suit his needs and preferences by consulting the diagram on the next
page which shows the logica interdependence of the chapters.

Once again | acknowledge with plessure the asssance of many friends and colleagues.
In preparing the second edition | received valuable help from Professors Herbert S.
Zuckerman of the University of Washington, and Basil Gordon of the University of
Cdifornia, Los Angees, each of whom suggested a number of improvements. Thanks are
ds due to the daff of Blaisddl Publishing Company for their assistance and cooperetion.

As before, it gives me specid plessure to express my greitude to my wife for the many
ways in which she has contributed. In grateful acknowledgement | happily dedicate this
book to her.

T. M. A.
Pasadena, California
September 16, 1968
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LINEAR SPACES

1.1 Introduction

Throughout mathematics we encounter many examples of mathematical objects that
can be added to each other and multiplied by red numbers. Firgt of dl, the red numbers
themselves are such objects. Other examples are real-valued functions, the complex
numbers, infinite series, vectors in n-space, and vector-valued functions. In this chapter we
discuss a generd mathematical concept, caled a linear space, which includes dl these
examples and many others as specid cases.

Briefly, a linear gpace is a st of eements of any kind on which certain operations (called
addition and multiplication by numbers) can be performed. In defining a linear space, we
do not specify the nature of the dements nor do we tell how the operations are to be
peformed on them. Ingtead, we require tha the operations have certain properties which
we take as axioms for a linear space. We turn now to a detailed description of these axioms.

1.2 The definition of a linear space

Let V' denote a nonempty set of objects cdled elements. The sat ¥ is cdled a linear
gace if it sidies the following ten axioms which we lig in three groups.

Closure axioms
AXIOM 1. cLosure UNDER ADDITION. For every pair of elements x and y in V there
corresponds a unique element in V called the sum of x and y, denoted by x + vy .

AXIOM 2. CLOSLRE UNDER MLTIPLICATION BY REAL NUMBERS. FOr every X in V and
every real number a there corresponds an element in V called the product of a and x, denoted
by ax.

Axioms for addition

AXIoM 3. COMWITATIVE LAW For all xandyin ¥V, wehavex + y =y + X.

AXIOM 4. ASSOCI ATI VELAW  Forallx,y,andzinV,wehave(x + y) + z = x + (y + 2).
3



4 Linear spaces

AXIOM 5. EXI STENCEOFZEROELEMENT. There is an element in ¥V, denoted by 0, such that
x+0=x forallxinV
AXI OM 6. EXI STENCEOFNEGATI VES.  For every x in V, the element (— 1)x has the property

x+ (-Dx=0.

Axioms for multiplication by numbers

AXI OM 7. ASSOCI ATI VE LAW  For every x in V and all real numbers a and b, we have
a(bx) = (ab)x.

AXIOM 8. DisTRBUTIVE Law Fer abiTian IN V. For all x andy in V and all real a,
we hare
a(x +y) = ax + ay .

AXIOM 9. DI STRI BUTI VE LAW FOR ADDI TION OF NUMBERS. For all x in V and all real
a and b, we hacve
(a + b)x = ax + bx.

aov 10, exstence o 1oenmiTy.  FoOr every x in ¥V, we have Ix = x.

Linear spaces, as defined above, are sometimes cdled real linear spaces to emphasize
the fact tha we ae multiplying the edements of V by red numbers. If real number is
replaced by complex number in Axioms 2, 7, 8, and 9, the resulting gructure is cdled a
complex linear space. Sometimes a linear space is referred to as a linear vector space or
smply a vector space; the numbers used as multipliers are dso cdled scalars. A red linear
space has red numbers as scdars, a complex linear space has complex numbers as scdars.
Although we shdl ded primarily with examples of red liner spaces, dl the theorems are
vdid for complex liner gpaces as wdl. When we use the term linear space without further
designation, it is to be understood that the space can be red or complex.

1.3 Examples of linear spaces

If we specify the st V and tdl how to add its dements and how to multiply them by
numbers, we get a concrete example of a liner space. The reader can easly veify that
eech of the following examples satiffies dl the axioms for a red linear pace.

eawe 1 Let V = R, the st of al red numbers, and let X + y and ax be ordinary
addition and multiplication of red numbers.

exawle 2. Let V = C, the st of dl complex numbers, define x + y to be ordinary
addition of complex numbers, and define ax to be multiplication of the complex number X
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by the rea number a. Even though the dements of V' are complex numbers this is a red
linear space because the scalars are red.

exawte 3. Let ¥V = V,, the vector space of dl ntuples of red numbers with addition
and multiplication by scdars defined in the usud way in terms of components.

exavie 4. Let V' be the st of dl vectors in V,, orthogond to a given nonzero vector
N. If n = 2, this liner space is a line through 0 with N a a norma vector. If n = 3,
it is a plane through O with ¥ as norma vector.

The following examples are cdled function spaces. The dements of V are red-vaued
functions, with eddition of two functions f and g defined in the usud way:

(f + g =f(x) + &)

for every red x in the intersection of the domains off and g. Multiplication of a function
f by a red scdar a is defined as follows af is tha function whose vaue a each x in the
domain off is af (x). The zero dement is the function whose vaues ae everywhere zero.
The reader can eadly verify that eech of the following sets is a function space.

exavete 5. The set of dl functions defined on a given interva.
exavle 6. The st of dl polynomids.

exawle 7. The st of dl polynomias of degree < n, where n is fixed. (Whenever we
condder this set it is understood that the zero polynomid is dso included) The st of
all polynomias of degree equal to » is not a linear space because the closure axioms are not
stidfied. For example, the sum of two polynomias of degree n need not have degree n.

exavle 8. The s of dl functions continuous on a gven intervd. If the interva is
[a, b], we denote this space by C(a, b).

exavele 9. The st of dl functions differentidble a a given point.
exavle 10, The set of dl functions integrable on a given intervd.

exawe 11 The set of dl functions f defined a 1 with f(1) = 0. The number O is
essentid in this example. If we replace O by a nonzero number c, we violate the closure
axioms.

exaveLe 12. The set of all solutions of a homogeneous linear differential equation
y' +ay’ + by = 0, where a and b ae given congtants. Here again 0 is essentid. The st
of solutions of a nonhomogeneous differentiad equation does not satify the closure axioms.

These examples and many others illustrate how the linear space concept permeates
dgebra, geometry, and analyss. When a theorem is deduced from the axioms of a linear
sace, we obtain, in one droke a result vaid for each concrete example. By unifying
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diverse examples in this way we gain a deeper indght into each. Sometimes specid knowl-
edge of one particular example helps to anticipate or interpret results valid for other
examples and reveds rddionships which might otherwise escgpe notice

14 Elementary consequences of the axioms

The following theorems ae eesly deduced from the axioms for a linear pace.

THEOREM 1.1, UNIQUENESS OF THE ZERO ELEMENT. [In any linear space there is one
and only one zero element.

Proof. Axiom 5 tdls us that there is & least one zero element. Suppose there were two,
say 0, and 0,. Taking x = 0, and 0 = 0, in Axiom 5, we obtain 0, + 0, = O;.
Smilarly, t&king x = 02 and 0 = OQ,, we find 02 + 0, = 02. But 0; + 02 = 02 + O,
because of the commutative law, so 0, = 02

THEOREM 1.2, UNIQUENESS OF NEGATIVE ELEMENTS. In any linear space every element
has exactly one negative. That is, for every x there is one and only one y such that x +y = 0.

Proof. Axiom 6 tels us that each x has a least one negative, namey (- 1)x. Suppose
x hes two negdtives, say y, and y,. Then x + y, = 0 and X + y, = 0. Adding y, to both
members of the firg equaion and usng Axioms 5, 4, and 3, we find that

Vet (x+y) =y + 0 =yp,,
and

Vet 4 )= (n++ =04y, =y +0=y,
Therefore y, = y,, 0 X has exactly one negetive, the dement (- 1)x.

Notation. The negative of x is denoted by —x. The difference y = X is defined to be
the sam y + (-X) .

The next theorem describes a number of propeties which govern dementary dgebraic
manipulations in a lineer oace.

THEOREM 1.3. In a given linear space, let x and y denote arbitrary elements and let a and b
denote arbitrary scalars. Then we‘have the following properties:

@ Ox = 0.

(b) a0 = 0.

(c) (-a)x = -(ax) = a(-x).

(d) Ifax=0,theneithera=0o0rx=0.

(e) Ifax =ayanda # 0, thenx=y.

(f) Ifax =bxand x # O, thena = b.

@ —(x+ p=(=x)+ (=p)= —x = ).

() x + x = 2x, x + x 4+ x = 3x, andingeneral, »? x = nx.
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We shdl prove (a), (b), and () and leave the proofs of the other properties as exercises.

Proof of (a). Let z = Ox. We wish to prove that z = 0. Adding z to itsdf and usng
Axiom 9, we find that

z4+z=0x4+0x=04+0x=0x=z.
Now add —z to both members to get z = 0.
Proof of(b). Let z = g0, add z to itsdf, and use Axiom 8.
Proof of(c). Let z = (-a)x. Adding z to ax and usng Axiom 9, we find tha
z+ax=(—ax+ax=(—a+ax=0=0,
0 z is the negdive of ax, z = -(ax). Smilaly, if we add a(—x)to ax and use Axiom 8

and propety (b), we find that a(—x) = -(aX).

1.5 Exercises

In Exercises 1 through 28, determine whether each of the given sdts is a red linear space, if
addition and multiplication by red scdars are defined in the usud way. For those that are not,
tdl which axioms fail to hold. The functions in Exercises 1 through 17 are red-vaued. In Exer-
cises 3, 4, and 5, each function has domain containing 0 and 1. In Exercises 7 through 12, each
domain contains al red numbers

1. All rationd functions.
2. All rationd functions f]g, with the degree off < the degree ofg (indluding f = 0).

3. All fwith £(0) =f(l). 8. All even functions.

4. All fwith 2f(0) =f(I). 9. All odd functions.

5. All fwith f(1) = 1 +f(O). 10. All bounded functions.

6. All gtep functions defined on [0, 1]. 11. All increasing functions.

7. All fwith f(x) > 0as x > + . 12. All functions with period 2.
13. All f integrable on [0, 1] with [} f(x) dx = O.

14. All f integrable on [0, 1] with f§ f(x) dx > 0.

15. All f satisfying f(x) = f(1 — x) for dl x.

16. All Taylor polynomids of degree < » for a fixed n (induding the zero polynomid).

17. All solutions of a linear second-order homogeneous differentia  equation’ y” + P(x)y’ +
Q(x)y = 0, where P and Q are given functions, continuous everywhere.

18. All bounded real sequences. 20. All convergent red series.

19. All convergent real sequences. 21. All absolutdy convergent real series.

22. All vectors (X, Y, 2) in ¥ with z = 0.

23. All vectors (X, y, 2) in Py withx =0ory = 0.

24. All vectors (X, Y, 2) in V4 with y = 5x.

25. All vectors (X, Yy, 2) in ¥y with 3x + 4y = 1, z = 0.

26. All vectors (X, Y, 2) in ¥, which are scdar multiples of (1, 2, 3).

27. All vectors (x, Y, 2) in ¥, whose components satisfy a system of three linear equations of the
form:

anX + dypy + a3z = 0, AnX + dyppy + ApZ = 0, GyX + Ggpy + gz =0,
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28. All vectors in ¥, that are linear combinations of two given vectors A and B.

20. Let vV = R", the sat of positive redl numbers Define the “sum” of two elements x and y in
V to be their product x y (in the usud sensg), and define “multiplication” of an dement x
in vV by a scaar ¢ to be x¢ Prove that V is ared linear pace with 1 as the zero dement.

30. (8 Prove that Axiom 10 can be deduced from the other axioms.

(b) Prove that Axiom 10 cannot be deduced from the other axioms if Axiom 6 is replaced by
Axiom 6': For every X in V thereis an dement y in vV suchthat x 4+ y = 0.

3 1. Let S bethe set of &l ordered pairs (x;, x,) of red numbers. In each case determine whether
or not § is a linear space with the operations of addition and multiplication by scdars defined
as indicated. If the sat is not a linear space, indicate which axioms are violated.

@) (x1,x2) + (y1,y2) = (xp +y1, %3 + y2), a(xy, xg) = (axy, 0).
(b) (x1,xp) + (1,y2) = (xq +}’1a0), a(xy, xy) = (axy, axy).
© Gy x9) + (1, p9) = (41, X3 + 1), a(xy, xp) = (axy, axy).

(d) (x1,x9) + (y1>¥9) = (%1 + Xals Iy +}’2D, a(xy, xy) = (laxyl, lax,))
32. Prove parts (d) through (h) of Theorem 1.3.

1.6 Subspaces of a linear space

Given a linear space V, let S be a nonempty subset of V. If § is dso a linear space, with
the same operations of addition and multiplication by scdars then S is cdled a subspace
of V. The next theorem gives a smple criterion for determining whether or not a subset of
a linear space is a subspace.

tHeorem 1.4, Let S be a nonempty subset of a linear space V. Then S is a subspace
if and only if S satisfies the closure axioms.

Proof. If S is a subspace, it satisfies dl the axioms for a liner space, and hence, in
paticular, it satisfies the closure axioms.

Now we show that if S sdidies the dosure axioms it sttisfies the others as wdl. The
commutative and associative laws for addition (Axioms 3 and 4) and the axioms for
multiplication by scdars (Axioms 7 through 10) ae automaticdly satisfied in S because
they hold for dl dements of V. It remains to verify Axioms 5 and 6, the existence of a zero
dement in S, and the exigence of a negative for each dement in S.

Let x be any dement of S. (S has a least one dement snce S is not empty.) By Axiom
2, ax isin Sfor every scdar a. Taking a = 0, it follows tha Ox isin S. But Ox = O, by
Theorem 1.3(@), so 0 € S, and Axiom 5 is satisfied. Taking a = ~ I, we see that (-1)x
isin S But x + (- )x = 0 since both x and (- 1)x are in V, 0 Axiom 6 is saidfied in
S. Therefore S is a subspace of V.

periniTIoN.  Let S be a nonempty subset of a linear space V.  An element x in V of the
form

k
x = >,
i=1

where Xy, ..., x areallinSande¢,,..., ¢ are scalars, is called a finite linear combination
of elements of S. The set of all finite linear combinations of elements of S satisfies the closure
axioms and hence is a subspace of V. We call this the subspace spanned by S, or the linear
span of S, and denote it by L(S). If S is empty, we define L(S) to be {0}, the set consisting
of the zero element alone.
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Diffarent sets may span the same subspace. For example, the space V, is spanned by
ech of the following sats of vectors {i,j}, {i,j, i +j}, {0, i, —i,j, —j, i + j}. The space
of al polynomials p(¢) of degree < n is spanned by the set of n + 1 polynomies

{1,8,¢% ..., t".

It is dso spanned by the set {1, t/2, #%/3,. .. , t"/(n+ 1)},and by {1, (1 + ¢), (1+ #)2, . . .,
(1 + t)*}. The space of al polynomials is spanned by the infinite set of polynomials
{,te ..

A number of questions arise naturaly a this point. For example, which spaces can be
spanned by a finite set of eements? If a space can be spanned by a finite set of eements,
what is the smdlest number of dements required? To discuss these and redlated questions,
we introduce the concepts of dependence, independence, bases, and dimension. These ideas
were encountered in Volume | in our dudy of the vector space I, . Now we extend them
to generd linear spaces.

1.7 Dependent and independent sets in a linear space

DEFINITION. A set § of elements in a linear space V is called dependent if there is a finite
set of distinct elements in S, say x;,..., x;, and a corresponding set of scalars ¢;, . . . , ¢,
not all zero, such that

An equation Y ¢x, = 0 with not all ¢, = ( is said to be a nontrivial representation of 0.
The set S is called independent if iz is not dependent. In this case, for all choices of distinct
elements x,, ..., x,in Sand scalars ¢, . . ., ¢,

k
c¢x; =0 implies a=cg="'"=1¢,=0.
i=1

k2

Although dependence and independence are properties of sets of eements, we aso apply
these terms to the dements themsdves. For example, the dements in an independent st
ae cdled independent dements.

If S is a finite s, the foregoing definition agrees with thet given in Volume | for the
space V,. However, the present definition is not redricted to finite sets

exavele 1. If a subst T of a set § is dependent, then § itsdf is dependent. This is
logically equivdlent to the statement that every subst of an independent set is independent.

erwie 2. If one dement in S is a scda multiple of ancther, then § is dependent.
exawte 3. If 0 € §, then S is dependent.

exawte 4. The empty set is independent,
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Many examples of dependent and independent sets of vectors in PV, were discussed in
Volume |. The following examples illustrate these concepts in function spaces. In eech
cae the underlying linear space V is the st of dl red-vdued functions defined on the red
line.

pawie 5. Let uy(f) = cos® ¢t , uy(t) = sin? ¢ , uy(¢) = 1 for dl red t. The Pythagorean
identity shows that u; + u, — u; = 0, 0 the three functions u,, u,, u; are dependent.

awe 6. Let y(f) =t fork =0,1,2 ..., and ¢ red. Theset S = {ug, ty, Uy, . . }
is independent. To prove this, it suffices to show that for each n the n + 1 poynomias
Ug, Uy, ..., U, a&e independent. A relation of the form Z ¢yl = 0 means that
(1.1) Seff =0
k=0

for al rea ¢z, When ¢ = 0, this gives ¢, = 0 . Diffeentiating (11) and setting ¢ = 0,
we find that ¢, = 0. Repedting the process, we find tha each coefficient ¢, is zero.

ExXavPLE 7. If a,.,a ae didinct red numbers the n exponentid functions
u(x) = e ..., u(x) = e
are independent. We can prove this by induction on n. The result holds trividly when

n = 1 . Theefore, assume it is true for n — 1 exponentid functions and consder scdars
€1y ..., C, SUCh that

n
(1.2) Y™ = 0.
k=1
Let a;; be the largest of the n numbers a,, . . ., a. Multiplying both members of (1.2)

by e ex* we obtain
(1.3) Sl an® =,
k=1

If kK # M, the number @, — a;; is negative. Therefore, when x -» + co in Equation (1.3),
each term with k # M tends to zero and we find that ¢p; = 0. Deleting the Mth term from
(1.2) and applying the induction hypothess we find that esch of the remaning n — 1
coefficients ¢, is zero.

THEOREM 1.5. Let § = {x,,..., x,} be an independent set consisting of k elements in a
linear space V and let L(S) be the subspace spanned by 5. Then every set of k + 1 elements
in L(S is dependent.

Proof. The proof is by induction on k, the number of dements in S Fird suppose
k = 1. Then, by hypothesis, S consists of one element x,, where x; £ 0 since S is
independent. Now take any two didinct eements y, and y, in L(S. Then each is a scaar
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multiple of x;, say y, = ¢x; and ¥y = Cyx;, where ¢; and ¢, are not both O. Multiplying
1 by ¢y and y, by ¢, and subtracting, we find thet

GV — €1y = 0.

This is a nontrivid representation of O soy, ad y, are dependent. This proves the theorem
whenk= 1.

Now we assume the theorem is true for k — 1 and prove tha it is dso true for k. Take
ay setof k+1eementsinL(S),say T=1{)1, ¥ar..., Vext). We wish to prove tha Tis
dependent. Since each y; is in L(S we may write

k
(1.4) Vi = zla' %5
j=

foreachi= 1,2,...,k+ 1. We examine dl the scdars a;; tha multiply x, and split the
proof into two cases according to whether al these scadars are 0 or not.

CASE 1. a;; =0foreveryi=1,2,..., k + 1. In this case the sum in (1.4) does not
involve x;, so each y, in T isin the liner span of the st S = {x,, ..., X} . But S is
independent and conssts of k — 1 eéements By the induction hypothess the theorem is
true for Kk — 1 s0 the set T is dependent. This proves the theorem in Case 1.

CASE 2. Not all the scalars a;; are zero. Let us assume that a,, # 0. (If necessary, we
can renumber the y's to achieve this) Teking i = 1 in Equaion (14) and multiplying both
members by ¢;, where ¢; = a;y/ay,, we get

k
e =dpX + Xcéal ixj -
j=

From this we subtract Equation (1.4) to get
k

Chi=Y: = Zg(cialj = a;)%; )
=

fori=2,...,k + 1. This equation expresses each of the k dements ¢;; ~ y; as a linear
combination of the k — 1 independent dements x,, . . . , X . By the induction hypothess,
the k dements ¢;; — y, must be dependent. Hence, for some choice of scdars 4, . . .
fy.1, NOt dl zero, we have

k1

Zzti(ciyl -y =0,

from which we find
k+1 k+1
(zzticz‘) Y1 — _Zztiyi =0.

But this is a nontrivid linear combination of y,, . . ., y.; Which represents the zero ele-
ment, so the dements J1, . . ., ;. Must be dependent. This completes the proof.
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1.8 Bases and dimension

DEFI NI TI ON. A jinite set S of elements in a linear space V is called « finite basis for V
if Sis independent and spans V. The space V is called finite-dimensional if it has a jinite
basis, or if V consists of 0 alone. Otherwise, V is called injinite-dimensional.

mecem 1.6, Let V be a finite-dimensional linear space. Then every finite basis for V
has the same number of elements.

Proof. Let S and T be two finite bases for V. Suppose S condsts of k dements and T
condsts of m eements. Since S is independent and spans V, Theorem 15 tels us tha
every set of k + 1 dements in Vis dependent. Therefore, every st of more thank eements
in V is dependent. Since T is an independent set, we must have m < k. The same argu-
ment with .§ and T interchanged shows that k < m . Therefore k = m .

DEFI NI TI ON. If a linear space V has a basis of n elements, the integer n is called the
dimension of V. We write n =dm V. I'T V= {0}, we say V has dimension 0.

exawe 1. The space V, has dimenson n. One bass is the set of n unit coordinate
vectors.

exavle 2. The space of dl polynomids p(t) of degree < n has dimendon n + 1 . One
basis is the s&t of n + 1 polynomids {1, ¢, ¢%, . . ., t"}. Every polynomia of degree < nis a
lineer combination of these n + 1 polynomias.

awe 3. The space of solutions of the differentid equation y” == 2y’ = 3y = 0 has
dimension 2. One basis consists of the two functions u;(x) = e7%, uy(x) = €%. Every
solution is a linear combination of these two.

exaveLe 4. The space of all polynomials p(t) is infinite-dimensional. Although the
infinite st {1, ¢, t3, . . .} spans this space, no finite set of polynomids spans the spece.

tHeorem  1.7. Let V be a jinitedimensional linear space with dm V = n. Then we
have the following:

(@ Any set of independent elements in V is a subset of some basis for V.

(b) Any set of n independent elements is a basis for V.

Proof. To prove (@), let S = {x;, ... ,x;; be awy independent st of dements in V.
If L(S =V, then S is a bass If not, then there is some dement y in V which is not in
L(9. Adjoin this dement to S and condder the new st S = {x;, . . . , X, y} . If this
set were dependent there would be scalars ¢y, . . ., ¢;i1, NOt aAl zero, such that

k
Sexi + Gy =0,
i=1

But ¢,y #0snce x;,...,x, ae independent. Hence, we could solve this eguetion for
y ad find that y € L(S), contradicting the fact that y is not in L(S). Therefore, the st S
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is independent but contains k + 1 eements. If L(S”) = V, then S is a bads and, since S
is a subset of S, pat (8 is proved. If S’ is not a bads we can argue with S as we did
with S, getting a new set S” which contains k + 2 dements and is independent. If S’ is a
bass, then pat (a) is proved. If not, we repeat the process. We must arive at a bads in
a finite number of deps otherwise we would eventudly obtan an independent set with
n + 1 eements, contradicting Theorem 1.5. Therefore part (8) is proved.

To prove (b), let S be any independent set consisting of » elements. By pat (a), S is a
subset of some bass, say B. But by Theorem 16, the bass B has exactly » dements, s0
S= B.

19 Components

Let V be a linear space of dimenson # and consder a bass whose dements e, , . . . , e,
are taken in a given order. We denote such an ordered basis as an n-tuple (ey, . . . , &).
If x € VV, we can express x as a linear combination of these bass eements

(1.5) X=2 qe .
i=1

The coefficients in this equation determine an n-tuple of numbers (c, . . . , ¢,) tha is
uniquely determined by x. In fact, if we have another representation of x as a linear
combination of e;, . . ., e,, sy x = 27, de;, then by subtraction from (1.5), we find that
37, (¢; = d))e; = 0. Butsnce the bads elements are independent, this implies ¢; = d;
for each i, so we have (¢;,...,¢c,) = (d,...,d,).

The components of the ordered n-tuple (c, . . . , ¢,) determined by Equation (15) are
cdled the components of x relative to the ordered basis (e, , ..., e,).

1.10 Exercises

In each of Exercises 1 through 10, let S denote the set of al vectors (, y, 2) in ¥; whose com-
ponents satisfy the condition given. Determine whether §' is a subspace of V5, If S is a subspace,
compute dim S.

Lx=0. 6bx=yo0r x=z,

2. x +y =o. 7. x2 —y2 =0,

3.x+y+z=0. 8 x+y=1

4. x =y. 9.y=2xand z=23x,

5. x =y =z 10.x+y+z=0adx~y-z=0.

Let P, denote the linear gpace of dl red polynomids of degree < », where # is fixed. In each
of Exercises 11 through 20, let .S denote the st of dl polynomids £ in P, satisfying the condition
given. Determine whether or not S is a subspace of P, . If § is a subspace, compute dim S.

11. f(0) = O. 16. f(0) = f(2) .

12. f'0) = 0. 17. T iseven.

13. f"(® = 0. 18. f is odd.

14. f(0) + f'(0) = 0. 19. T hasdegree < k, wherek < n, or f=0.
15. f(0)= f(1). 20. f hasdegreek, wherek <n,or f = O.

21. In the linear space of dl red polynomids p(t), describe the subspace spanned by each of the
following subsets of polynomids and determine the dimension of this subspace.
@{,2d; OAS;  ©f A dil+n @+
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22. In this exercise, L(S) denotes the subspace spanned by a subset § of a linear space V. Prove
each of the gtatements (a) through (f).
@ S ¢ LS.
() If S<T<vVvadif Tisa subspace of ¥, then L(S) < T. This property is described by
saying that L(S) is the smallest subspace of V which contans S.
(c) A subset § of V isa subspace of V if and only if L(S) = S.
dIfScTcV,thenL(S < L(T.
(@ If § and Tare subspacesof V, thenois § N T.
(f) If S and Tare subsets of ¥, then L(S n T) = L(S n L(T).
(9) Give an example in which L(S n T) # L(§ n L(T).
23. Let V be the linear gpace consgting of dl red-vaued functions defined on the red line
Determine whether each of the following subsets of V is dependent or independent. Compute
the dimension of the subspace spanned by each set.

@ {1,e™, &), a #=b. (f) {cos x, sin x}.

(b) {e*=, xe*}. (@) {cos? x, sin? x}.

© {1, ", xe®}. (h) {*1, cos 2x, sin? x}.
(d) {e*®, xe®®, x2e™}. (i) {sin x, sin 2x}.

(e) {e®, ==, cosh x}. () {e®cosx, e~®sinx}.

24. Let V be a finite-dimensond linear space, and let § be a subspace of V. Prove each of the
following  statements.
(@ S is finite dimensiona and dim S < dim V.
(o) dm S =dim V if and only if S= V.
(c) Every basis for S is part of a basis for V.
(d) A basis for V need not contain a basis for S.

111 Inner products, Euclidean spaces. Norms

In ordinary Euclideen geometry, those properties tha rey on the posshbility of measuring
lengths of line segments and angles between lines are caled metric properties. In our study
of V,, we defined lengths and angles in terms of the dot product. Now we wish to extend
these ideas to more generd linear spaces. We shdl introduce fird a generdization of the
dot product, which we cdl an inner product, and then define length and angle in terms of the
inner product.

The dot product x - y of two vectors X = (x;, . .., x)ad y= (y;, ..., yu)in¥, was
defined in Volume | by the formula

(1.6) xy= Y x

In a generd linear space, we write (x, y) insteed of x * y for inner products, and we define
the product axiometically rather than by a gpecific formula That is, we date a number of
properties we wish inner products to satisfy and we regard these properties as axioms.

pEFINITION. A real linear space V is said to have an inner product if for each pair of
elements x and y in V there corresponds a unique real number (X, y) satisfying the following
axioms for all choices of X, y, zin V and all real scalars c.

O, p= 0, x (commutativity, or symmetry).
Q) (x,y+ = (x,p)+ (x,2) (digtributivity, or linearity).
(3 ¢x, ¥) = (cx, y) (associativity, or homogeneity).

@ xx)>0 if x#0 (positivity).
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A red linear gpace with an inner product is caled a real Euclidean space.
Note: Taking ¢ = 0 in (3), we find that (O, y) = O for dl y.

In a complex linear space, an inner product (x, y) is a complex number satisfying the
same axioms as those for a red inner product, except that the symmetry axiom is replaced
by the reation

(1) (x, )=, x), (Hermitignt symmetry)

where (y, x) denotes the complex conjugate of (y, X). In the homogeneity axiom, the scaar
multiplier ¢ can be any complex number. From the homogendity axiom and (1), we get
the companion relation

(3) (5, 0 = (oy, ¥) = é(p, ) = éx, y).

A complex liner space with an inner product is cdled a complex Euclidean ‘space.
(Sometimes the term unitary space is dso used) One example is complex vector space
V,(C) discussed briefly in Section 12.16 of Volume I.

Although we ae interested primarily in examples of red Euclidean spaces, the theorems
of this chapter are vdid for complex Euclidean spaces as wdl. When we use the term
Euclidean space without further designation, it is to be understood that the space can be
red or complex.

The reader should verify that esch of the following stidfies dl the axioms for an inner

product.

pawte L InV, let (x,y) = x. y, the usua dot product of x and y.

pawe 2. If x = (x;, x) and y = (y;, y,) ae any two vectors in ¥,, define (x, y) by
the formula

(6, ¥) = 2xX101 4+ X1Ya+ Xp)1+ Xa)a.
This example shows that there may be more than one inner product in a given linear space.

exawe 3. Let C(a, b) denote the liner space of dl red-vdued functions continuous
on an intervel [a, b]. Define an inner product of two functions f and g by the formula

(f9)= ] fewar .

This formula is andogous to Equation (1.6) which defines the dot product of two vectors
in ¥,. The function vaues f(t) and g(t) play the role of the components x; and y, , and
integretion tekes the place of summation.

t In honor of Charles Hermite (1822-1901), a French mathematician who made many contributions to
agebra and andysis.
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exawle 4. In the space C(a, b), define

(f, &) = |, WS e di,

-

where w is a fixed pogtive function in C(a, b). The function w is caled a weightfunction.
In Example 3 we have w(t) = 1 for al r.

exawle 5. In the linear space of dl red polynomids, define

=], e dr.

Because of the exponentid factor, this improper integral converges for every choice of
polynomids “and g.

mwecrem 1.8, In @ Euclidean space V, every inner product satisfies the Cauchy-Schwarz
inequality:
|(x, )12 L (x, x)(y, ¥) for al x andy in V.
Moreover, the equality sign holds if and only if x and y are dependent.
Proof. If either x = 0 or y = 0 the result holds trividly, so we can assume that both
x and y are nonzero. Let z = ax + by, where a and b are scdars to be specified later. We
have the inequdity (z, 2 > O for dl a and b. When we express this inequdity in terms of x

and y with an appropriate choice of a and b we will obtain the Cauchy-Schwarz inequdlity.
To express (z, 2) in tems of x and y we use properties (1'), (2) and (3') to obtain

(z,2) =(ax + by, ax+by) = (ax, ax)+ (ax, by) + (by, ax) + (by, by)
= ad(x, x) + ab(x, y) + ba(y, x) + bb(y, y) > 0.

Teking a = (y, y) and cancelling the postive factor (y, y) in the inequdity we obtain
0, X))+ b(x, ») +b(y, x)+bb>0,
Now we take b = —(x, ) . Then 6 = ~ (y, x) and the last inequality simplifies to
¥, G, %) 2 (x5 PG, X) =[x, PP

This proves the Cauchy-Schwarz inequdity. The equality sign holds throughout the proof
if and only if z = 0. This halds, in turn, if and only if x and y ae dependent.

exavee,  Applying Theorem 1.8 to the space C(aq, b) with the inner product (f, g) =
§2f(Hg(t) dt , we find that the Cauchy-Schwarz inequality becomes

(I} swew al) < ([ o an)( [ g ar).
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The inner product can be used to introduce the metric concept of length in any Euclidean
space.

DEFI NI TI ON. In a Euclidean space ¥, the nonnegative number ||x || defined by the equation

Il = (x, x)*

is called the norm of the element x.

When the Cauchy-Schwarz inequality is expressed in terms of norms, it becomes

|G )| < lxl Iyl

Snce it may be possble to define an inner product in many different ways, the norm
of an dement will depend on the choice of inner product. This lack of uniqueness is to be
expected. It is andogous to the fact that we can asdgn different numbers to meesure the
length of a given line segment, depending on the choice of scae or unit of measurement.
The next theorem gives fundamental properties of norms tha do not depend on the choice
of inner product.

THEOREM 1.9. In a Euclidean space, every norm has the following properties for all
elements x and y and all scalars c:

@ x| =0 if x=0.

® x| >0 if x#0 (positivity).

© [exll = lellix] (homogeneity).

@ fx + ylI < iixll + Iyl (triangle inequality).

The equality sign holds in (d) if x= 0, ify= 0, or if y = cxfor some c > 0.

Proof. Properties (8), (b) and (c) follow a once from the axioms for an inner product.
To prove (d), we note that

¥ +pyIP=&+y,x+ ) =%+ )+ &0+ Q,x)
=[x+ Iyl2+ (x, p)+ (x5 p).

The sum (x, y) + (X, y) is red. The Cauchy-Schwarz inequality shows that |(x, y)| <
[xl Lyl and [(x, p)I < llx[l iyl , so we have

Ix + yI K AxP + Ip12+ 2l iyl = (x] + 1y

This proves (d). When y = cx , where ¢ > 0, we have

Ix +yll = lx + exll = (L+ ¢) x| = [x[f + lexll = Ix] + 1y .
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DEFI NI TI ON. In a real Euclidean space V, the angle between two honzero elements x and
y is defined to be that number § in the interval 0 < 6 < 7 which satisfies the equation

(1.7) cose=-Zd)
%1 fyl

Note: The Cauchy-Schwarz inequality shows that the quotient on the right of (1.7)
liesin the interva [ — 1, 1], S0 there is exactly one 6 in [0, =] whose cosine is equd
to this quotient.

112 Orthogonality in a Euclidean space

DEFI NI TI ON. In a Euclidean space ¥, two elements x and y are called orthogonal lf their
inner product is zero. A subset § of Vis called an orthogonal set if (x, y) = 0 for every pair
of distinct elements x and y in S. An orthogonal set is called orthonormal if each of its
elements has norm 1.

The zero eement is orthogond to every eement of V; it is the only eement orthogond to
itself. The next theorem shows a relation between orthogondity and independence.

tecrem  1.10. In a Euclidean space ¥V, every orthogonal set of nonzero elements is
independent. In particular, in a jinite-dimensional Euclidean space with dm V = g, every
orthogonal set consisting of N nonzero elements is a basis for V.

Proof. Let S be an orthogona set of nonzero dements in v, and suppose some finite
lineer combination of eements of § is zero, say

k
2 ex; =0,

where eech x; € S. Taking the inner product of each member with x; and usng the fact
that (xi , x;,) = 0if i # 1, wefind that ¢;(x;, x;) = 0.But (x;, x;) # 0snce x, # 0 0
¢, = 0. Repedting the argument with x, replaced by Xx;, we find that each ¢; = 0. This
proves that S is independent. If dm v = n and if § condss of n dements, Theorem 1.7(b)
shows that S is a bass for V.

exaveLe. [N the red linear space C(0, 2) with the inner product (f, g) = [3" f(x)g(x) dx.
let S be the set of trigonometric functions {ug, #;, 4., . . .} given by

ux) =1, Uy,_1(x) = cos nx, Uy, (x) = sn nx, for n=1,2,....

If m # n, we have the orthogondity reations

f:ﬂ u,(x)u,,(x) dx = 0,
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0 S is an orthogona set. Since no member of S is the zero eement, S is independent. The
norm of each eement of § is easly caculaed. We have (u,, u,) = |3" dx = 27 and, for
n>1, we have

27 2r
(Ugyq, “271—1)='L o8 nx dx = =, (Ugy» Usy) =f0 sin® nx dx = 7,

Therefore, [u,|| = V27 and o, || = Jafor n > 1. Dividing each u, by its norm, we

obtain an orthonorma set {¢,, ¥, ¢, . . .} where ¢, = u,/|lu,|| Thus, we have
1 COS nx sin nx
(pﬂ(x) == (pgn,*[(X) = T = (p?n(x) = — f or n 2 1
\/271' \/77' Jm

In Section 114 we shadl prove that every finitedimensona Euclidean space has an
orthogona bass. The next theorem shows how to compute the components of an eement
relative to such a basis.

miecrem |11, Let V he a finite-dimensional Euclidean space with dimension #, and

assume that S = {e;, ..., e,}s an orthogonal basis for V. [fan element x is expressed as
g linear combination of the basis elements, say

1.8) x= Y e,
=1
then its components relative to the ordered basis (e, , . . . , e,) are given by the formulas
'1.9) G ) A N
(e;, e;)

fn particular, if S is an orthonormal basis, each c; is given by
1.10) c; =X &) .

Proof. Teking the inner product of each member of (1.8) with ¢;, we obtan

n

(X: ej) = 21 cz’(ein e;‘) = Cj(ej5 e;‘)

1=
iince (e;, ;) = 0if i j. This implies (1.9), and when (¢;, ¢;) = 1, we obtain (1.10).

If {e;,..., e} is an orthonorma bess, Equation (1.9) can be written in the form

n

1.12) x=;mam.

The next theorem shows that in a finitedimensond Eudidean space with an orthonorma
»asis the inner product of two elements can be computed in terms of their components.
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thecrem 112, Let V be a finite-dimensional Euclidean space of dimension n, and assume

fhat {e,, . .., e} is an orthonormal basis for V. Then for every puir of elements x and y in V,
we have
(L12) (x,9) =D (x,e)(y,e;)  (Parseval’'s formula).

=1

In particular, when x =y , we have
(1.13) [1x]|* = le(x, e)l®.

Proof, Taking the inner product of both members of Equation (1.11) withy and using

the linearity property of the inner product, we obtain (1.12). When x = p, Equation
(1.12) reduces to (1.13).

Note: Equation (1.12) is named in honor of M. A. Parseval (circa 1776-1836), who

obtained this type of formula in a specid function space. Equaion (1.13) is a
generdization of the theorem of Pythagores.

1.13 Exercises

Lletx={(x,...,x)andy=(p,..., y,) bearbitrary vectorsin ¥, . In each case, determine
whether (x, y) is an inner product for V,, if (x, y) is defined by the formula given. In case
(X, y) is not an inner product, tell which axioms are not satisfied.

n n /
@ ()= 3 %l @ (x, 7) =( zxgyg)l gy
1=1 =1
) x, ) = i Xy - (e) (x, ) = }El (x; + y* ~ flx? - i)’?-
i=1 i= i= i=1
© @,y = f ﬁ

2. Suppose we retain the firg three axioms for a red inner product (symmetry, linearity, and
homogeneity but replace the fourth axiom by a new axiom (4): (x, x) = 0 if and only if
= 0. Prove that either (x, X) > 0 for dl x # 0 or dse (X, X) < O for dl x # 0.

[Hint:  Assume (X, x) > O for some x # 0 and (¥, y) < 0 for some y # 0. In the
space spanned by {x, y), find an dement z # 0 with (z, 2) = 0.]

Prove tha each of the statements in Exercises 3 through 7 is valid for al dements x and y in a
real Euclidean space.

3. (x,y)=0if and only if Jx+ yll= flx = yf.

4. (x, y) = 0if and only if x + y|* = |x|2+ lyI2.

5 (x, p=0if and only if lx + ¢yl) > |lx/| for @l red c.

6. (X +y,x = vy)=0if ad only if [xI' = [yl

7. If x and y are nonzero dements making an angle 6 with each other, then

flx = yI? = x|z + lyI? = 2 l|x] |y} cos 6.
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8. In the red linear space C(l, €), define an inner product by the equation

(f, )= | tog ) f(x)g(x) ax,

(@ If f(x) = Vx, compute | f].
(b) Find a linear polynomid g(x) = a + bx tha is orthogond to the congant function
f(x) = 1.
9. In the red linear space C( = 1, 1), let (£, g) = f', f(g(®) dt . Consder the three functions
uy, ty, uy given by
wm® =1, u(t) =t () =1+ ¢.

Prove that two of them are orthogond, two make an angle /3 with each other, and two
make an angle =/6 with each other.
10. In the linear space P, of dl red polynomids of degree < #, define

M@=§f®g®-

(@) Prove that (f, g) is an inner product for P, .
(b) Compute (f, g) when f(r) =t and g(t) = at + b.
(© If f(t) = ¢ , find dl linear palynomias g orthogond to f.
t1. In the linear space of dl red polynomids, define (f, g) = [ e 'f()g(r) dt .
(8@ Prove that this improper integra converges absolutdy for al polynomids f and g.
(b) If x,(r) =" forn =0,1,2,..., prove that (x,, x,) = (m + n)!.
(c) Compute (f,g) when f(f) =(r + 12 andg()= # + 1.
(d) Find dl lineer polynomials g(#) = a + bt orthogond to f(r) = 1 + r.
12. In the linear space of dl red polynomids, determine whether or not (f, ¢) is an inner product
if (f,g) is defined by the formula given. In case (f,g) is not an inner product, indicate which
axioms are violated. In (c), f' and g ' denote derivatives.

@ (f,8) =f(Dg(D). © (fe) = [/ wg'war.
®) (f,) = ‘ f;f(t)g(t) dt ‘ @ (f,g) = (f:f(t) dz)(folg(t) dt) .

13. Let ¥ consist of &l infinite sequences {x,} of red numbers for which the series Zx2 converges.
If x = {x,} and y = {y,} are two elements of ¥, define

(5, )) = XuYn-
n=1

(@ Prove tha this series converges absolutely.
[Hint: Use the Cauchy-Schwarz inequality to esimate the sum X232, [x,y,|.]

(b) Prove that V' is a linear space with (x, y) as an inner product.
(c) Compute (x, y)if x, = l/nand y, = 1/(n + 1) for n > 1.
(d) Compute (x, y)if x, =2"and y, = 1/n! forn > 1.
14. Let ¥ be the sat of dl red functions f continuous on [0, + ») and such that the integral
I3 e7tf*(t) dt converges. Define (f, g) = [ e~ 'f(H)g(®) dt .
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(@) Prove that the integrd for (f, g) converges absolutely for each pair of functions f and ¢
inV.

[Hint:  Use the Cauchy-Schwarz inequdity to estimate the integrd (37 e | £ (£)g(#)] d1.]

(b) Prove that V is alinear space with (f, g) as an inner product.
(c) Compute (f, ) if f(f) = e tandg(®) = 1", wheren =0, 1,2, . . . .
15. In a complex Euclidean space, prove that the inner product has the following properties for
al eements x, y and z, and al complex a and ,
(a) (ax, by) = ab(x, ). (b) (x, ay + bz) = alx, y) + b(x, 2).
16. Prove that the following identities are vdid in every Euclidean space.
@ llx +yi2=lIxl2+ IylP+ 6,0 + (%
(®) lIx + yI* = lx =y = 2(x, y) + 2(p, x).
(© lix+ pIP+ lIx = y|2= 2 =2+ 2 ly|>.
17. Prove that the space of al complex-valued functions continuous on an interva [a, b] becomes
a unitary space if we define an inner product by the formula

(8 = [ wo fOg@ ar,

where w is a fixed pogtive function, continuous on [a, b].

1.14 Construction of orthogonal sets. The Gram-Scltmidt process

Every finitedimensond linear space has a finite bads If the space is Euclidean, we can
adways congruct an orthogonal basis. This result will be deduced as a conseguence of a
generd theorem whose proof shows how to construct orthogona sets in any Euclidean
spece, finite or infinite dimendona. The condruction is cdled the Gram-Schmidt orthog-
onalizationprocess, in honor of J P. Gram (1850-1916) and E. Schmidt (18451921).

THEOREM 1.13. ORTHOGONALIZATION THEOREM. Let xy,x,,. .., be ajinite or infinite
sequence of elements in a Euclidean space V, and let L(x,,. .., X;) denote the subspace
spanned by the first k of these elements. Then there is a corresponding sequence of elements
Y15 Y2s 0«0 in V which has the following properties for each integer k:

(@ The element y, is orthogonal to every element in the subspace L(y,, . . ., y1)-

(b) The subspace spanned by y;,. . ., ¥, is the same as that spanned by x,, . . ., x,:

LGt p) = Lx, v, ).

(c) The sequence yy, y,, ..., is unique, except for scalar factors. Thatis,ify;, y,,...,Iis
another sequence of elements in V satisfying properties () and (b) for all k, then for each Kk
there is a scalar ¢, such that y; = ¢,y .

Proof. We condruct the eements y,, y,, . . . , by induction. To dat the process, we

take y; = x,. Now assume we have constructed y,, . . ., y, S0 that (8) and (b) are satisfied
when k = r . Then we define y,., by the equation

(114 Vrg1 = Xpp1 — Zl ay;,
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where the scdars a,, . . . ,a, are to be determined. For j < r, the inner product of Y,
with y, is given by

Yri15 Y1) = K15 ) — zlai(yi’ V) = (X1, ¥) — af(y;, ¥3),
snce (¥;, ;) = 0if i #J . If y; # 0, we can meke Yr41 Orthogona to y, by taking
(1.15) gy st s 2D
(Vs> ¥3)

If y;, = 0, then y,,, is orthogond to y,; for any choice of g;, and in this case we choose
a;=0. Thus, the dement y,., is wel defined and is orthogond to each of the ealier

eements y;, ..., ¥, . Thedfore it is orthogond to every dement in the subspace
Ly, ...
This proves (@ when k = r + 1.
To prove (b) when k =1 + 1, we must show that L(y;, . . ., Yppa) = L0y, - - ., Xpp1),
gventha L(y;, ..., »)= L(xy, ..., x,) . Thefirst r dements y,, ..., y, aein
L(x19 s -xr)
and hence they are in the larger subspace L(x; , . . ., x,.4). The new dement y,,, given by
(1.14) is a difference of two dements in L(x;, . . ., X,4q) S0it, t00, isin L(x;, . . ., X,41).

This proves that

L(yl, v 9yr+l) = L(xh L ’x‘r+1)'

Equation (1.14) shows that x,,; is the sum of two dements in L(y; , . . ., ,,;) S0 asmilar
agument gives the indudon in the other direction:

L(xb LIS ] xr+1) c L(Yly LI ’.yT+1)'

This proves (b) when k = r + 1. Therefore both (8 and (b) are proved by induction on k.
Findly we prove (c) by induction on k. The case k = 1 is trivid. Therefore, assume (c)
is true for k = r and consder the element y/ , . Because of (b), this dement is in

L(yl, e 3yr-+-1)9

O we can write

r+1
Vit =glciyi = Zr + Crp1Vry1s
wherez, € L(yy,. . . , y,) - We wish to prove that z, = 0. By property (), both y, , and

Cri1Vry1 @€ orthogond to z, . Therefore, their difference, z,, is orthogond to z, . In other
words, z, is orthogond to itself, so z, = 0. This completes the proof of the orthogonaliza-
tion theorem.
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In the foregoing construction, suppose we have y, , = 0 for some r. Then (1.14)

shows that X, is a linear combingtion of y,, ... ,y,, ad hence of x,, . .., x,, 0 the
dements X, . . ., X, ae dependent. In other words, if the fird k dements x1,. . . , X
are independent, then the corresponding elements y; , . . . , y; ae nonzero. In this case the
coefficients g, in (1.14) are given by (1.15), and the formulas defining y, , . . . , y, become
(1.16) J; = X1 Vg = X1 — Z(’ETH’ y;) for r=1,2,..., k=1

Yis Vi

These formulas describe the Gram-Schmidt process for congdructing an orthogona st of

nonzero dements y;, . .. , y, which gpans the same subspace as a given independent set
Xiy.. X In paticdler, if x,, . .., x, is a bass for a finite-dimensiona Euclidean spece,
then y;, ...,y is an orthogond bess for the same space. We can dso convert this to an

otthonorma  basis by normalizing each dement y,, tha is by dividing it by its nom.
Therefore, as a corollary of Theorem 1.13 we have the following.

THEOREM 114.  Every finite-dimensional Euclidean space has an orthonormal basis.

If x and y are dements in a Euclidean space, withy # O, the dement

(x5
s y)

is cdled the projection of x along y. In the Gram-Schmidt process (1.16), we construct
the eement y,.; by subtracting from x,.; the projection of x,,; dong each of the ealier
dements ,, ..., ¥,. Foure 11 illusrates the congruction geometricdly in the vector
space V.

Xy

Yi= X5 — Yy, — ), 4; = M
(yi* yf)

(X‘b yl)
WLy

YVa= Xy ~ CY1, €=

"

FIGURE 1.1 The Gram-Schmidt process in ¥'3 . An orthogona set {y,, J2 , yy} is
congtructed from a given independent st {x,, x,, x3}.
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exavee 1. In ¥y, find an orthonormal basis for the subspace spanned by the three
vectors x; = (4, -1, 1, =1), x, = (5, 1, 1, 1), and x; = (-3, -3, 1, -3).

Solution.  Applying the Gram-Schmidt process, we find
n=x-=(@ -1 1, —1)5

Ve x2_M)yl=x2~yl=(492’0’2)’
= (y1> 1)

X3 s X3 4
,V3=x3—(Ryl)}’1—(qy2)Yz:x3—Yl+y2=(0,0,0,0)-
1s y0) (2, y2)

Since y, = 0, the three vectors x,, x,, x; must be dependent. But since y;, and y, ae
nonzero, the vectors x; and x, are independent. Therefore L(x,, xs, X;) is a subspace of
dimenson 2. The set {y,,y.} is an orthogona basis for this subspace. Dividing esch of
y, ad y, by its norm we get an orthonormd basis consisting of the two vectors

e L
ol /6

exavle 2. The Legendre polynomials. In the linear space of dl polynomids with the
inner product (x, y) = f*, x(1)y(z) dt , condder the infinite sequence x, , Xy, x,, ... where
x,(t) = t". When the orthogonalization theorem is applied to this sequence it yields
another sequence of polynomids Yy, Vi, Ve, . . ., fird encountered by the French mathe-
matician A. M. Legendre (1752-1833) in his work on potential theory. The first few
polynomials are easily calculated by the Gram-Schmidt process. First of all, we have
Yo(?) = x,(t) = 1. Since

L (1, -1,1, —=1)  and

- (2’ 1’ 0; 1)'
Iyl

(o> Yo) =f_11 dt=2 and  (x, yo) = f_ll tdt=0,
we find that
yult) = w0 — Y0 0y =
(yO» JQ!)

Next, we use the redions

1 1
Goy)= [ far=1, (o= [ra=0, gry= [ ra=y,
to obtan

) = (X2, yo)

_ Gy
2P 0

=1 =1.
(y1:y1) ’

Yol) = x(2 o

Smilaly, we find tha

ys) =8 =3t, )=t =310+ &, ps() =15 =2013 + Fy,
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We shdl encounter these polynomids again in Chapter 6 in our further study of differentid
equations, and we shdl prove that

N4 e
The polynomids P, given by
(2n)! 1 d" n
= —_— =— — (=1
P,(1) a1 yal1) Sl (=1

are known as the Legendrepolynomials. The polynomiads in the corresponding orthonormd
sequence ¢o, €1, P2, 44+ given by ¢, = y,/lly,[l ae caled the normalized Legendre poly-
nomials. From the formulas for y,, . .., ys given above, we find that

= Vi, o =Vit, @)= WEGE=1) @)= WEGE =3,
Q)= WE G5 =302+ 3),  @u(t) = BVEE (6315 = 703 + 15¢).

1.15. Orthogonal complements. Projections

Let ¥V be a Euclidean space and let S be a finitedimensona subspace. We wish to
congder the following type of approximaion problem: Given anelement x inV, to deter-
mine an element in S whose distance from x is as small as possible. The distance between
two dements x and y is defined to be the norm ||x — | .

Before discusing this problem in its generd form, we condder a specid case, illustrated
in Figure 1.2. Here V is the vector space ¥V, and S is a two-dimensond subspace, a plane
through the origin. Given x in V, the problem is to find, in the plane S, that point s
nearest to x.

If x € 5, then dearly 5 = x is the solution. If x is not in S, then the nearest point s
is obtained by dropping a perpendicular from x to the plane This smple example suggests
an approach to the general approximation problem and motivates the discussion that
follows.

DEFINTION. Let S be a subset of a Euclidean space V. An element in V is said to be
orthogonal to S if it is orthogonal to every element of S. The set of all elements orthogonal
to S is denoted by S+ and is called *S perpendicular.”

It is a Smple exerdise to verify that S is a subspace of V, whether or not S itsdlf is one.
In case S is a subspace, then ' is caled the orthogonal complement of S.

ExaMPLE. If S is a plane through the origin, as shown in Figure 12, then SL is a line
through the origin perpendicular to this plane. This example adso gives a geometric inter-
pretation for the next theorem.
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FiGure 1.2 Geometric interpretation of the orthogona decomposition theorem in V.

tHeorem 1.15. orTHOGONAL DEcOMPOsi TIoN  THEorem. Let V' be a Euclidean space
and let Sbe a finite-dimensional subspace of V. Then every element x in V can be represented
uniquely as a sum of two elements, one in Sand one in §L. That is, we have

(1.17) x=s+st, wheeseS and sltest
Moreover, the norm of x is given by the Pythagorean formula
(1.18) xl® = Usl® + lIsH 2.

Proof. Firg we prove tha an orthogona decompostion (1.17) actudly exids. Since
S is finitedimensiond, it has a finite orthonorma bess, sy {e, , . . . , e}. Given x, ddfine
the dements 5 and si as follows

n

(119 s= > (X ¢)e, st =X-5s.

i=1

Note that each term (x, e,)e; is the projection of x dong e¢; . The dement s is the sum of the
projections of x dong each bass dement. Since s is a linear combination of the bads
dements, s lies in S. The ddfinition of s+ shows that Equation (1.17) holds. To prove that
st lies in S+, we consider the inner product of s+ and any besis dement ¢, . We have

(SL, ei) = (x -5, ei) = (X1 e,) - (S: ei) .

But from (1.19), we find that (s e;) = (X, ), s0 st is orthogond to e;. Therefore st
is orthogond to every dement in S, which means that s~ € S+ .

Next we prove that the orthogonal decomposition (1.17) is unique. Suppose that X
has two such representations, say

(1.20) x=s5+st and x=1t+t,
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where s and t arein S, and s+ and ¢! aein SL. We wish to prove that s = t and st = ¢l .
From (1.20), we have s — t = t* = g1 so we need only prove that § — f = 0. But
s=teSand t- —s!e SLsos—tisboth orthogond to L — st and equa to ¢+ — st .
Since the zero dement is the only dement orthogond to itsdf, we must have ¢ = t = 0.
This shows that the decompodtion is unique

Findly, we prove that the norm of x is given by the Pythagoreen formula We have

Ix[* = (x, x) = (s + s*, 5 + 57) = (5, 8) + (57, 57),

the remaining teems being zero since s and s! are orthogonal. This proves (1.18).

DEFINITION.  Let § be a finite-dimensional subspace of a Euclidean space V, and let
{er, ..., e} bean orthonormal basis for S If x eV, the element s defined by the equation

3

5= 2 (X e)e
i=1

It

is called the projection of x on the subspace S

We prove next tha the projection of x on § is the solution to the approximation problem
dated & the beginning of this section.

1.16 Best approximation of elements in a Euclidean space by elements in a finite-
dimensional subspace

THEOREM 1.16. APPROXIMATION THEOREM. Let S be a finite-dimensional subspace of
a Euclidean space V, and let x be any element of V. Then the projection of x on § isnearer to
X than any other element of S That is, if s isthe projection of x on S, we have

fx = sl < llx =]

for all tin S; the equality sign holds if and only if t = s.

Proof. By Theorem 1.15 we can write X = s + s+, where s € § and s+ € S+ . Then,
for any t in .S, we have

X—t=X=9+(s—-1.

Snce s =7 € § ad x — 5 = st € §L, this is an orthogona decomposition of x — ¢, so
its norm is given by the Pythagoresn formula

e = 21® = llx = sl + [ls — ]2

But s = ¢[|? > 0, so we have |x — ¢]|? > ||x — sl|?, with equdity hdlding if and only if
s = t. This completes the proof.
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exawLe 1. Approximation of continuous functions on [0, 27] by trigonometric polynomials.
Let ¥ = C(0,27), the liner space of al red functions continuous on the interva [0, 27],
and define an inner product by the equation (f, @) = J2" f(x)g(x) dx . In Section 1.12

we exhibited an orthonorma set of trigonometric functions ¢, ¢,, ¢,, - . . , where
- 1 cos kx sin kx
(121) (po(x) - —_—, ¢2k,1(x) = —, (p%(x) = — =, for k>1.
\/271‘ \/7T \/7r
The 2n + 1 dements @, ¢1,. . . , Pg, 8N a subspace S of dimenson 2n + 1. The de-

ments of § are cdled trigonometric polynomials.
If f€ C(0,2n), letf, denote the projection off on the subspace S. Then we have

(122 fo=2(igoms,  where (1 go) = [ S0 dx.

The numbers (f, ¢,) ae cdled Fourier coefficients off. Usng the formulas in (1.21), we
can rewrite (1.22) in the form

(1.23) f,x) = da, + 2 (a; cos kx + by sin kx),
k=1
where
(% L[
a,=—= | f(x) cos kxdx, b, = —-f f(x) dn kx dx
7 Jo 7 JO
fork=0,1,2,...,n. The agpproximation theorem tels us that the trigonometric poly-

nomid in (1.23) gpproximates f better then any other trigonometric polynomid in .S, in
the sense that the norm || f — f,] is a smal as posshle.

exaple 2. Approximation of continuous functions on [— 1, 1] by polynomials OF
degree < n. Let ¥ = C(- 1, 1), the space of red continuous functions on [- 1, 1], and let
(f, & = |*;, f(x)g(x)dx. The n + 1 normdized Legendre polynomids ¢y, @i, . . . , @,,
introduced in Section 1.14, span a subspace S of dimenson n + 1 condsting of dl poly-
nomids of degree < n. If fe C(— 1, 1), l& f, denote the projection off on S. Then we
have

fo=3(hwome  whee (Lo =]\ fOn0dr.

This is the polynomia of degree < » for which the norm ||/ — £, || is smdlest. For example,
when f(x) = sn @x, the codffidents (f, ¢,) ae given by

(fs q)k) = J;ll gn mt (pk(t) dt.
In paticular, we have (f, ¢,) = 0 and

13 32
s = -t tdt = [==.
s @) f\/z sin \/277
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Therefore the linear polynomial f,(¢) which is nearest to sin ¢ on [- 1, 1] is

A0 = \/—— o) = f

Since (f, @,) = O, this is dso the nearest quadratic approximation.

1.17 Exercises

L

10.

In each casg, find an orthonormal basis for the subspace of V3 spanned by the given vectors,
(a) X = (1511 1)5 X2:(1,0,1), X3 :(3,213)-
(b) xlz(lalal)a X :(_1’11_1)7 x3: (1,0, 1)

. In each case, find an orthonorma besis for the subspace of ¥, spanned by the given vectors.

(a) X = (151a09 0)’ x2:(0,151!0)1 .X3:(0, 0’],1)5 X4 = (1’050’ l)
(b) xl = (1’ 190’ 1), Xy = (1’ 03 25 1)9 X3 = (1323 _21 l)

. In the red linear space C(0, =), with inner product (x, y) = {7 x(0)y(z) dt, let x,(t) = cos nt

fon =0,1,2,.... Provethat the functions y,, y1, ya, . . ., given by

\'4
i

1 2
yolt) = Wi and  yu(t) = \/7—7 cosnt for n

ki

form an orthonormal set spanning the same subspace as xg, Xy, X3, . . . .
In the linear space of dl red polynomias with inner product (x, y) = f3 x(y(?) dt, let
x,t)=¢forn=0, 1 2 ....Prove tha the functions

B =1, p=v3e-=1, y@=V5(62-6t+ 1)

form an orthonormal set gpanning the same subspace as {x; , xy, Xp}.

. Let ¥ be the linear space of dl red functions £ continuous on [0, + «) and such thet the

integra fo¢ e~!f2(1) dt converges. Define(f,g) = [ e if(ng(r) dt, and let yy, 1, s, . . ., be
the set obtained by applying the Gram-Schmidit process to x,, x;, X, - - - » Where X,(t) = ¢*
for m > 0. Prove that yo() = 1, yi(t) = t =1, p() = 2 = 4t + 2, ya(r) = 5 — 9% +
187 = 6.

. In the red linear space C(1, 3) with inner product (f,g) = j3 f (x)égx) dx, let f(x) = I/x

and show that the constant polynomia g nearest to f is g = § log 3. Compute g -f |2 for

this g.

- In the redl linear space C(0, 2) with inner product (£, g) = 3 f (x)g(x) dx, let f(x) = * and

show that the constant polynomia g nearest to f is g = 3(e? - 1). Compute lg -f |2 for
this g.

. In the real linear space C( — 1, 1) with inner product (f, g) = 1, f (x)g(x) dx , let f(x) =

and find the linear polynomia g nearest to f. Compute [lg — f |2 for this g.

In the red linear space C(0, 2n) with inner product (f,g) = 27 f(x)g(x) dx, let f(x) = x.
In the subspace spanned by u,,(X) = 1, uj(x) = cos X, uy(x) = sn X, find the trigonometric
polynomia nearest to f.

In the linear space V of Exercise 5, let f (x) = e~* and find the linear polynomid thet is nearest

to f.
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LINEAR TRANSFORMATIONS AND MATRICES

21 Linear transformations

One of the ultimate goals of analysis is a comprehensive study of functions whose
domains and ranges are subsets of linear spaces. Such functions are caled transformations,
mappings, or operators. This chapter treats the smplest examples cdled linear transforma-
tions, which occur in dl branches of mahematics Properties of more generd transforma
tions are often obtaned by agpproximating them by linear transformations.

Firg we introduce some notation and terminology concerning abitrary functions. Let
V and W be two sets. The symbol

T.V>W

will be used to indicate that T is a function whose domain is V and whose vaues are in W.

For each x in V, the dement T(x) in W is cdled the image of x under T, and we say that T

maps x onto T(x). If A isany subset of V, the st of dl images T(x) for x in A is cdled the

image of A under T and is denoted by T(A). The image of the domain V, T(V), is the range
of T.

Now we assume tha V and Ware liner spaces having the same sat of scadars, and we
define a liner trandformation as follows.

periniTion.  IfV and Ware linear spaces, a function T: V — W is called a linear trans-
formation of V into W if it has the following two properties:

@ T(x +y) =T(x) + T(y) forallxand yinV,

(b) T(cx) = cT(x) for all x in V and all scalars c.

Thee properties are verbdized by saying tha T preserves addition and multiplication by
scdars. The two properties can be combined into one formula which dates that

T(ax + by) = aT(x) + bT(p)

fordl x,yin V and dl scadars a and b. By induction, we dso have the more generd relation

n n
T(Z aixi) = z a;T(x;)
i=1 =1
for any n dements x;, . . ., x, in ¥V and any n scalars a,, ... , a,.

31
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The reader can eesly veify that the following examples are linear transformations.

EXAMPLE 1. The identity transformation. The transformetion T: V — ¥, where T(x) = x
for each x in Vv, is cdled the identity transformation and is denoted by Z or by I;,.

exawe 2. The rero transformation. The transformetion T: }J— Vv which maps each
dement of v onto O is cdled the zero transformation and is denoted by O.

exavele 3. Multiplication by & fixed scalar c. Here we have T: V. — V, where T(x) = cx
for dl x in v. When ¢ = 1, this is the identity transformation. When ¢ = 0, it is the zero
transformation.

exave,e 4, Linear equations. Let V. =V, and w = V,, . Given mn red numbers g,

wherei=1,2,...,mandk =1,2,...,n,define T: ¥, — ¥V, as follows: Tmapseach
vector X = (xy, . . . ,x) in¥, onto the vector y = (31, . . ., Vn) inV,, according to the
equations
Yi=Yagx, for i=1,2,...,m
k=1

exaveLe 5. Inner product with a fixed element. Let V be a red Euclidean space. For a
fixed dement z in v, define T: V — R as follows If x € V, then T(x) = (X, z), the inner
product of x with z

ExavLE 6. Projection on a subspace. Let V be a Euclidean space and let S be a finite-
dimensional subspace of V. Define T: V — S as follows: If x € V, then T(x) is the
projection of x on S.

exaveLe 7. The differentiation operator. Let V be the liner space of dl red functions
f differentisble on an open intervd (a, b). The linear transformation which maps each
functionfin v onto its deivaivef’ is cdled the differentiaion operator and is denoted by
D. Thus we have D: V — W, where D (F) = f'for each fin V. The space W consists of
al deivatives f'.

exavvle 8. The integration operator. Let V be the liner space of dl red functions
continuous on an intevd [a, b]. If fe V, define g = T(f) to be tha function in V given by

g0 =] swd if a<x<b.
This trandformation T is cdled the integration operator.

2.2 Null space and range
In this section, Tdenotes a linear trandformation of a linear space Vv into a linear space W.

THEOREM 2.1.  The set T(V) (the range of T) is a subspace of W. Moreover, T maps
the zero element of v onto the zero element of w.
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Proof. To prove that T( V) is a subspace of W, we need only verify the dosure axioms.
Take any two dements of T(V), sy T(x) and T(y). Then T(x) + T(¥) = T(x + y) ,
T(X) 4+ T() is in T(F). Also, for any scdar ¢ we have ¢T(x) = T(cx) , so ¢T(x) is in T(V).
Therefore, T( V) is a subspace of W. Taking ¢ = 0 in the reation T(cx) = ¢T(x), we find
that T(0) = O.

DEFINITION.  The set of all elements in V that T maps onto 0 is called the null space of
T and is denoted by N(T). Thus, we have

N = {x|x € Vand T(x) =0} .

The null space is sometimes called the kernel of T.
TheoRem  2.2. The null space of T is a subspace of V.
Proof. If x and y are in N(T), then s0o are x + y and cx for dl scdars c, snce
Tx + ) =TX) + T(y) =0 and T(cx) = ¢T(x) = 0.

The fdlowing examples describe the null spaces of the linear trandformations given in
Section 2.1.

xawte 1. Identity transformation. The null space is {0}, the subspace condsting of
the zero dement done

exavele 2. Zero transformation, Since every dement of V is mapped onto zero, the
null space is V' itsdf.

exavele 3. Multiplication by a fixed scalar c. If ¢ % 0, the null space contains only O.
If ¢ = 0, the null space is V.

exavele 4. Linear equations. The null space condss of dl vectors (x;, . . ., X,) in ¥V,
for which

n
dagx, =0 for i=12,...,m
k=1

exawLe 5. Inner product with a fixed element z. The null space consists of &l dements
in V orthogond to z

exawLe 6. Projection on a subspace S. If x € V', we have the unique orthogonal
decomposition x = s + st (by Theorem | .15). Since T(x) = s, we have T(x) = 0
if and only if x = gL . Therefore, the null space is S1, the orthogond complement of S

exavee 7. Differentiation operator. The null space conssts of dl functions that are
condant on the given interva.

exaw e 8. Integration operator. The null space contains only the zero function.
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2.3 Nullity and rank

Again in this section T denotes a linear transformation of a linear space V' into a linear
space W. We ae inteeded in the rdation between the dimensiondity of V, of the null
space N(T), and of the range T(V). If ¥V is finitedimensond, then the null space is ds
finitedimensond since it is a subspace of V. The dimenson of N(T) is cdled the nullity
of T. In the next theorem, we prove tha the range is ds0 finitedimensond; its dimension
is cdled the rank of T.

THEOREM 2.3. NULLITY PLUS RANK THEOReEM. If V is finite-dimensional, then T(V) is
also finite-dimensional, and we have

2.1) dm N( T) + dm T(V) = dm V .

In other words, the nullity plus the rank of a linear transformation is equal to the dimension
of its domain.

Proof. Letn=dimV andlete,, ..., e, bea basisfor N(T), where k = dim N(T) < n.
By Theorem 1.7, these dements are pat of some bass for V, say the bass

(2.2) €150 vy €y Crpts . s Crpps

where kK + r = n . We shdl prove that the r dements

2.3 T(er1)s . .. » T(€rsr)
form a bass for T(V), thus proving tha dm T(V) = r . Snce kK + r = n , this dso proves
(2.1).
Firss we show that the r dements in (23) span T(V). If y € T(V), we have y = T(X)

for some x in I, and we can write X = cie; + ** * + ¢ €., . Hence, we have

ktr k kt+r ktr

y=Tx) =2¢T(e) =2 ¢;T(e) + 2 eT(e) = 2 ¢ T(e,)

=1 f=1 i=k+1 i=k+1

dgnce T(e,)) = + v+ = T(e,) = 0. This shows tha the eements in (2.3) span T(V).

Now we show that these elements are independent. Suppose that there are scalars
C41s » + » s Cryr SUCh  that

ktr

Y ¢T(e) =0,
i=k+l

This implies that

ki
T( > ciei) =0

i=k+1

o the dement x = ¢py€p1 + ' ' * + CuisCry, 1S in the null space N(T). This means there
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aescdas ¢;, ..., ¢ such that x = ¢je; + +. ++ ¢, O we have

k ktr

x —X= zciei——z%eiz 0.
i= j

i=k+1
But since the dements in (22) are indeperdent, this implies that &l the scdars ¢; are zero.
Therefore, the dements in (23) are independent.

Note: If ¥ is infinitedimendond, then & least one of N(T) or T(V) is infinite-
dimensond. A proof of of this fact is outlined in Exercise 30 of Section 2.4.

2.4 EXxercises

In each of Exercises 1 through 10, a transformation T: ¥, - ¥, is defined by the formula given
for T(x, y), where (x, y) is an arbitrary point in ¥, . In each case determine whether Tis linear. If
T is linear, describe its null space and range, and compute its nullity and rank.

1‘ T(x9 )’): (}’, x)' 6 T(xa }’):(em, ey) .

2.T(x, y) = (x, =) . 7. T(x, y) = (x, 1).

3. T(x,y) = (x,0). 8. T(x,y) = (x+ 1,y + 1).

4. T(x,y) = (X X) . 9.T(x,y) =X —p,x +)).

5. T(x,y) = (% )9. 10. T(x,y) =(2x -y, x + ).

Do the same as above for each of Exercises 11 through 15 if the transformation T: V, — V,
is described as indicated.

11. T rotates every point through the same angle ¢ about the origin. That is, T maps a point
with polar coordinates (r, ¢) onto the point with polar coordinates (r, 6 + ¢), where g is
fixed. Also, T mgps O onto itsdf.

12. T maps each point onto its reflection with repect to a fixed line through the origin.

13. T maps every point onto the point (1, 1).

14. T maps each point with polar coordinates (r, ) onto the point with polar coordinates (2r, 6).
Also, T maps 0 onto itsdf.

15. T maps each point with polar coordinates (r, §) onto the point with polar coordinates (r, 26).
Also, T maps 0 onto itsf.

Do the same as above in each of Exercises 16 through 23 if a transformation 7: ¥y — V, is
defined by the formula given for T(x, y, z), where (X, y, 2) is an arbitrary point of V7 .

16. T(x, y,2) = (z,y,%). 20. T(x,y,z) = (x + L,y + L,z = 1).
17. T(x, y, 2) = (x,,0). 21 T(x,y,2) = (x+ 1,y + 2,z + 3).
18. T(x, Y, 2) = (X, 2y, 32). 22. T(X, ¥, 2) = (X, y% 2%).

19. T(x,y,2) = (x,y, 1). 23. T(x, 5,2 =(X+2 0, x +Y).

In each of Exercises 24 through 27, a transformation 7: ¥ — ¥ is described as indicated. In
each case, determine whether T is linear. If T is linear, describe its null space and range, and
compute the nullity and rank when they are finite

24. Let V' be the linear space of dl red polynomials p(x) of degree < n . Ifp € V', g = T(p) means
that q(x) = p(x + 1) for dl red x.

25. Let ¥V be the linear gpace of dl red functions differentidble on the open intervd (— 1, 1).
If feV, g = T(f) meansthat g(x) = xf'(x) for dl xin ( - 1, 1).
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26. Let ¥ be the linear space of @l red functions continuous on [a, b]. If fe ¥, g = T(f) means
that

09 =" fOsnx -Hdt foragx <h

27. Let ¥V be the space of dl red functions twice differentidble on an open intervd (a, b). If
yeV,ddineT(y) =y" + Py + Qy, where P and Q are fixed congtants.

28. Let v be the linear space of dl red convergent sequences {x,}. Define a transformation
T ¥V—V asfdlows If x = {x} is a convergent sequence with limit a, let T(x) = {yu},
wherey, =a—x,forn> 1. Prove that Tis linear and describe the null space and range of T.

29. Let ¥ denote the linear space of dl red functions continuous on the intervd [—, #]. Let S
be that subset of ¥ consisting of @l f satisfying the three equations

[ roar=0, [ pweostar =0, [ p@wsinrar =o.

(a) Prove that S is a subspace of V.
(b) Prove that § contains the functions f (x) = cos nx and f (X) = Shax foreechn=2,3,.. ..
(c) Prove that § is infinitedimensond.

Let T V— V be the linear transformation defined as follows Iff € ¥,g = T(f) means that

g(x) = f_ {1 + cos (x — O} (1) dt .

(d) Prove that T(V), the range of T, is finitedimensond and find a basis for T(V).
(e) Determine the null space of T.
(f) Find dl red c # 0 and dl nonzero f in ¥ such thet T(f) = ¢f. (Note that such an f
lies in the range of T.)

30. Let T: ¥— W be a linear transformation of a linear space V into a linear space W. If V' is
infinite-dimensond, prove that & least one of T(V) or N(T) is infinitedimensond.

[Hint Assumedim N(T) = k ,dim T(V) =r ,let ey, .., ¢ be abass for N(T) and
let ey, . - ., €, €1, - - -+ €, DE independent dements in V, where n > r. The
dements T(e;.yy), . . . . T(e,,) @€ dependent since n > r. Use this fact to obtan a
contradiction.]

25 Algebraic operations on linear transformations

Functions whose vaues lie in a given linear space W can be added to each other and can
be multiplied by the scdars in W according to the following definition.

oermiTion. Let S V— W and T: V— W be two functions with a common domain V

and with valuesin a linear space W. If cis any scalar in W, we define the sum S+ T and the
product cT by the equations

2.4) S+ DHx)= S® + T(x), (cT)(x) = ¢T(x)

for all x in V.
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We are egpecidly interested in the case where V' is ds0 a liner space having the same
scdars as W. In this case we denote by Z( ¥, W) the st of dl linear tranformaions of V
into W.

If S and Tare two linear transformations in £ ( ¥, W), it is an easy exerdse to verify that
S+ T and ¢I ae dso linear transformations in £ (V, W). More than this is true. With
the operations just defined, the set Z(V, W) itself becomes a new linear space. The zero
transformation serves as the zero element of this space, and the transformation (—[)T
is the negative of T. It is a straightforward maiter to verify that al ten axioms for a linear
gace ae satisfied. Therefore, we have the following.

THECREM 2.4. The set #(¥, W) of all linear transformations of V into W is a linear
space with the operations of addition and multiplication by scalars defined as in (2.4).

A more interesting algebraic operation on linear transformations is composition or
multiplication of tranformations. This operation makes no use of the agebraic sructure
of a linear space and can be defined quite generdly as follows.

Fiere 2.1 lllugrating the compostion of two transformations.

peFiNTioN. Let U, V, W be sets. Let T: U— V be a function with domain U and
values in V, gnd let S: V— W be another function with domain V and values in W. Then
the composition ST is the function ST: U — W defined &y the equation

(SNH® = S[T(x)] for every xin U.

Thus, to map x by the compostion ST, we firsd mgp x by T and then map T(x) by S.
This is illugraed in Figure 2.1

Composition of red-valued functions has been encountered repeetedly in our study of
cdculus, and we have seen that the operation is, in generd, not commutative. However,
a in the case of red-vdued functions, compostion does satify an associaive law.

THEOREM 25. IfT: U—V,S V —» W, and R W- X are three functions, then we have

R(ST) = (RS)T.



38 Linear transformations and matrices

Proof. Both functions R(ST) and (RS)T have doman U and vaues in X. For each x
in U, we have

[RST)](x) = RI(ST)(x)] = RIS[T()])] and  [(R$)T](x) = (RS)[T(x)] = RIS[T()II,

which proves that R(ST) = (R9T.

cernimon. Let T: ¥V— V be a function which maps V into itself. We define integral
powers of T inductively as follows:

n=I, T"=TT"1 for n>1.
Here I is the identity trandformeation. The reader may verify that the asociative law

implies the law of exponents T™T™ = T™+" for dl nonnegative integers m and n.
The next theorem shows that the compostion of linear transformations is again linear.

theorem 2.6, If U, ¥, W are linear spaces with the same scalars, and if T: U — V
and S V — W are linear transformations, then the composition ST: U — W is linear.

Proof. For dl x, y inU and dl scdas a and b, we have

(ST)(ax + by) = S[T(ax + by)] = S[aT(x)+ bT(y)] = aST(x) + bST() .

Composition can be combined with the agebraic operations of addition and multiplica
tion of scdars in Z(V, W) to give us the following.

theorem 2.7. Let U, ¥V, W be linear spaces with the same scalars, assume Sand T are
in Z£(V, W), and let c be any scalar.
(8 For any function R with values in V/, we have

S+ T)R=R+ TR and (e¢S)R= ¢(SR).
(b) For any linear transformation R: W — U, we have

R(S+ T)=RS+ RT and R(cS)= c(RS).

The proof is a draghtforward application of the definition of compostion and is left as
an exercise

2.6 Inverses

In our gdudy of red-vdued functions we learned how to congruct new functions by
inverson of monotonic functions. Now we wish to extend the process of inverson to a
more generd cdass of functions.
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Given a function T, our god is to find, if possble another function § whose composition
with T is the identity transformation. Since compogtion is in generd not commutdive,
we have to diginguish between ST and TS Theefore we introduce two kinds of inverses
which we cdl left and right inverses.

DEFINITION.  Given two sets V and Wand a function T: V — W. A function S T(V) — V
is called a Jeft inverse of T if S[T(x)] = x for al x inV, that is, if

ST= IV’

where [}, isthe identiry transformation on V. A function R: T(V) — V is called a right inverse
of Tif T[R(Y)] = vy for ally in T(V), that is, if

IR = Ipypy,
where I () is the identity transformation on T(V).

exawle. A function with no left inverse but with two right inverses. Let V = (1, 2)
and le¢ W = {0}. Define T: ¥— Was follows T(1) = T(2) = 0. This function has two
right inveesss R W—V and R : W — V given by

R(0) = 1, R@©) = 2.
It cannot have a left inverse S snce this would require
1 = gT0)] = S0) and 2 = S[T)] = 0).

This smple example shows that left inverses need not exig and that right inverses need not
be unique.

Evey function T. V— W has a least one right inveise. In fact, each y in T(V) hes the
fomy = T(x) for a leest one x in V. If we sdect one such x and define R(y) = x , then
TIR(»)] = T(®) =y for eech y in T(V), so R is a right inverse. Nonunigueness may occur
because there may be more than one x in V which mgps onto a given y in T(V). We dhdl
prove presently (in Theorem 2.9) that if each y in T(V) is the image of exactly one x in V,
then right inverses are unique

Frg we prove that if a left inverse exigs it is unigue and, a the same time is a right
inverse.

mvecrem  2.8. A function T: V — W can have at most one left inverse. If T has a left
inverse S, then S is also a right inverse.

Proof. Assume T has two left inverses, S: T(V)+ Vand S': T(V)+ V. Choose any
y in T(V). We shdl prove that S(y) = S(y) . Now y = T(x) for some x in V, so we have

S[T)]=x and S [T(] = x,
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snce both S and S’ are left inverses. Therefore S(y) = x and S'(y) = x , 0 Sy) = S'(y)
for dl y in T(V). Therefore S = S which proves tha left inverses are unique.

Now we prove that every left inverse S is dso a right inverse. Choose any dement y in
T(V). We shdl prove that T[S(y)] =y . Sincey € T( V), we havey = T(x) for some x in
V. But S is a left inverse, 0

S[TM] = S().

Applying T, we get T(x) = TIS()] . But y = T(x), so y = TIS(¥)] , which completes the
proof.

The next theorem characterizes dl functions having left inverses.

THEOREM 2.9. A function T: V — W has a left inverse if and only if T maps distinct
elements of V onto distinct elements of W, that is, if and only if, for all xand y in V,

(2.5) x#y  implies T(x) # T(y).
Note: Condition (25) is equivdent to the statement
(2.6) T(x) =T(y) implies X =Y.

A function T satisfying (25) or (2.6) for dl x and y in V is said to be one-to-one on V.

Proof. Assume T has a left inverse S, and assume that T(X) = T(y). We wish to prove
tha x =y . Applying S we find S[7(x)] = S[T(»)] Smce S[T(x)] = x and S[T(y)] =
this implies x = y. This proves that a function with a left inverse is oneto-one on its
domain.

Now we prove the converse. Assume Tis oneto-one on V. We ghdl exhibit a function
S T(V) — V which is a left inverse of T. If y € T(V) , then y = T(X) for some x in V. By
(2.6), there is exactly one x in V for which y = T(x). Define S(y) to be this x. That is
we define S on T(V) as follows

S(y) = x  means that TX) =vy.

Then we have S[T{(x)] = x for each x in V, so ST = |,. Theefore, the function S o
defined is a left inverse of T

erinTion. Let T V. — W be oneto-one on V. The unique left inverse of T (which

we know is also a right inverse) is denoted by T-1. We say that T is invertible, and we call
T-1 the inverse of T.

The results of this section refer to arbitrary functions. Now we apply these idess to
linear transformations.
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2.7 Oneto-one linear transformations

In this section, ¥ and W denote linear spaces with the same scadars, and T: V' — W
denotes a linear transformation in .#( ¥, W). The linearity of T enables us to express the
oneto-one property in severa equivdent forms.

tHeorem 2,10, Let T: V — W be a linear transformation in #( V, W). Then the following
statements are equivalent.
(@ T is one-to-one on V.
(b) T isinvertible and itsinverse T-1: T(V) — V is linear.
(c) For al x in}V, T(x) = 0 implies x = 0. That is, the null space N(T) contains only
the zero element of V.

Proof. We shdl prove tha (a) implies (b), (b) implies (c), and (c) implies (a). Firs
assume (8) holds Then T has an inverse (by Theorem 2.9), and we must show that 71
is linear. Take any two dements 4y and v in T(V). Then 4y = T(X) and v = T(y) for some
x and y in V. For any scdars a and b, we have

au ok bv = aT(x) + bT(y) = T(ax + by),

snce T is linear. Hence, applying 7-1, we have

T Yau + bv) = ax + by = aT () + bT(v),

s0 71 is linear.. Therefore (a) implies (b).

Next assume that (b) holds Take any x in V for which T(x) = 0. Applying 71, we
find that x = T71(0) = O, snce T1 is linear. Therefore, (b) implies (C).

Findly, assume (c) holds. Take any two dements ¥ and v in V with T(u) = T(v). By
linearity, we have T(u — v) = T(u) — T(v) = 0, so 4 — v = 0. Therefore, Tis one-to-one
on ¥V, and the proof of the theorem is complete.

When V is finitedimensond, the oneto-one propety can be formulated in terms of
independence and dimensiondity, as indicated by the next theorem.

mecrem 2.1 1. Let T: V — W be a linear transformation in £( ¥, W) and assume that
Vis finite-dimensional, say dmV = n . Then the following statements are equivalent.
(@ T is oneto-one on V.

(b) If e;, ..., e, are independent elements in V, then T(e,), . . ., T(e,) are independent
elements in T(V).

(© dm T(V) = n .

(d) If {e;, ..., e} isabass for V, then {T(e,), . . . , T(e,)} is a basis for T(V).

Proof. We shdl prove tha (a) implies (b), (b) implies (c), (c) implies (d), and (d) implies
(@. Assume (&) holds Let e;, . . . , e, be indegpendent dements of V and consider the
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dements T(e,), . . . , T(e,) in T(V). Suppose that
¥4
Z cT(e;) =0
=1
for certain scdars ¢;, . . ., C. By linearity, we obtan
D D
T(E ciei) =0, ad hence Dce=0
i=1 =1

snce T is oneto-one. But ¢, . . . , e, ae independent, so ¢; = '+ . = ¢, = 0. Therefore
@ implies (b).

Now assume (b) holds. Let {e, . . . , e} be a basis for V. By (b), the n elements
T(e), ..., T(e,) in T(V) ae independent. Therefore, dim T(V) > n . But, by Theorem
2.3, we have dim T(V) < n . Therefore dim T(V) = n, s0 (b) implies ().

Next, assume (c) holds and let {e, . . . , e} be a bass for ¥, Teke any dement y in
T(V). Then y = T(x) for some x in V, 0 we have

n

X= 3 ce, and hence y = T() = X ¢,T(e,).
=1 =1

=

Therefore {T(e,), . . . , T(e,)} spans T(V). But we are assuming dim T(V) = n, so
{T(el), ..., T(e,)} is a basis for T(V). Therefore (c) implies (d).
Findly, assume (d) holds. We will prove that T(x) = O implies x = 0. Let {g;, . . . , &}

be a basis for V. If x € V', we may write
X=3 ce;, and hence  T(x)= > ¢,T(e) .
=1 i=1

If T(x) = O,then¢, = +++= ¢, = 0, snce the dements T(e,), . . ., T{e,) are independent.
Therefore x = 0, so Tis oneto-one on F, Thus, (d) implies (8 and the proof is complete

2.8 EXxercises

1 Let ¥ = {0,1} . Describe dl functions T: ¥ — ¥ . There are four dtogether. Label them as
T,,T,, Ty, T, and make a multiplication table showing the composition of each pair. Indicate
which functions are one-to-one on V and give ther inverses.

2. Let V = {0, 1,2}. Destribe dl functions T: V— V for which T(v) = V . There are six
dtogether. Labd them as Ty, . . . ,Tg and make a multiplicaion tsble showing the com-
postion of each pair. Indicate which functions are one-to-one on v, and give their inverses.

In each of Exercises 3 through 12, a function T: ¥, — ¥, is defined by the formula given for
T(x, y), where (x, y) is an arbitrary point in ¥, . In each case determine whether T is one-to-one
on V. If it is, describe its range T( V3); for each point (u, v) in T( V), let (x, y) = T (u, v) and
give formulas for determining x and y in terms of u and v.

3. Tx,p) =y, x). 8. T(x,y) = (e, &¥).

4. T(x, y) = (x, —y). 9. T(x,y) = (x, 1).

5. T(x, y) = (x, 0). 10. T(x,y) = (x + 1,y + 1).
6. T(x, y) = (x, x) . 11 T(x, ) = (x —y,x + ).

7. T(x, y) = (£% »». 12. T(x,y) =(2x —y,x + ).
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In each of Exercises 13 through 20, a function T: Vy— V; is defined by the formula given for
T(x, y, 2), where (X, y, 2) is an arbitrary point in ¥, In each case, determine whether Tis one-to-
one on V. If it is, describe its range T'(Vy); for each point (u, v, w) in T(Vy), l&t (x, y, z) =
T-(u, v, w) and give formulas for determining X, y, and z in teems of «, v, and w.

13.
14.

15.

16.

21.

T(x, y,2 = (z y,X) 7. T(x,p,2) = (x + 1, y+ 1,z = 1).
T(x,y,2 = (x,, 0). 18. I'(x,y,z) =(x+ 1,y +2,z + 3).
T(x,¥. 2 = (x, 2y, 3z). 1997, y, z2) = (x, x + y, x + y + 2).
T(x,y,2) = (x,y,x +y +2). 2. T(x,y,z) =(x +y,y +z,x +2).
Let T: vV -» V be a function which mgps V into itsdf. Powers are defined inductively by the

fomuas 7° = I, 7= TT*1 for n > 1 . Prove that the associative law for composition

implies the law of exponents 77" = T™, If Tis invertible, prove that 7" is d0 invertible
and that ( 7%~ = ( 7).

In Exercises, 22 through 25, S and T dencte functions with domain vV and vaues in y, In
generd, ST # TS. If ST = TS, we say that § and T commute.

22.
23.

24.
25.

26.

27.

28.

29.

30.

If § and T commute, prove that (ST)* = S»T for dl integers n > O.

If § and Tare invertible, prove that ST is dso invertible and thet (ST)~! = 711, In other
words, the inverse of ST is the compostion of inverses, taken in reverse order.

If § and Tare invertible and commute, prove that their inverses dso commute.

Let v be a linear space. If S and T commute, prove that

(S +T)2= 8 4+25T+ T* ad (S +TP= 8+ 38T + 3ST2+ T°.

Indicate how these formulas must be dtered if ST % TS.

Let S and T be the linear transformations of ¥ into ¥, defined by the formules S(x, y, 2) =
(z y,x)and Tix, y, z) = (X, X + y, X + y + z), where (X, y, z) is an abitrary point of V.,
(@) Determine the image of (X, y, 2) under each of the following transformétions : ST, TS,
ST w TS. 82, T2, (ST)?, (TS)?, (ST — TS).

(b) Prove that § and Tare one-to-one on ¥ and find the image of (u, v, w) under each of the
following trandformations : S—1, T-1, (ST)L, (TS)™L

(c) Find the image of (X, y, Z) under (T — I)* foreach > 1.

Let v be the linear space of al red polynomials p(x). Let D denote the differentiation operator
and let T denote the integration operator which maps each polynomia p onto the polynomia
q givenby q(x) = f¢p(¢) dr . Prove that DT = I, but that TD # I,,. Describe the null space
and range of TD.

Let ¥ be the linear space of @l red polynomials p(x). Let D denote the differentiation operator
and let T be the linear transformation that maps p(x) onto xp’(x).

(@ Let p(x) = 2 + 3x = x* + 4x® and determine the image ofp under eech of the following
transformations; D, 7, DT, TD, DT — TD, T?D? — DT?,

(b) Determine those p in v for which T(p) = p .

(c) Determine thosep in Vv for which (DT — 2D)(p) = O.

(d) Determine thosep in Vv for which (DT — TD)*(p) = D*(p).

Let vV and D be as in Exercise 28 but let T be the linear transformation that maps p(x) onto
xp(x). Provetihat DT — TD = Z and that DT™ — T*D = a1 for n > 2.

Let Sand T bein £(V, V) and asume that ST = TS = [. Prove that ST* — T"S = nT™!
fodln>1.

31 Let v bethelinear space of dl red polynomials p(x). Let R, S, T be the functions which map

an arbitrary polynomial p(x) = ¢g + ¢;x + . . . + ¢,x" in V onto the polynomids u(x), S(x),
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and t(x), respectively, where

r(x)=pO), sx)= i Xl Hx) = i L,

0

(@ Let p(x) = 2 + 3x = x2 + x* and determine the image of p under each of the following
trandormations R, S, T, ST, TS, (TS)?, T2S?, $°T% TRS, RST.
(b) Prove that R, S, and Tare linear and determine the null space and range of each.
(c) Prove that T is oneto-one on ¥ and determine its inverse.
@ If n>1,express ( 78" and S*T" interms of [ and R.

32. Refer to Exercise 28 of Section 2.4. Determine whether T is one-to-one on V. If it is, describe
its inverse,

29 Linear transformations with prescribed values

If V is finitedimensond, we can adways condruct a linear trandformation T: V— W
with prescribed values a the bass dements of V, as described in the next theorem.

’

THEOREM 2.12. Let e,,..., e, be a basis for an n-dimensional linear space V. Let
Uy, ...,u, be n arbitrary elements in a linear space W. Then there is one and only one linear
transformation T: V — W such that

2.7 T(e) = w, for k=1,2,...,n.

This T maps an arbitrary element x in V as follows:

(2.8) If x =>x6, then T(X) = Y X;.
k=1 k=1
Proof. Every x in V can be expressed uniquely as a linear combination of ¢,, . . . , €, ,
the multipliers x,, . . . , x, being the components of x relative to the ordered basis
(e1,...,e). If we define T by (2.8), it is a draghtforward matter to verify that T is

linear. If x = e, for some k, then al components of x are O except the kth, which is 1, 0
(28) gives T(e,) = u,, ae required.

To prove that there is only one linear tranformation satisfying (2.7), let T’ be another
and compute T’(x). We find that

T'(x) = T’(ixkek) =§:ka’(€,‘) = Zn X, = T(X).
=1 k=1 k=1

Snce T(x) = T(x) for dl x in ¥V, we have T' = T, which completes the proof.

exavete.  Determine the linear transformation T: ¥, — ¥, which maps the basis dements
i =(l,0)and j = (0 1) as follows

T =i+j, T@=2 —j.
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Solution.  If X = x;i + x, j is an abitrary dement of V,, then T(x) is given by

TX) = %, T(E) + x,.T(G) = %, +J) + %2 =) = (¥, + 2x0i + (x; — x,)f.

210 Matrix representations of linear transformations

Theorem 2.12 shows that a linear transformation 7: ¥V -— W of a finite-dimensional
linear space V' is completly determined by its action on a given st of bass dements
e,...,e,. Now, suppose the space W is ds0 finitedimensond, say dm W = m, and let
Wy, ..., w, beabass for W. (The dimensons #» and m may or may not be equa.) Since T
hes vaues in ¥, each dement T(e,) can be expressed uniquely as a linear combination of the
basis dements w,, . . ., W,,, S

T(ey) = gl LW s

wheret,, , ..., t,,; ae the components of T{e,) relative to the: ordered basis (w, . . ., w,).
We shdl display the m-tuple (¢, , , . . , f,;) veticdly, as follows
[t |
L2
(2.9) :
_tmk_

This array is caled a column vector or a column matfix. We have such a column vector for
each of the n dements T(e;), . . . , T(e,). We place jthem sde by sde and encdlose them in
one par of brackets to obtain the following rectarjgular array:

th he ot e
R L
Lt T 0 L

This aray is called a matrix condding of mrows and n columns. We cdl it an m by » matrix,
or an m x n marix. The fird row is the 1 x n marix (£ , t3, - - - » t,). Them x 1
matrix displayed in (2.9) is the kth column. The scdars ¢, are indexed so the first subscript
i indicates the row:, and the second subscript k indicates the column in which #; occurs.
We cdl 1, the ik-entry or the ik-element of the matrix. The more compact notation

(tik) > or (tlk);,”;éil >

is dso used to denote the matrix whose ik-entry is #;; .
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Thus, every linear trandformation T of an n-dimensond space V' into an m-dimensond
space W gives rise to an m x n matrix (#;) whose columns condst of the components of

T(e), ..., T(e,) rddive to the basis (w;, . . . , w,). We cdl this the matrix representation
of T relative to the given choice of ordered bases (e, . . ., €) for ¥ and (w,, . . ., w,) for
W. Once we know the matrix (¢;,), the components of any eéement T(x) relaive to the
basis (w,, . . . ,w,) can be determined as described in the next theorem.

mreorem 2.13. Let T be a linear transformation in #( V, W), where dm V = n and
dmW=m. Let (e;,...,e,)and (w;, ..., w,) be ordered bases for Vand W, respectively,
and let (¢;;) be the m X n matrix whose entries are determined by the equations

(2.10) T(e,) = > tyw;, for k=1,2,...,n.
i=1

Then an arbitrary element

(2.11) X = é:lxkek
in V with components (x,, . . ., X,) relative to (e,, . , . , &) is mapped by T onto the element
(212 T = i YW
iz
in W with components (y,, . . ., y,) relativeto (w, , . . ., w,). The y; are related to the

components of x by the linear equations
n
(213 V= 2tax, for i=12,...,m
k=1
Proof. Applying T to each member of (211) and using (2.10), we obtain

n n m m n m
T(x) =3 x;T(e) = 2 %3, 3 tyw; = 2 (Z tikxk) W, = D YW,
=1 P W =1 1

i=

i=

where each y; is given by (213). This completes the proof.

Having chosen a pair of basss (g, . . ., &) and (w, ..., w,) for V and W, respectivdly,
every linear transformation T: V— W has a matrix representation (¢,,). Conversely, if
we dat with any mn scdars aranged as a rectangular matrix (#,) and choose a pair of
ordered bases for V and W, then it is easy to prove that there is exactly one linear trans
formation T: V— W having this matrix representation. We smply define Tat the beds
dements of V by the eguations in (210). Then, by Theorem 212, there is one and only
one linear trandformation T: V— W with these prescribed values The image T(X) of an
arbitrary point x in V is then given by Equaions (2.12) and (2.13).
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EXAMPLE 1. Construction of a linear transformation from a given matrix. Suppose we
dat with the 2 x 3 matrix
3 1 -2
1 0 4]

Choose the usual bases of unit coordinate vectors for ¥, and V,. Then the given matrix
represents @ linear trandformation T V; — ¥V, which maps an abitrary vector (x,, x,, x;)
in V5 onto the vector (y;, y,) in ¥, according to the linear eguations

N 3% 4 Xy = 2xg,
Y2 = X1+ ox, + 4x.

exampLe 2. Construction of a matrix representation of a given linear transformation.
Let V' be the lineer pace of dl red polynomids p(x) of degree < 3. This space has dimen-
son 4, and we choose the basis (I, x, x?, x3), Let D be the differentiation operator which
maps each polynomid p(x) in ¥V onto its derivaive p'(x). We can regard D as a linear
trandformation of ¥ into W, whee W is the 3-dimensond space of al red polynomids
of degree < 2'. In W we choose the basis (1, x, x2). To find the matrix representation of D
relative to this (choice of bases, we transform (differentiate) each bass eement of ¥ and
express it as a linear combingtion of the bass eements of W. Thus, we find that

D) =0 =0+ 0x + 0x?, D(x)=1 =1+ 0x + 0x2,
D(x*) = 2X = 0+ 2x + 0x%,  D(x%) = 3x = 0 4 Ox + 3x2.

The coefficients of these polynomids determine the columns of the matrix representation of
D. Therefore, the required representation is given by the following 3 x 4 matrix:

0100
0020
0 003

To emphasize that the matrix representation depends not only on the bass eements but
adso on ther order, let us reverse the order of the basis dements in Wand use, ingead, the
ordered basis (x?, X, 1). Then the basis dements of V' ae transformed into the same poly-
nomials obtained above, but the components of these polynomials relative to the new
basis (x2, x. 1) appear in reversed order. Therefore, the matrix representation of D now
becomes

0 00 3

0020
0100
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Let us compute a third matrix representation for D, usngthebasis (1, 1 + x , 1 + x + x2,
1+ x + x*+ x%) for V, and the bass (1, x, x?) for W. The bass dements of ¥ are trans
formed as fdlows

DA =0, D(I+x)=1, D( +x+x?)=1 +2x,
D(I +x+4x2+x%) =1 +2x+3x%,

0 the matrix representation in this case is

01 1
0 0 22
00

211 Congruction of a matrix representation in diagonal form

Since it is possble to obtain different matrix representations of a given linear transforma
tion by different choices of bases, it is natura to try to choose the bases so that the resulting
matrix will have a paticulaly dmple form. The next theorem shows that we can make
al the entries O except possibly dong the diagond darting from the upper Ieft-hand corner
of the matrix. Along this diagond there will be a sring of ones followed by zeros the
number of ones being equal to the rank of the transformation. A matrix (z,) with all
entries #;;, = 0 when i # Kk is said to be a diagonal matrix.

tHeorem  2.14. Let V and W be finite-dimensional linear spaces, with dm V = »n and
dmW=m. Assume T € .#(V, W) and let r =dim T(V) denote the rank of T. Then there

exisssabasis (e, , ..., e) for Vand a basis (w,, . . ., w,,) for W such that
(214 Tle)=w, for i=1,2,...,r1,

and

(2.15) Te)=0f o r i=r+1,...,n.

Therefore, the matrix (r,,) of T relative to these bases has all entries zero except for the r
diagonal entries

t1]: 122: ||-:t":1_

Proof. First we congruct a basis for W. Since T(V) is a subspace of W with dim T(V) =
r, the space T(V) has a basis of r dements in W, say w,, . . ., w,. By Theorem 1.7, these
elements form a subset of some basis for W. Therefore we can adjoin dements w,4, . .
w,, S0 that

L}

(2.16) Wy oo s Wy Wegns o . W)

is a bads for W.
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Now we construct a basis for V. Each of the first r dements w, in (2.16) is the image of &
lesst one dement in ¥. Choose one such dement in V' and cdl it e; . Then T(e,) = w, for
i=1,2,...,r 0 (214) is saisfied. Now let k& be the dimenson of the null space N(T).
By Theorem 23 we have n = k + r, Since dm N(T) = k, the space N(T) has a basis
condding of k eements in } which we designate as e¢,,, , . . . , e,,,. For each of these
gements, Equation (2.15) is sdisfied. Therefore, to complete the proof, we must show
that the ordered set

(2.17) (er,. .., €1 .., Eyy)

is a bass for V. Snce dm ¥V = n =r + k, we need only show that these dements are
independent. Suppose that some linear combination of them is zero, say

r+k
(218) ce;, = 0.
=1

Applying 7' and usng Equations (2.14) and (219, we find that

r+k T

YeTle)=cew,=0.
i=1 i=1

But wy,...,w, are independent, and hence ¢; = -+ = ¢, = 0. Therefore, the first r
terms in (2.18) are zero, so (2.18) reduces to

r+k

D> ce,=0.
f=r41
Bute,.,. ... e.ge independent snce they form a bess for N(T), and hence ¢, =

o= ¢ = 0. Therefore, al the ¢; in (2.18) are zero, so the eements in (217) form a
basis for /., This completes the proof.

exawle.  We refer to Example 2 of Section 210, where D is the differentiation operator
which maps the space V' of polynomids of degree < 3 into the space W of polynomids of
degree <2. In this example, the range T(V) = W, so T has rank 3. Applying the method
used to prove Theorem 2.14, we choose any basis for W, for example the basis (1, x, x?).
A st of polynomids in ¥ which mgp onto these dements is given by (x, ix%, 1x%), We
extend this set to get a bass for V' by adjoining the congtant polynomid 1, which is a beds
for the null space of D. Therefore, if we use the bass (x, $x2, x3, 1) for V' and the bass
(1, x, x%) for W, the corresponding matrix representation for D has the diagond form

1 000
0100
0 010
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2.12 Exercises

In dl exercises involving the vector space V,, , the usud basis of unit coordinate vectors is to be
chosen unless another basis is specificaly mentioned. In exercises concerned with the matrix of
a liner trandformation T: ¥ — W where ' = W, we take the same basis in both J and W unless
another choice is indicated.

1

Determine the matrix of eech of the following linear transformations of ¥, into ¥, :
(@ the identity transformation,

(b) the zero transformation,

(©) multiplication by a fixed scdar c.

. Determine the matrix for each of the following projections.

@ T: V= V,, where T(xy, x5, x5) = (X, Xxy) .
(b) T: V3— V,,  where T(x, x5, X3) = (X3, X3).
© T Vi—V;,  where T(xy, xp, X3, x4, X5) = (Xy, X3, Xy).

. A linear transformation T: ¥, — V, maps the basis vectors i andj as follows:

T =1 +j, TG) =2 —j.

(@ Compute T(3i = 4j) and T2(3i - 4j) interms of { and j.
(b) Determine the matrix of T and of T2
(c) Solve part (b) if the basis (i, j) is replaced by (e; , e,), Where e; =i =~ j, e, = 3i +].

. A linear trandformation T: V, — V, is defined as follows Each vector (x, y) is reflected in

the y-axis and then doubled in length to yield T(x, y). Determine the marix of T and of 7%

.Let T: V;— V; be a linear transformation such that

T(k) =2i +3j + 5k, T(j+k) =1, T(i+j+k)=j-k.

(& Compute T(i + 2] + 3k) and determine the nullity and rank of T.
(b) Determine the matrix of T.

. For the linear transformation in Exercise 5, choose both bases to be (e, e,, ¢;), where ¢, =

(2,3, 5),e,=(,0, 0), ¢,=(0, 1, —1), and determine the matrix of T reative to the new
bases.

. A linear trandformation T: ¥, — ¥, maps the bass vectors as follows: T(i) = (0, 0), T(j) =

4,0, Tk = (1, -1).

(8 Compute T(4i -j + k) and determine the nullity and rank of T.

(b) Determine the matrix of T.

(c) Use the basis (i, j, k) in¥, and the basis (w; , w,) in ¥,, where w; = (1, 1), wy = (1, 2).
Determine the matrix of T relative to these bases.

(d) Find bases (e, , e,, e3) for ¥y and (w; , w,) for ¥, reldive to which the matrix of Twill be
in diagond form.

. A linear trandformation 7: ¥, — V3 maps the bass vectors as follows: T(i) = (1, 0, 1),

TG) = (-1,0, 1).

(8 Compute T(2i ~ 3j) and determine the nullity and rank of T.

(b) Determine the matrix of T.

(c) Find bases (e, e) for ¥, and (w,, w,,w,) for V4 rdative to which the matrix of Twill be
in diagond form.

. Solve Exercise 8 if T(i) = (1,0, I)and T() = (1, 1, 1).
. Let Vand W belinear spaces, each with dimension 2 and each with basis (e, , e,). Let T: V-— W

be a linear transformation such that T(e, + e,) = 3e; + 9y, T(3e; + 2¢5) = Tey + 23e,.
(& Compute T(e, — ¢,) and determine the nullity and rank of 7.
(b) Determine the matrix of T reldtive to the given bass.
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(€) Use the basis (e, , e) for V and find a new basis of the form (e; + ae,, 2¢; + be) for W,
relative to which the matrix of Twill be in diagond form.

In the linear space of dl red-vdued functions each of the following sets is independent and
spans a finitedimensond subspace V. Use the given set as a basis for } and let D: J— V be
the differentiation operator. In each case, find the matrix of D and of D? rdative to this choice
of basis.

11. (sn X, cos X). 15. (-cos X, sSin X).

12. (1, x, e®). 16. (sn X, cos x, X SN X, X COS X).
3.4, 1 +x 1+ x + €. 17. (¢e* Sn X, €* COS X).

14. (¢®, xe%). 18. (e2* 9n 3x, ¢* cos 3x).

19. Choose the basis (1, x, x2, x%) in the linear space V of dl red polynomids of degree <3.
Let D denote the differentiation operator and let T: V— J/ be the linear transformation
which maps p(x) onto xp’(x). Reldive to the given basis, determine the matrix of each of the
followingtransformations: (@) T; (b) DT; (c) TD; (d) TD — DT; (e) T?; (f) T?D* —~ D*T=

20. Refer to Exercise 19. Let W be the image of Vunder TD. Find bases for Vand for W rdative
to which the matrix of TD is in diagond form.

2.13 Linear spaces of matrices

We have seen how marices aise in a naturd way as representations of linear trans
formetions. Matrices can adso be conddered as objects existing in their own right, without
necessarily being connected to liner tranformations. As such, they form another class of
mathematical objects on which algebraic operations can be defined. The connection
with linear transformations sarves as motivation for these definitions, but this connection
will be ignored for the moment.

Let m and n be two postive integers, and let 7, , be the set of dl pars of integers (7, f)
suchthat 1 <i < m,1 <j < n. Any function A whose domain is 1, , is cdled an m x n
matrix. The function vaue A(i, j) is cdled the ij-entry or ij-element of the matrix and will
be denoted dso by a,; . It is cusomary to display dl the function vaues in a rectangular
aray condging of m rows and n columns as follows

an G T am_'

Qg1 Qg ' dy,

L8m1 Qm2 *°° aan

The dements g,; may be abitrary objects of any kind. Usudly they will be red or complex
numbers, but sometimes it is convenient to consder marices whose dements ae other
objects, for example, functions We daso denote metrices by the more compact notation

A= (a4 or A = (a;).

If m = n, the matrix is said to be a square matrix. A 1 x n matrix is cdled a row matrix;
an m x 1 matrix is cdled a column matrix.
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Two functions are equd if and only if they have the same doman and take the same
function vaue a eech eéement in the doman. Since marices are functions, two marices
A = (a;) ad B = (b;) ae equd if and only if they have the same number of rows, the
same number of columns, and equa entries g;; = b;; for each pair (i,J).

Now we assume the entries are numbers (real or complex) and we define addition of
matrices and multiplicetion by scaars by the same method used for any red- or complex-
valued functions.

erinTion. I A = (g,;) and B = (b,;) are two m x n matrices and if ¢ is any scalar,
we define matrices A + B and ¢4 as follows:

A+ B =(a; + by, ¢A = (cay).
The sum is defined only when A and B have the same size.

EXAMPLE. If

then we have

6 2 =2 2 4 —6 -5 0 -1
A+ B= , 24= , (=B = )
0 =2 7 -2 0 8 -1 2 -3
We define the zero matrix 0 to be the m x n matrix dl of whose dements are 0. -With
these definitions, it is a draghtforward exercise to verify that the collection of dl m x n
matrices is a linear space. We denote this linear space by M,, . If the entries are red
numbers, the space M,, ,is a red linear space. If the entries are complex, M, , is a complex
linear space. It is ds0 easy to prove that this space has dimenson mn. In fact, a bass for

M,, , consss of the mn matrices having one entry equal to 1 and dl others equa to O.
For example, the sx mairices

1 00 010 0 01 0 0O 0 00 "000
000/ 000 [000] |1to0oo] {010 0o 1]
form a basis for the sat of dl 2 x 3 matrices.

214 Isomorphism between linear transformations and matrices

We return now to the connection between matrices and linear tranformations. Let V
and W be finitedimensond linear spaces with dm V = n and dm W = m. Choose a
basis (e, . . . ,e) for V and abass (w;, ..., w,) for W. In this discussion, these bases are
kept fixed. Let Z(V, W) denote the liner space of dl linear trandformations of V into
W. If T e £(V, W), l& m(T) denote the matrix of T relative to the given bases We recal
that m(T) is defined as follows.
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The image of each bass dement ¢, is expressed as a linear combination of the bass
elements in W

m
(2.19) T(e) =2 tgw; for k=1,2,...,n
o)

The scdar multipliers ¢, are the ik-entries of m(T). Thus, we have
(2.20) m(T) = (tm leéil'

Equation (2.20) defines a new function m whose doman is (¥, w) and whose vaues
ae matrices in M, ,,. Since every M x N makrix is the matrix mM(T) for some Tin £( V, W),
the range of mis M,, .. The next theorem shows that the transformation m: 2V, w) —

M,, , is linear and one-to-one on LV, w).

THEOREM 2.15. 1soMoRrPHISM THeorem. For all Sand 17 in Z(V, W) and all scalars
c, we have

m(S+ T)= m(S)+ m(T) and  m{cT) = cm(T).
m(S) = m(T) implies S =T,

Moreover,

S0 m is one-to-one on £ (¥, W).

Proof. The matrix m(T) is formed from the multipliers 1, in (2.19). Similarly, the
matrix m(S) is formed from the multipliers s, in the equations

(2.22) Sey) = saw; for k=1,2,...,Nn
i=1
Since we have

(S+ T = 3ot tadve and  (T)e) = > (ctaw

we obtanm(S + T) = (s, + 2) = M(S + m(T) and m(cT) = (ct;) = cm(T). This proves
that m is linear.

To prove that m is oneto-one, suppose tha m(S) = m(T), where S = (s;,) and T =
(t;). Equations (2.19) and (2.21) show that S(e,) = 7(e,) for each basis element ¢,
0 §(x) = T(x) for dl x in¥, and hence S = T.

Note: The function m is cdled an isomorphism. For a given choice of bases m
edtablishes a oneto-one correspondence between the set of linear transformations
Z(V, W) and the set of m X n matrices M,, ,, . The operations of addition and multipli-
cation by scaars are preserved under this correspondence. The linear spaces #(V, W)
and M,, , ae said to be isomorphic. Incidentaly, Theorem 2.11 shows that the domain
of a oneto-one linear transformation has the same dimenson as its range. Therefore,
dm £, IV)=dm M, ,= mn .

If V = Wand if we choose the same basis in both v and ¥, then the marix m(Z) which
corresponds  to the identity transformation I: V— V is an n x n diagond matrix with each
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diagond entry equa to 1 and dl others equa to 0. Thisis caled the identity or unit matrix
and is denoted by | or by I,.

215 Multiplication of matrices

Some linear tranformations can be multiplied by means of compostion. Now we shdl
define multiplication of matrices in such a way that the product of two marices corresponds
to the compostion of the linear transformations they represent.

We recdl that if T: U—V and S V— Ware linear trandformations, their composition
ST: U— W is a linear trandformation given by

ST(x) = S[T(x)] forallxin U.
Suppose that U, V, and Ware finitedimensond, say
dmU =n, dmV =p, dim W= m.
Choose bases for U, V, and W. Reative to these bases the matrix m(S) is aa m x p
matrix, the matrix T is a p x n matrix, and the matrix of ST is an m x n marix. The

following definition of matrix multiplication will endble us to deduce the rddion m(ST) =
m(S)m(T). This extends the isomorphisn property to products.

perinimioN.  Let A be any m X p matrix, and let B be any p x n matrix, say
A= (a0 and B= (bl

Then the product AB is defined to be the m « n matrix C = (¢;;) whose ij-entry is given by

»
(222) €5 =2 ayby;.
k=1
Note: The product AB is not defined unless the number of columns of A is equa to

the number of rows of B.

If we write 4, for the ith row of A, and B for thgth column of B, and think of these as
p-dimensiond vectors, then the sum in (2.22) is smply the dot product 4; + B’, In other
words, the ij-entry of AB is the dot product of the ith row of A with theth column of B:

AB= (4; - B,
Thus, matrix multiplication can be regarded as a generdization of the dot product.

4 6
]andB= 5—11.SinceAis2 x 3andBis3 x 2,
0 2

312

EXAMPLE 1. Let A =
—110
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the product 4B is the 2 x 2 matrix
A,- B A4,-B? 17 21
A2 ‘ Bl A2 * Bz 1 —7
The entries of AB ae computed as follows:

A 'Bl=3441:54+2:0=17, A.B=36+1-(-)+2-2=21,

A +B=(-1)4+1:5+0-0=1, Ay Bi=(-1)-6+1-(-D)+0-2=-7.

EXAMPLE 2. Let

=2
2 1 =3
A= and B= 1]
1 2 4
2

Here Ais2 x 3and Bis3 x 1,0 AB isthe2 x | marix given by

A, B! -9
AB= = ,
A, B! 8
Snce A +Bl=2-(=2)+1-14+(=3)-2=—9and 4, - B =1-(=2)+2-14+4-2=8.

exawLE 3. If A and B are both square matrices of the same size, then both AB and BA
ae defined. For example, if

1 2 3
A= and B =
-1 1 5 ’
13 8 -1 10
AB = , BA= .
2 =2 3 12

This example shows tha in generd AB # BA . If AB = BA, we say A and B commute.

we find that

exavPLe 4. If I is the p x p identity malrix, then 1,4 = A for every p x n matrix A,
and BI, = B for every m x p marix B. For example,

10 072 2 10

12 3 123
01 0|[3]=]|3], 0 1

456 -4 5 6|
00 14 4 00

Now we prove that the matrix of a compostion ST is the product of the matrices m(S
and m(r).
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mheorem 2.16. Let T: U —Vand S: V- W be linear transformations, where U, ¥V, W
are finite-dimensional linear spaces. Then, for g fixed choice of bases, the matrices of S, T,
and ST are related by the equation

m(ST) = m(S)m(T).

Proof. Asume dmU =n, dmV =p, dmW=m. Le (4, ..., u,) be abass for
U, (,,...,v)abassfor V, and (w;, ..., w,) a bass for W. Reative to these bases, we
have

m
m(S) = ()i, where  S(v) = 3 s;w; for k=1,2,...,p,
=1
and
D
m(T) = (1;)0Fy,  Wwhere T(u;)= X t0 for j=1,2,...,n.
k=1

Therefore, we have

i ? m m D
ST(u;) = S[T(u)] = 2 ,;S(0) = 2 tr; 2 sy = 2, (zsiktkj) Wi,
k=1 k=1 i=1 i=1 \k=1

0 we find that
m(ST) = ( Zsatu) = m(Sm(T).

iy J=

We have already noted that matrix multiplication does not always satisfy the com-
mutetive law. The next theorem shows tha it does stisfy the associative and distributive
laws.

THEOREM 2.17. ASSOCIATIVE AND DISTRIBUTIVE LAWS FOR MATRIX MULTIPLICATION.
Given matrices A, B, C.
@ If the products A(BC) and (AB)C are meaningful, we have
A(BC) = (AB)C  (associative law).

() Assume A and B are of the same size. If AC and BC are meaningful, we have
(A+B)C= AC+ BC (rignt distributive law),
whereas if CA and CB are meaningjiil, we have
C(A+B)=CA+CB (left distributive law).

Proof. These propeties can be deduced directly from the definition of matrix multi-
plication, but we prefer the following type of argument. Introduce finite-dimensional
liner spaces U, V, W, X and liner tranformations T: U— V, S V- W, R W— X
such that, for a fixed choice of bases, we have

A= mR), B =m(9), C=m(T).
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By Theorem 2.16, we have m(RS) = AB and m(ST) = BC From the assodidive law for
composition, we find that R(ST) (RST. Applying Theorem 216 once more to this
equation, we obtain m(R)ym(ST) = m(RS)m(T) or A(BC) = (AB)C, which proves (&). The
proof of (b) can be given by a smila type of argument.

DEFINITION.  If 4 is a square matrix, we define integral powers of A inductively as follows:

A" =1, A" = 44" for n>1.
2.16 Exercises
1 2 2 2
I —4 2
1LIfA= 1 ‘ . B=|-1 3[, €=|1 -1, compute B+ C, AB,
5 =2 1 -3

BA, AC, CA, A(2B -30).
0 1
2. LetAd = {O 2] Find dl 2 x 2 matrices B suchthat (@) AB = 0 ; (b) BA = 0.

3. Ineach case find a, b, ¢, d to saisfy the given equation.

0010 1 1T 020

i 000 9 abec 001 1 1 06 6
B SR E
01 0 0ffc 6 149 0100 1 98 4
000 1]|d 5 0010
4. Cdculate AB — BA in each case.

1 2 2 4 1 1
@A=12 12|, B=|-4 2 0f;

1 2 3 1 21

[ 2 0 o 3 1 =2
mAa=| 1 1 2|, B=| 3 =2 4].

-1 2 1 -3 5 11

5.1f A is a square matrix, prove that A"A™ = 4™ for dl integes M >0, n > 0.

M1 1 2
6. Let A = :I Verify that 4% = [ :| and compute A,
0 1 0 1

[cos 6 —sin 8 ) cos 20 —sin 20
7. Let4 = . Verify that 4% = and compute A” .
| sin 0 cos 0 sin 20 cos 26
111 123
8. LetA =)0 1 1}|. Verifythat 42=]0 1 2|. Compute 4> and 4% Guess a generd
0 0 1 00 1

formula for A’ and prove it by induction,
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10
9. LeA= [ , Provethat 42 = 2A = Z and compute 4190,
-1 01

10. Find dl 2 x 2 matrices A suchthat 42 = O.
11. (a) Prove that a2 x 2 matrix A commutes with every 2 x 2 matrix if and only if A commutes
with each of the four metrices

1 0 01 0o 00
ool lool" |1t ol Jo1]
(b) Find al such matrices A.
12. The equation A? = Z is satisfied by each of the 2 x 2 matrices

1 0 1 0 1 b
o 1 le =17 o -1
where b and c are arhitrary real numbers. Find dl 2 x 2 matrices A suchthat 42 = 1.

2 -1 7 6
13.IfA=[ :|andB=I: ], find 2 x 2 matrices C and D suchtha AC = B
-2 3 9 8

andDA=B.
14. (8) Veify that the dgebraic identities

(A+ B= 4£2+2AB+ B> and (A+B)A-B)= £-p

1 -1 1 0
do not hold for the 2 x 2 matrices A = and B = .
0 2 1 2

(b) Amend the right-hand members of these identities to obtain formulas vdid for dl square
matrices A and B.
(c) For which matrices A and B are the identities valid as stated in (a)?

217 Sysems of linear egquations

Let A = (a;;) be agiven m x n marix of numbers, and let ¢y, . . . , ¢,, be m further
numbers. A st of m equaions of the form

(2.23) Sagx, = ¢ fori=1212 ..., m,

k=1
is cdled a system of m linexr eguations in N unknowns. Here x,, . . . , x, are regarded as
unknown. A solution of the system is any n-tuple of numbers (x,, . . ., x,) for which dl the

equations are satisfied. The matrix A is cdled the coefficient-matrix of the system.
Linear systems can be sudied with the help of linear trandformations. Choose the usud
bases of unit coordinate vectors in ¥V, and in V,,. The codffident-metrix A determines a
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linear trandformation, T: ¥, — V,,, which maps an arbitrary vector x = (x;, . . ., X,) in¥,
onto the vector y = (4, . .. , y,,) inV,, diven by the m linear equations
n
Vi =2 auX; for i=1,2,...,m
k=1
Leec=(¢;,...,C) be the vector in V,, whose components are the numbers gppearing in

system (2.23). This system can be written more smply as
TX) = c

The system has a solution if and only if ¢ is in the range of T. If exactly one x in ¥, maps
onto ¢, the sysem has exactly one solution. If more than one x maps onto c, the system
has more than one solution.

pavee: 1. A system with no solution. The system x +y = 1, x+ y = 2 has no
solution. ‘The sum of two numbers cannot be both | and 2.

exawvle 2. A system with exactly one solution. The sysem x +y =1, x — y = 0 has
exactly one solution: (X, y) = (3, %)

exawle: 3. A system with more than one solution. The sysem x + y = 1 , condsing
of one eguation in two unknowns, has more than one solution. Any two numbers whose
aumis 1 gives ii olution.

With each liner sysem (2.23), we can associate another system
Sagx, =0 for i=1,2...,m,
r=1

obtained by replacing each ¢; in (2.23) by 0. This is cdled the homogeneous system corre-
sponding to (2.23). If ¢ # O, system (223) is cdled a nonhomogeneous system. A vector
x in ¥V, will saisfy the homogeneous sysem if and only if

T(x) = 0,

where T is the liner trandformation determined by the coefficient-matrix. The homogene-
ous sysem dways has one solution, namdy x = O, but it may have othes The st of
solutions of the homogeneous system is the null space of 7. The next theorem describes the
relation between solutions of the homogeneous system and those of the nonhomogeneous
sysem.

THEcREM  2.18.  Assume the nonhomogeneous system (2.23) has a solution, say b.

(@ If a vector x is a solution of the nonhomogeneous system, then the vector v= x — b
is a solution of the corresponding homogeneous system.

(b) If a vector v is a solution of the homogeneous+ system, then the vector x = v + bisa
solution of the nonhomogeneous system.
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Proof. Let T: V, — V,, be the linear transformation determined by the coefficient-
matrix, as described above. Since b is a solution of the nonhomogeneous system we have
T(b) = c. Let x and v be two vectors in V,, such that v = x = b. Then we have

Tw) = T(x = b) = T(x) =T(h) = TX) — c.
Therefore T(x) = c if and only if T(») = 0. This proves both (8 and (b).

This theorem shows that the problem of finding al solutions of a nonhomogeneous
system splits naturally into two parts: (1) Finding all solutions v of the homogeneous
gysem, that is, determining the null space of T, and (2) finding one particular solution b of
the nonhomogeneous system. By adding b to each vector v in the null space of T, we thereby
obtan dl solutions x = v + b of the nonhomogeneous system.

Let k denote the dimenson of N(T) (the nullity of T). If we can find k independent
solutions vy, . . . , v, Of the homogeneous sysem, they will form a bads for N(T), ard we
can obtain every v in N(T) by forming dl possble lineer combinations

U: t101+ vt tkvk,
where t,, . . . , t, are abitrary scdars. This linear combination is caled the general solution
of the homogeneous system. If b is one paticular solution of the nonhomogeneous system,
then al solutions x ae given by

X =b ot e

This lineer combination is cdled the general solution of the nonhomogeneous system.
Theorem 2.18 can now be restated as follows.

TecRem 219, Let T: ¥V, — V,, be the linear transformation such that T(x) =y, where
X = (X150ees Xn)sy =1s. .., V) and

n
Vi - Sagn,  for i=12,...,m
k=1

Let k denote the nullity of T. If »,, . . . , v, are k independent solutions of the homogeneous
system T(x) = 0, and i b is one particular solution of the nonhomogeneous system T(x) = ¢ ,
then the general solution of the nonhomogeneous system is

x=b+ tw + ..+ by,
wheret,, .. ., t, are arbitrary scalars.
This theorem does not tell us how to decide if a nonhomogeneous system has a particular
solution b, nor does it tdl us how to determine solutions vy, . . . , v, of the homogeneous

system. It does tel us wha to expect when the nonhomogeneous system has a solution.
The fdlowing example dthough vey smple illustraes the theorem.
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ExawLle.  The sysem X + y = 2 has for its associated homogeneous system the equation
X + y = 0. Therefore, the null space condsts of al vectors in ¥, of the form (t, —t),
where ¢ is arbitrary. Since (!, —¢) = #(1, —1), this is a onedimensond subspace of V,
with basis (1, -- 1). A paticular solution of the nonhomogeneous system is (0, 2). There-
fore the generd solution of the nonhomogeneous sysem is given by

x,») =(0,2) +1:(1, -1 or X =, y=2-—1,

where t is abitrary.

218 Computation techniques

We turn now to the problem of actudly computing the solutions of a nonhomogeneous
liner sysem. Although many methods have been developed for attacking this problem,
dl of them require consderable computation if the sysem is large For example, to solve
a sysem of ten equations in as many unknowns can require severd hours of hand com-
putation, sven with the ad of a desk caculator.

We shdl discuss a widedly-used method, known as the Gauss-Jordan elimination method,
which is rdatively smple and can be easily programmed for high-speed dectronic computing
machines. The method consists of applying three basc types of operations on the equations
of a linear system:

(1) Interchanging two eguations;

(2) Multiplying all the terms of an equation by a nonzero scalar:

(3) Adding #o one egquation a multiple of another.

Each time we peform one of these operations on the sysem we obtan a new sysem having
exactly the same solutions. Two such sysems are cdled equivalent. By peforming these
operdions over and over agan in a sysemdic fashion we findly arive a an equivdent
system which can be solved by inspection.

We dhdl illustrate the method with some specific examples. It will then be dear how the
method is to be applied in generd.

exavete 1. 4 system with a unique solution. Consider the system

2x—5y+4=-3
xX=2y4+ z=5
x—4y + 62=10.

This particular system has a unique solution, x = 124, y = 75, z = 31 , which we shdl
obtain by the GaussJordan eimination process. To save labor we do not bother to copy

the letters X, », z and the equas sign over and over again, but work ingead with the aug-
mented matrix

(2.24) 1-2 1 5
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obtained by adjoining the right-hand members of the system to the coeffident matrix. The
three basc types of operation mentioned above are performed on the rows of the augmented
matrix and are caled row operations. At any stage of the process we can put the letters
X, ¥, z back agan and insat equds sgns dong the verticd line to obtan equaions. Our
utimate god is to arive a the augmented matrix

1 0 0@
(2.25) o 10 |
001

after a successon of row operations. The corresponding system of equaions is x = 124,
y = 75 z = 31 , which gives the desred solution.

The first gep is to obtain a 1 in the upper left-hand corner of the matrix. We can do this
by interchanging the fird row of the given matrix (224) with ether the second or third
row. Or, we can multiply the first row by }. Interchanging the first and second rows, we get

[-2 1 5

The next gep is to make dl the remaining entries in the fird column equa to zero, leaving
the firg row intact. To do this we multiply the firg row by -2 and add the result to the
second row. Then we multiply the firsd row by -1 and add the result to the third row.
After these two operations, we obtdin

(2.26) 0 -1 2]-13
Q-2 3

—-12}1-13
Now we repeat the process on the smaller matrix [ 2 s J which appears

adjacent to the two zeros. We can obtan a 1 in its upper Ieft-hand corner by multiplying
the second row of (2.26) by — 1 [This gives us the matrix

002121 251 | 1%

Multiplying the second row by 2 a1 adding the resulto the third, we get
1 - 2 1 5

(2.27) 01 -2|18
0 0 1131
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At this dage, the corresponding system of equations is given by

x—2p+ z=5
y =2z =13
z = 31.

These equations can be solved in succession, starting with the third one and working
backwards, to give us

z=3l, y=13+2z=13+ 62 =75 Xx=5§+2y=2z=5+ 150 — 31 = 124,

Or, we can continue the Gauss-Jordan process by meking dl the entries zero above the
diagond eements in the second and third columns. Multiplying the second row of (2.27)
by 2 and adding the result to the first row, we obtain

I 001-3-21 | M

Findly, we multiply the third row by 3 and add the result to the firs row, and then multiply
the third row by 2 and add the result to the second row to get the matrix in (2.25).

exawle 2. A system with more than one solution. Consder the following system of 3
equetions in 5 unknowns:
2x—5+4+424+ u—v=-3
(2.28) xX—2y+z - u+v=35
x —4y 4 6z + 2u — v = 10.

The corresponding augmented marix  is

2511-2+4 461121 111 | 31051

The coefficients of x, y, z and the right-hand members are the same as those in Example 1.

If we peform the same row operations used in Example 1, we findly arive a the augmented
matrix

1 0 0 -16 19 | 12
0 1 0 -9 1] "
0 0 1 -3 41 31
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The corresponding system of equations can be solved for X, y, and z in tems of ¥ and v,
giving us

X = 124 + 16u = 19
y = 75 4+ 9u — 1lv

31 + 3u-—4v.

z

If we le¢ 4w = £, and v = ¢4, where f; and t, ae abitrary red numbers, and determine
X, ¥, z by these equations, the vector (x, y, z, u, v) in ¥y given by

(x,y,2z, u,0) = (124 + 161, = 191,, 75 + 91, — 111,, 31 + 31, — 415, 15, t,)

is a solution. By separating the parts involving ¢, and f,, we can rewrite this as follows
(x!y’ Z, U, l)) = (1241 75, 31701 O) + t1(16’ 91 35 110) + 12(_195 -11, _430’ 1)
This equation gives the generd solution of the system. The vector (124, 75, 31,0,0) is a
paticular solution of the nonhomogeneous system (2.28). The two vectors (16, 9, 3, 1,0)
and (-19, —11,-4 , 0, 1) are solutions of the corresponding homogeneous system. Since
they are independent, they form a bass for the space of al solutions of the homogeneous
system.

exavle 3. A system with no solution. Consider the system

2x—5p+4z=-3
(2.29) xX—2% 4z = 5
x—4y+52=10.

This sysem is dmogt identica to that of Example 1 except that the coefficient of z in the
third equetion has been changed from 6 to 5. The corresponding augmented matrix is

154 i 3]s

Applying the same row operations used in Example 1 to transform (2.24) into (2.27), we
arive a the augmented matrix

(2.30) 001201 201 | 1

When the bottom row is expressed as an equation, it states that 0 = 31. Therefore the
origind sysem has no solution since the two systems (229) and (2.30) are equivdent.
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In eech of the foregoing examples, the number of equations did not exceed the number
of unknowns. If there are more eqguations than unknowns, the Gauss-Jordan process is
dill gpplicable. For example, suppose we consder the system of Example 1, which has the
solution x = 124, y = 75, z = 31. If we adjoin a new eguétion to this system which is ds0
satisfied by the same triple, for example, the equation 2x ~ 3y + z = 54, then the
eimingtion process leads to the agumented matrix

1 0 0] 124
0 10| 75
001 [31

000 0

with a row of zeros dong the bottom. But if we adjoin a new equation which is not satisfied
by the triple (124, 75, 31), for example the equation x + ¥ + z = 1, then the diminaion
process leads to an augmented matrix of the form

1 0 0124
010/ 75
00 1| 31|
00 0| a

where a # 0. The last row now gives a contradictory equation O = a which shows that
the sysem has no solution.

2.19 Inverses of sgquare matrices

Let A = (a;;) be a square N x N matrix. If there is another N x N marix B such that
BA = I, where Z isthe n x N identity matrix, then A is celled nonsingular and B is caled a
left inverse of A

Choose the usud basis of unit coordinate vectors in V, and let T: V,, — V, be the linear
transformation with matrix m(T) = A. Then we have the following.

necrem  2.20. The matrix A is nonsingular jf and only if T isinvertible. If BA= 1
then B = m(TY).

Proof. Assume tha A is nonsingular and tha BA = |. We shal prove that T(X) = O
implies x = 0. Given x such that T(X) = O, let¢ X be the n x 1 column matrix formed
from the components of x. Since T(X) = O, the matrix product AX is an n x 1 column
matrix consisting of zeros, S0 B(A4X) isdso acolumn matrixof zeros But B(4X) = (BA)X =
IX = X, s0 every component of x is 0. Therefore, Tis invertible, and the equation T7-1 =
implies that m(T)m(T—1) = Z or Am(TY) = I. Multiplying on the left by B, we find
m(TY) = B ., Convasdy, if T is invatible then 71T is the identity tranformation so
m(TYm(T)is the identity matrix. Therefore A is nonsngular and m(T-9)4 = 1.
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All the propeties of invertible lineer transformations have their counterparts for non-
singular matrices. In particular, left inverses (if they exist) are unique, and every left
inverse is dso a right inverse. In other words, if A is nonsngular and BA = I, then
AB = [. We cdl B the inverse of A and denote it by A™1. Theinverse A™! isdso non-
sngular and its inverse is A.

Now we show that the problem of actudly determining the entries of the inverse of a
nonsngular marix is equivdent to solving N separate  nonhomogeneous linear systems.

Let A = (a;;) be nonsingular and let At = (b,;) be its inverse. The entries of A and
A1 ae related by the »* equaions

(2.31) 2 auby; = 045,

k=1
where §,; =1if i =j,and d;; = 0if i # j. For each fixed choice of j, we can regard this
as a nonhomogeneous system of N linear equationsin N unknowns by;, bs;, . . ., b,; . Snce

A is nonsingular, each of these sydems has a unique solution, the jth column of B. All
these systems have the same coefficient-matrix A and differ only in ther rignt members
For example, if A isa3 x 3 matrix, there are 9 equations in (2.31) which can be expressed
a 3 spade linear sysems having the following augmented matrices :

an G a3 |1 ay a; a3 |0 ay A G | 0
Gy Gy Gy |0, Ay Gy dy | 1], Gy Gy (3 |01,
@y dz Ay | O @y ap ay |0 @y @y agy | 1

If we apply the Gauss-Jordan process, we arive a the respective augmented matrices

1 0 0]by 1 0 0| by 1 0 0]by
0 l 0 b21 ’ O 1 0 b22 > 0 l 0 b23 .
0 0 1]by 0 0 1] by 0 0 1| by

In actud practice we exploit the fact that al three systems have the same coefficient-matrix
and solve dl three systems a once by working with the enlarged matrix

dp @42 a3 |1 00

Gy Gy Gy |0 10].

a3 dgp d [0 0 1
The eimination process then leads to

1 0 0|by by by
0 1 0by by bul.
0 0 1]bgy by b
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The matrix on the right of the verticd line is the required inverse. The marix on the left
of the line is the 3 x 3 identity matrix.

It is not necessay to know in advance whether A is nondngular. If A is singular (not
nonsingular), we can dill apply the Gauss-Jordan method, but somewhere in the process
one of the diagond eements will become zero, and it will not be possble to transform A
to the identity matrix.

A sygem of n linear equations in N unknowns, say

n
S agXe = ¢, i=1,2...,n,
k=1

can be written more smply as a marix equation,
AX= C,

where A = (g,;) is the coefficient matrix, and X and C are column matrices,

X1 ¢

Xy Co
X = , o=

Xn Ca

If A is nonsngular there is a unique solution of the sysem given by X = A-1C.

2.20 Exercises

Apply the Gauss-Jordan dimination process to each of the following sysems If a solution
exigs, determine the generd solution.

L x+y+3z=05 5. X =2y + 5z + 4 =1
X—y+4z=11 X+ y—32+2U=2
-y +z =3 6x+ y—4z+3u=17.
23X +2y+z=1 b x+y~—-3z+ u=5
Bx +3y Bz =2 2X-y+ z-=2u=2
x+y- z=1. Tx +y =Tz +3u=3.
3X+2y+z=1 7. x+ y+2z+3+40=0
Sx +3y B8z =2 X+ 2p + 7z + 1lu+140=0
X +4y + 5z = 3. X+ 3y + 6z + 10u + 150 =0,
4. 3x +2y+z=1 8 x= 2p+zZ 42U=-2
5 +3y Bz =2 2X +3p =272 =5u= 9
X+ 4y+ 52 =3 4X = y+ z— u= 5
X+ y- z=o0. 5. — 3y + 2z +u = 3.

9. Prove that the system x +y + 2z =2,2x —y + 3z =2, 5x — y + az = 6, has a unique
solution if ¢ # 8. Find &l solutions when a = 8.
10. (@ Determine dl solutions of the system
5x+2y—6z+2u= -1
X- y+ z- u=--2.
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(b) Determine dl solutions of the system

5x +2y —6z +2u=-1
X-y+ z- u=-2
x+ y+ z = 6.

/
11. This exercise tels how to determine dl nonsngular 2 x 2 matrices. Prove that

a b d —b
= (ad — bo)l.
|:c d:l [—c a}

1 is nondngular if and only if ad = bc # 0, in which case its inverse is

1 d =b
ad — bc| _¢ al’

Determine the inverse of each of the matrices in Exercises 12 through 16.

a
Deduce that [
C

_ 1 2 3 4
2 3 4
o 1l 23
12. 21 1]. 15.
0O 0 12
-1 1 2
- 0 001
1 ) 0100007
13. |2 =1 1 202000
030100
1 3 2 16.
0010207
r—=2 1 000301
14, | =2 5 —44. 000020 ]
1 —4 6

2.21 Miscellaneous exercises on matrices

1. If a square matrix has a row of zeros or a column of zeros, prove that it is sngular.
2. For each of the following statements about » x n meatrices, give a proof or exhibit a counter

example.
(@ If AB + BA = 0, then 42B% = B342.

(b) If A and B ae nonangular, then A + B is nonsngular.
(©) If A and B ae nonangular, then AB is nonsingular.
(d) If A, B, and A + B ae nonsngular, then A — B is nonangular.

(e If 4% =0, then A — Z is nondngula.
(f) If the product of k matrices A, . .

. A, is nongngular, then each marix A, is nonsangular.
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1 2 6 0
3.IfA4 = |: :l,find a nondgngular matrix P such that P14P = [ }
5 4 0 -1

a i - _
4. The marix A = | b:l ,wherei? = ~1,a =1(1 + \/5),andb =1 - \/5), has the prop-
i

ety that 4% = A. Describe completely al 2 x 2 matrices A with complex entries such that
A=A,

5. 1f A2 = A provetha (A+ D*=Z + (2F < A

6. The specid theory of rddivity makes use of a st of equaions of the form X' = a(x — vi),
¥y =y, 2 =2 = a(t — vx/c}). Here v represents the velocity of a moving object, ¢ the
speed of light, and a = c/\/c2 — v?, where |v] < ¢ . The linear transformation which maps the
two-dimensiond vector (x, #) onto (x’, t') is cdled a Lorentz transformation. Its matrix
relaive to the usuad bases is denoted by L{v) and is given by

1 -V
L{v) = a[ Lt 1 ]

Note that L(v) is nonsngular and that L(0) = I. Prove that L(v)L(x) = L(w), where w =
(U + o) + ¢ . In other words, the product of two Lorentz transformations is another
Lorentz  trandformation.

7. If we interchange the rows and columns of a rectangular matrix A, the new matrix so obtained
is cdled the transpose of A and is denoted by At. For example, if we have

1 4
1 23
[ 1 then A* =12 5].
- |4 5 6

A= 306
Prove that trangposes have the following properties :
(@ Y = A. (b) (A+ By = A'+ B, (C) (cA)t = cA?.
(d) (4B)t = BtAt, (e AY = (4™t if A is nondngula.

8. A sguare matrix A is cdled an orthogond matrix if AA! = I. Verify tha the 2 x 2 matrix

[cos 6 —siné

is orthogond for each red 6. If A is any n x n orthogond matrix, prove
sin 0 cos 0

that its rows, consdered as vectors in ¥, , form an orthonormal set.
9. For each of the following statements about n X n matrices, give a proof or dse exhibit a
counter example.
(@ If A and B are orthogond, then A + B is orthogond.
(b) If A and B are orthogond, then AB is orthogond.
(©) If A and B are orthogond, then B is orthogond.
10. Hadumard matrices, named for Jacques Hadamard (1865-1963), are those n x n matrices
with the following properties
|. Each entry is 1 or -1 .
Il. Each row, considered as a vector in ¥, , has length \/n.
[11. The dot product of any two distinct rows is O.
Hadamard marices arise in certain problems in geometry and the theory of numbers, and
they have been applied recently to the congdruction of optimum code words in space com-
municaion. In pite of their gpparent smplicity, they present many unsolved problems. The
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main unsolved problem & this time is to determine dl n for which an » x n Hadamard matrix
exigs. This exercise outlines a partid solution.

(&) Determine al 2 x 2 Hadamard matrices (there are exactly 8).

(b) This part of the exercise outlines a Smple proof of the following theorem: If 4 is an n x n
Hadamard matrix, where n > 2, then »is a multiple of 4. The proof is based on two very smple
lemmas concerning vectors in n-space. Prove each of these lemmas and apply them to the
rows of Hadamard matrix to prove the theorem.

Lemma 1. If X, Y, Z are orthogonal vectors in ¥, , then we have

X+7)X+2)=|x|2.

LEMMA 2. Write X=(X, ..., %), Y =1 ... ¥), Z=(21,..., 2,). If each
component X;, ¥;,Z; is either 1 or =1, then the product (x; + y,)(x; + z;) is either 0 or 4.
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DETERMINANTS

3.1 Introduction

In many applications of linear algebra to geometry and anaysis the concept of a
determinant plays an important part. This chapter dudies the basc properties of determi-
nants and some of ther applicaions

Determinants of order two and three were intoduced in Volume | as a useful notation for
expresing catain formulas in a compact form. We recal ‘thet a determinant of order two
was defined by the formula

ayy Oy

3.n

= Ql1Q22 = Q1

Q21 a22

a
Despite similarity in notation, the determinant .

1921 Q2

(written with vertical bars) is

a a
1O (written with square brackets). The

conceptualy distinct from the matrix [
da1 Qg

determinant is a number assgned to the matrix according to Formula (3.1). To emphasize
this connection we aso write

an Gy

an
= det l: .

ay  da,

az 4y

Determinants of order three were defined in Volume | in terms of second-order determi-
nants by the formula

4 Gip Gyg

dog Qg a1 4y g, Qi

(3.2) det |ay @y ap| =ay + ay

— 2

32 Ay a3y dis a3, 4s

dsy Q32 dgg

This chapter treats the more general case, the determinant of a square matrix of order n
for any integer n > 1. Our point of view is to trest the determinant as a function which

71
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assigns to each square matrix A a number cdled the determinant of A and denoted by det A.

It is posshle to define this function by an explicit formula generdizing (31) and (3.2).
This formula is a sum containing n! products of entries of A. For large n the formula is
unwiddy and is rardy used in pratice It seems prefersble to sudy determinants from
another point of view which emphasizes more clearly their essential properties. These
properties, which are important in the gpplications, will be taken as axioms for a determi-

nant function. Initially, our program will consist of three parts. (1) To motivate the
choice of axioms. (2) To deduce further properties of determinants from the axioms.
(3) To prove that there is one and only one function which satisfies the axioms.

3.2 Moaotivation for the choice of axioms for a determinant function

In Volume | we proved that the scaar triple product of three vectors A,, A,, A, in 3-space
can be expressed as the determinant of a matrix whose rows are the given vectors. Thus
we have

Q11 Qi mhs
A, XA A = ddt ay ax [y

031 a.

where 4y = (@11, @125 Gs), A2 = (a1, G2a» Ayy), ANA Ay = (a3, , Gs2, Ggy) -

If the rows ae linearly independent the scaar triple product is nonzero; the absolute
vaue of the product is equa to the volume of the padldepiped determined by the three
vectors A,, A,, A,. If the rows are dependent the scdar triple product is zero. In this case
the vectors A,, A,, A, are coplanar and the pardlelepiped degenerates to a plane figure of
zero  volume.

Some of the properties of the scdar triple product will serve as motivation for the choice
of axioms for a determinant function in the higher-dimensional case. To state these
propeties in a form suitable for generdization, we condder the scdar triple product as a
function of the three row-vectors A, A;, A;. We denote this function by d; thus,

d(Ay, Ag, A3) = Ay X Ay- Ay,

We focus our atention on the following properties
(&) Homogeneity in each row. For example, homogeneity in the fird row daes tha

d(td;, Az, Ay) = t d(A;, As, A3) for every scdar t .
(b) Additivity in each row. For example additivity in the second row dates that
d(A19 A2 + C, Aa) = d(4,, 4,, As) + d(Als C, 43)
for every vector C.
(c) The scalar triple product is zero if two of the rows are equal.

(d) Normalization:

di,j,k)=1 where i=(,0,0), j=(0,1,0), k= (0,0, 1).
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Each of these properties can be easly verified from properties of the dot and cross
product. Some of these properties are suggested by the geometric relation between the scalar
triple product and the volume of the pardlelepiped determined by the geometric vectors
Ay, Ay, A;. The geometric meaning of the additive property (b) in a specid cese is of
paticular interest. If we take C = A, in (b) the second term on the right is zero because of
(c), and reation (b) becomes

(3.3 d(dy, Ay + Ay, Ay) = d(4y | A, 4y).

This property is illustrated in Figure 3.1 which shows a parallelepiped determined by
A,, A,, A, and ancther paraldepiped determined by A,, A, + A4,, A,. Equation (3.3
merdy dates tha these two padldepipeds have egud volumes. This is evident geometri-
cadly because the pardleepipeds have equa dtitudes and bases of equa area

Volume=d(4,,A 5, A ;) Volume = d(4 , A, + A, A;)

Ficure 3.1

Geometric interpretation of the property d(4;, A,, Ay) = d(4;, A, + A,, Ay). The
two pardleepipeds have equa volumes

33 A st of axioms for a determinant function

The properties of the scdar triple product mentioned in the foregoing section can be
suitably generdized and used as axioms for determinants of order n. If A = (a;) is an
n X n matrix with real or complex entries, we denote its rows by A,, ..., A,, . Thus the
ith row of 4 is a vector in n-space given by

A= (a4, 80, -y i)

We regard the determinant as a function of the nrows A,, ..., A,, and denote its vaues by
d(4;,...,A) or by det A

AXIOMATIC DEFINITION OF A DETERMINANT FUNcTIoN. A real- or complex-valuedfunction
d, defined for each ordered n-tuple of vectors A,, . . ., A, in n-space, is called a determinant
function of order n if it satisfies the following axioms for all choices of vectors A, , . ., A
and C in n-space:
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axiom 1. HomoceNEITY IN EacH row. |If the kth row A, is multiplied by a scalar t,
then the determinant is also multiplied by t:

d(. .., 4., ..)=td(. .. A, ...).
axiom 2. appITiviTy In EacH row. FOr each k we have
Ay, . A+ Cyoi i A) =d(Ays oo A A+ A, CLl L A).
AXIOM 3. THE DETERMINANT VANISHES IF ANY TWO ROWS ARE EQUAL:
dAy, ..., 4,)=0 if 4, = A, for somei and | with i # j.
AXIOM 4. THE DETERMINANT OF THE IDENTITY MATRIX IS EQUAL TO 1:

i, ..., I)=1, where |, is the kth unit coordinate vector.

The fird two axioms date that the determinant of a matrix is a linear function of esch of
its rows. This is often described by saying that the determinant is a multilinear function of
its rows. By repeated gpplication of linearity in the firg row we can write

P b4
d(kgltkck,Az,...,An) =g1tkd(Ck,A2,._ LA,

wheret,, ... ,t, aescdasand C,, . . . ,C, are any vectors in n-space.
Sometimes a wesker version of Axiom 3 is used:

AXIOM 3. THE DETERMINANT VANISHES IF TWO ADJACENT ROWS ARE EQUAL:
d4,,...,A)=0 if 4, = Ay, forsomek =12 ,..., n-l.

It is a remarkable fact that for a given n there is one and only one function d which
sidfies Axioms 1, 2, 3 and 4. The proof of this fact, one of the principa results of this
chapter, will be given laer. The next theorem gives properties of determinants deduced
from Axioms 1,2, and 3 done. One of these properties is Axiom 3. It should be noted that
Axiom 4 is not used in the proof of this theorem. This observation will be useful laer when
we prove uniqueness of the determinant function.

tHEorREM 3.1. A determinant function satisfying Axioms 1, 2, and 3 has the following
further properties:
(8 The determinant vanishes if some row is O:

d(4,,...,4,)=0 if A,=0 forsomek.
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(b) The determinant changes sign if two adjacent rows are interchanged:

d(.. .y Ak’A’C+1"- .)= —d( .y Ak+il5A” .. .).

(c) The determinant changes sign if any two rows A, and 4; with i # j are interchanged.
(d) The determinant vanishes if any two rows are equal:

d4,,...,4,)=0 if A, = A4; for somei andj withi #j.
(€) The determinant vanishes if its rows are dependent.

Proof. To prove (8 we smply taket = 0 in Axiom 1. To prove (b), let B be a matrix
having the same rows as A except for row k and row k + 11. Let both rows B, and B, ,
be equd to A4, + A4, . Then det B = 0 by Axiom 3. Thus we may write

dC .., Ay + Apyrs Ap + Ay, .. ) =0,

Applying the additive property to row k and to row k + 1 we can rewrite this equation as
follows :

a(... A, Ay, ) +Hd( o Ay, Ay o) Hd(L L A Axy L)
+d(. .. Ay, Apas .. ) =0,

The firg and fourth terms are zero by Axiom 3. Hence the second and third terms are
negatives of each other, which proves (b).

To prove (c) we can assume that i < j . We can interchange rows 4, and A; by performing
an odd number of interchanges of adjacent rows. Firs¢ we interchange row A, successvey
with the earlier adjacent rows A4, ,, A;_;,. . . , A;. This requires j — i interchanges.
Then we interchange row A4, successively with the later adjacent rows A4,,;, A, - - -5 4.
This requires j — i =~ | further interchanges Each interchange of adjacent rows reverses
the sgn of the deteminant. Since there ae (j — i) + (j - i — 1) = 2(j — i) = 1 inter-
changes dtogether (an odd number), the determinant changes sgn an odd number of times,
which proves (C).

To prove (d), let B be the matrix obtaned from A by interchanging rows 4; and A4;.
Since 4; = 4; we have B = A and hence det B = det A. But by (c), det B = -det A
Therefore det A = 0.

To prove (€) suppose scdars ¢;, . . . ,C, eigt, not dl zero, such that >, ¢, 4, = O.
Then any row A, with ¢, # 0 can be expressed as a linear combination of the other rows.
For smplicity, suppose that A, is a linear combination of the others, say A, = Z;;:Z tA,
By linearity of the fird row we have

d(A19A29 v JAn) = d(ztkAk’A2’ s !An) =ztk d(Ak5A2a ey An)
k=2 k=2

But each term d(4,, A,, . . . ,A) in the lagt sum is zero since A, is equa to a least one of
A;, ..., A,. Hence the whole sum is zero. If row A, is a linear combinaion of the other

*) n

rows we ague the same way, udng linearity in the ith row. This proves (€).
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34 Computation of determinants

At this stage it may be ingructive to compute some determinants, usng only the axioms
and the properties in Theorem 3.1, asuming throughout that determinant functions exis.
In exch of the following examples we do not use Axiom 4 until the very lagt gep in the
computation.

exawle 1. Determinant of a 2 X 2 matrix. We shal prove that

as 2 :
(3.4) det Q1 dop— 130 -
as

Write the row vectors as linear combinations of the unit coordinate vectors { = (1,0) ad
j=0 1

Ay = (au, ay) = ayi + apj, A=y, 00)=0ayi +as j.
Usng linearity in the fird row we have
d(4y, 4) = dayi + ay,j, A) = a, di, A) + a, d(j, 4,).
Now we use linearity in the second row to obtain
d(i, 45) = d(i, ani + ayj) = an d(i, i) + aw d(i,j) = ax d(i,j),
snce d(i, i) = 0. Smilaly we find
d(j, As)= d(j, aui + asj) = 621d(j, i) = —as d(i,}).

Hence we obtan
d(Ay, As) = (a118y5 = a158y) d(i,j) .

But d(i,j) = 1 by Axiom 4, 0 d(A4,, A)) = anay — ay,a, , 8 asserted.

This argument shows that if a deerminant function exigs for 2 x 2 matrices, then it
must necessarily have the form (3.4). Conversdy, it is essy to verify that this formula does,
indeed, define a determinant function of order 2. Therefore we have shown tha there is one
and only one determinant function of order 2.

eave 2. Determinant of a diagonal matrix. A square matrix of the form
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is called a diagonal matrix. Each entry g;; off the main diagonal (i ;) is zero. We shall
prove that the determinant of A is equa to the product of its diagond elements,

(3.5) det A = andy Gy

The kth row of A is smply a scaar multiple of the kth unit ‘coordinate vector, A, = g, I, -
Applying the homogeneity property repeatedly to factor out the scdars one a a time we get

det 4= dv(Als ey An): d(allll’ R armln): an''’ay, d(lls o In)'
This formula can be written in the form
det A=a, r+a,, det I,

where Z is the identity matrix. Axiom 4 tells us that det Z = 1 0 we obtain (3.5).

exaweLe 3. Determinant Of an upper triangular matrix. A square matrix of the form

Uy U " Uy,
0wy o uy,

U =
— 0 0 e unn-

is cdled an upper triangular matrix. All the entries below the man diagond are zero. We
shall prove that the determinant of such a matrix is equal to the product of its diagonal
elements,

det U = tythyy * +* Uy -

First we prove that det U = 0 if some diagona element «,, = O. If the last diagonal
dement u,, is zero,, then the last row is 0 and det U/ = 0 by Theorem 3.1 (). Suppose, then,
that some earlier diagonal element u,, is zero. To be specific, say u,, = 0. Then each of
the n= 1 row-vectorsU,, ..., U, has its fird two components zero. Hence these vectors
span asubspace of dimension at most » - 2. Therefore these n — 1 rows (and hence gl
the rows) are dependent. By Theorem 3.1(e), det U = O. In the same way we find that
det U = 0 if any diagona element is zero.

Now we treat the general case. First we write the first row U, as a sum of two row-vectors,

U1= V1+V{,

where ¥, =[u;,0, ..., 0] and ¥} = [0, tsz, thyg, . . ., uy,,]. By linearity in the first row
we have

det. U = det (V;, U, ..., U+ det (V],U,,...,U).
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But det (V;,U,,...,U,) = 0 snce this is the determinant of an upper triangular matrix
with a diagond dement equd to 0. Hence we have

(36) det U =det(Vy,U;,...,U,).
Now we treat row-vector U, in a Smilar way, expressng it as a sum,

U=V + Vs,
where

V2:[0,u22,0,o._ ,0] and Vé:[o,o,uzs,n..,uzn]'

We use this on the right of (3.6) and apply linearity in the second row to obtain

3.7) det U = det (Vy, Vo, Us, ., ., Uy,

sncedet (¥, V,,Us, ..., U,) = 0. Repedting the argument on each of the succeeding
rows in the right member of (3.7) we findly obtain

detU=det(V1, Vgs--'sVn)s

where (V1,V;, .. ., V,) is a diagond matrix with the same diagond elements as U. There-
fore, by Example 2 we have

det U = u11u22 L UM,
as required.

exawte 4. Computation by the Gauss-Jordan process. The Gauss-Jordan eimination
process for solving sysems of linear equations is dso one of the best methods for com-
puting determinants. We recdl that the method consists in gpplying three types of operations
to the rows of a matrix:

(1) Interchanging two rows.

(2) Multiplying all the elements in a row by a nonzero scalar.

(3) Adding to one row a scalar multiple of another.
By performing these operations over and over again in a systematic fashion we can transform
any square marix A to an upper triangular matrix U whose determinant we now know
how to compute. It is easy to determine the reation between det A and det U. Each time
operation (1) is peformed the determinant changes sign. Each time (2) is performed with
a scaar ¢ # 0, the determinant is multiplied by c. Each time (3) is performed the deter-
minant is undtered. Therefore, if operation (1) is performedp times and if ¢, . . ., ¢, ae
the nonzero scdar multipliers used in connection with operation (2), then we have

(38) det A= (— l)p(clcz Vo Cq)—l det U.

Again we note tha this formula is a consequence of the firgt three axioms done. Its proof
does not depend on Axiom 4.
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3.5 The uniqueness theorem

In Example 3 of the foregoing section we showed tha Axioms 1, 2, and 3 imply the
formula det U == 9y lgy * * . U, det I, Combining this with (3.8) we see that for every n x n
matrix A there is a scdar ¢ (depending on A) such that

(.9) ddy, ... Ay=cdl,,. .., IL).

Moreover, this formula is a consequence of Axioms 1, 2, and 3 adone From this we can
eadly prove that there cannot be more than one determinant function.

THEOREM 3.2, UNQUENEss THECReM FoR  DeTervnants.  Let d be afunction satisfying
all four axioms for a determinant function of order », and let f be another function satisfying
Axioms 1,2, and 3. Then for every choice of vectors A,, . ., A, in n-space we have

(3.10) Sy, A)=ddy, . AN (L, L),
In particular, if f also satisfies Axiom 4 we have f (A, , .., A,) =d(4,, ..., A)).

Proof. Letg(d4,,...,A)= f(Ay,. - A)—=d(4y,..., AL, .., 1,). We wil
prove that g(4,, . . . , A,,) = 0 for every choiceof A,, ..., A,. Since both d and f satisfy

Axioms 1, 2, and 3 the same is true of g. Hence g dso sdtisfies Equation (3.9) since this was
deduced from the firs three axioms done. Therefore we can write

(3.12) gldy,. .. 4)=cglly,... 1),

where c is a scalar depending on A. Taking A = I in the definition of g and noting that d
sisfies Axiom 4 we find

g(Ila "‘1In)=f(11"";[n)_f(ll:"'aIn): 0'
Therefore Equation (3.11) becomes g(4;, . . . , A) = 0. This completes the proof.

3.6 Exercises

In this sat of exercises you may assume exigence of a determinant function. Determinants of
order 3 may be computed by Equation (3.2).

1. Compute eech of the following determinants

@|1 4 -4, ®| 5 0 7. ©@|2 a 2
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Xy z
2. Ifdet |3 0 2] =1, compute the determinant of each of the following matrices:
1 11
2x 2y 2z x y z x—-1 y—-1 z-1
@2 0 1}, ®) [3x+3 3y 3z+2], © 4 1 3
1 1 1 x+1 y+1 z+1 1 1 1
1 1 1
3. (& Prove that a b ¢ =|(b — a)c — a)c — D).
a B¢

(b) Find corresponding formulas for the determinants

1 11 1 11
a b ¢ and &2 B A2
& B A & B A

4. Compute the determinant of each of the following matrices by transforming esch of them to an
uppe|] triangular matrix.

1 -1 1 1 1 11 1 11 1 1
1 -1 -1 -1 a b ¢ d a b ¢ d
@ 1 1 -1 -’ ® a@ b ¢ g2’ © a@ & gzl
Tt 1 @ B A D @ Bt g
_ | _
al 00 0
1 1 1 -1 -1 -1
4 a 2 0 0
1 1 -1 -1 1 1
|0 3 a3 o0 ¢
@ @ 1 -1 -1 1 -1 1
00 2 a 4
1 -1 | - 1 1
0 0 0 | a
4 -1 -1 1 t -1

5. A lower triangular matrix A = (a;;) is a square matrix with dl entries above the main diagond
equa to O; that is, a; = 0 whenever i <j. Prove that the determinant of such a matrix is
equd to the product of its diagona entries. det A = apas, . . . dyy .

6. Letfy, f;, £1., & be four functions differentiable on an interval (g, b). Define

_ f1(x) fz(x)

Fi =
@ =0 £,

for eech x in (& b). Prove that
fi fi0
&1(x)  £:(x)

N fi0) folx)
£ g2

F'(x) =
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7. State and prove a generdization of Exercise 6 for the determinant

fi(¥) fz(x) fa(x)
F(x) = [g1(0) g:(x) gz(0)].
h(x) ho(x) hy(x)

i) fo(0
[ f(0

LG fa(x)

8. (a) If F(X) = ” "
1 (x) f2 (x)

, prove that F(X) =

(b) State and prove a corresponding result for 3 x 3 determinants, assuming the vdidity of
Equation (3.2).

9. Let U and ¥V betwo 5 x n upper triangular matrices.
(@ Prove that each of U + Vand UV is an upper triangular matrix.
(h) Prove that det (UV) = (det U)(det V) .
(c) If det U # 0 prove that there is an upper triangular matrix U1 such that U1 = I,
and deduce that det (U1 = 1/det U.

10. Cdlculate det A4, det (471), and A4 for the following upper triangular matrix:

2 3 4
023 4
002 3

A=|0 00 2

ol

3.7 The product formula for determinants
In this section ‘we use the uniqueness theorem to prove that the determinant of a product
of two sguare matrices is equa to the product of their determinants,

det (4B) = (det A)(det B) ,

asuming that a deerminant function exiss
We recal that the product AB of two marices A = (a,) and B = (b,;) is the malrix
C = (c;) whose i, j entry is given by the formula

M=

(312) C, .=

(%] ailcbki .

k

The product is defined only if the number of columns of the left-hand factor A is equd to
the number of rows of the right-hand factor B. This is dways the case if both A and B are
square matrices of the same sze

The proof of the product formula will make use of a smple relaion which holds between
the rows of AB and the rows of A. We date this as a lemma As usud, we let 4, denote
the ith row of matrix A.
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temn 3.3. IfAisanm x n matrix and B an »n x p matrix, then we have
(AB); = AB.
That is, the ith row of the product AB is equal to the product of row matrix 4, with B.

Proof. Let B/ denote thejth column of B and let C = AB. Then the sum in (3.12) can
be regarded as the dot product of the ith row of A with thgth column of B,

c; = A" B.
Therefore the ith row C; is the row matrix
C;=[d4,.B, 4,. B, ..., 4, BP.
But this is also the result of matrix multiplication of row matrix A; with B, since
bll b12 [N blp
AB=1a,,...,a, = [d4, B, ..., A, B*].

b, b

nl n2 7 bmz_

Therefore C; = A4,B , which proves the lemma

THEOREM  3.4.  PRODUCTFORMULA FOR DETERM NaNTS,  FOr @ny n X n matrices A and B
we have
det (AB) = (det A)(det B) .

Proof. Since (4B), = A,B, we are to prove that
d(A\B, ..., A,B)=d4,,... 6 4,)dB,, ..., B).

Using the lemma again we aso have B; = (ZB), = I,B, where Z is the n x n identity
matrix. Therefored(B,, . .., B,) =d(1,B, . . ., I,B) , and we are to prove that

d(A\B,..., A B)=d(4,,..., A)d(\B,. .. IB).
We keep B fixed and introduce a function ¥ defined by the formula
f(4y,.. . A)=d(AB,. .., A,B).
The equation we wish to prove dates that

(313) f(Als - .,A") :d(AI’ LA sAn)f(Il, - - -1111)'
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But now it is a smple matter to verify that f satisfies Axioms 1, 2, and 3 for a determinant
function o, by the uniqueness theorem, Equation (3.13) holds for every matrix A. This
completes the proof.

Applications of the product formula are given in the next two sections

3.8 The determinant of the inverse of a nonsingular matrix

We recdl tha a square matrix A is cdled nonsingular if it has a left inverse B such tha
BA = ], If aleft inverse exigts it is unique and is dso a right inverse, AB = J. We denote
the inverse by 4, The relation between det A and det 4! is as natura as one could expect.

THEOREM 3.5. I matrix A is nonsingular, then det A ¢ () and we have

(3.14) det 41 = 1 .
det A

Proof. From the product formula we have
(det A)(det 41) = det (AA7Y) = det ] = 1.
Hence det A £ 0 and (3.14) holds.

Theorem 35 shows that nonvanishing of det A is a necessary condition for A to be non-
sngular. Later we will prove that this condition is dso suffident. Tha is if det A % O
then 4-1 exids

3.9 Determinants and independence of vectors

A smple criterion for testing independence of vectors can be deduced from Theorem 3.5.

tHeorem 3.6. A set of n vectors A,, . . ., A in n-space is independent if and only if
d4,,...,A)#0.

Proof. We dready proved in Theorem 3.2(€) that dependence implies d(4; , . . . , A,) =
0. To prove the converse, we assume that A,, . .. , A, ae independent and prove that
d(A,,...,A)#O.

Let ¥V, dencte the linear space of n-tuples of scaars. Since A', , ..., A, are n independent
dements in an n-dimendona space they form a bass for V,, . By Theorem 2.12 there is a
lineer tranformetion T: ¥, - ¥, which maps these n vectors onto the unit coordinate
vectors,

T(4,) = I, for k=1,2,...,n.

Therefore there is an n X n matrix B such that
A.B =1, for k=1,2,...,n.
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But by Lemma 3.3 we have 4,B = (AB), , where A is the marix with rows A,, . . . , A,.
Hence AB = I, s0 A is nonsngular and det A # O.

3.10 The determinant of a block-diagonal matrix

o 1

where A and B are sguare matrices and each 0 denotes a matrix of zeros, is cdled a block-
diagonal matrix with two diagona blocks A and B. An example is the 5 x 5 matrix

A squae matrix C of the form

1 000 0
01000
C=({0 01 2 3
00456
00 7 8 9]
The diagond blocks in this case ge
1 2 3
A= [l and B=|4 5 6.
° 789

The next theorem shows that the determinant of a block-diagond matrix is equa to the
product of the determinants of its diagonad blocks.

mvecrem  3.7.  For any two sguare matrices A and B we have
d 40 (det A)(det B)
3.15 et = (det .
(3.15) 0 B

Proof. Assume A isn X nand Bis m x m. We note tha the given block-diagond
matrix can be expressed as a product of the form

A O A ollr, O

o Bl lo 1,llo B
where [, and [, ae identity matrices of ordes N and M, respectively. Therefore, by the
product formula for determinants we have

A O A O I, O
(3.16) det = det det .
0 B o I, 0 B
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A O

0 m
possble because of the block of zeros in the upper right-hand corner. It is easly verified
that this function satifies dl four axioms for a determinant function of order n. Therefore,
by the uniqueness theorem, we must have

A O
det = det A.
o I,

Now we regard the determinant det[ ] as a function of the n rows of A. This is

1,
A dmilar agument shows that det [0 3

0
} = det B. Hence (3.16) implies (3.15).

3.11 Exercises

1. For each of the following statements about souare matrices, give a proof or exhibit a counter
example.
(a) det(A -+ B) =detA +detB.
(b) det {(A + By} = {det (A + B)}*
(c) det {(A + B)*} = det (4% + 2AB + B?)
(d) det {(A + B)*} = det (4% + B?Y).
2. (@) Extend ‘Theorem 3.7 to block-diagona matrices with three diagond blocks:

A O O

det |0 B 0O = (det A)det B)(det O).
0 0 C

(b) State and prove a generdization for block-diagond matrices with any number of diagond
blocks.

1 O 0 a b cd
1 00 e [ g h ¢ d
3. Let A = , B= Prove that det 4 = det and that
a b.c d 0 0 1 g h
e [ g h 0 0 01

a
det B = det ’!
€ om

4. State and prove a generdization of Exercise 3 for # x n matrices.

a b 0O

cdoo a b g h
5. Let 4 = . Prove that det 4 = det det .

e f g h| c d z ow

1x y zw

6. State and prove a generdization of Exercise 5 for n x n matrices of the form

e

where B, C, D denote square matrices and O denotes a matrix of zeros.
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7. Use Theorem 3.6 to determine whether the following sets of vectors are linearly dependent or
independent.
@ A =@ —-1,0, A =(@©,1, 1), 43 = (2,3, -1).
b 4, =0U,-1,2,1),4,=(—-1,2, —-1,0), 43 =3, ~1,1,0), 4, = (1,0,0, 1).
(C) Al = (l$09 O, 0, 1),A2 = (13 190, O’ O)’As = (1901 1309 l)’ A4 = (ly 1309 17 1),
A, =1(0,1,0,1,0).

312 Expanson formulas for determinants. Minors and cofactors

We 4ill have not shown tha a determinant function actudly exigts, except in the 2 x 2
cax. In this section we exploit the linearity property and the uniqueness theorem to show
that if determinants exist they can be computed by a formula which expresses every deter-
minant of order N as a linear combination of determinants of order N — 1 . Equation (3.2)
in Section 31 is an example of this formula in the 3 x 3 cae The generd formula will
suggest a method for proving exisgence of determinant functions by induction.

Every row of an N x N marix A can be expressed as a linear combination of the N unit
coordinate vectors Iy, . . . , I, . For example, the firs row A, can be written as follows

A =Yayl;.
=1
Since determinents are linear in the firs row we have
GAT) d(Ay, Ay, ..., A4,) = d(zaulj,Az,...,A,) =Ya,dd;, Ay, .. ., A).
j=1 j=1

Therefore to compute det A it suffices to compute d(Z;, A,, ..., A,)) for each unit coordinate
vector I .

Let us use the notation A,; to denote the matrix obtained from A by replacing the firgt
row A, by the unit vector [; . For example, if n = 3 there are three such ma&ices

1 0 0 0 1 0 0 0 1
Ay = |1 Gz o3|, Al = (@31 Qga asaf, Al = Qa1 dga a3
a3 dze dg d31 QAzp dgg g1 dge dgag
Note that det 4}, = d(I;, A;, . . . , A). Equation (317) can now be written in the form
(3.18) det A= > ay; det Aj;.
j=1

Thisis cdled an expansion formula; it expresses the determinant of A as a linear combina
tion of the dements in its fird row.

The argument used to derive (3.18) can be gpplied to the kth row instead of the first row.
The reault is an expandon formula in terms of dements of the kth row.
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THEOREM 3.8. ExPAnsion By coracTors. Let A4, denote the matrix obtained from A
by replacing the kth row A, by the unit coordinate vector 7;. Then we have the expansion
formula

(319) det A = fam det 4y,
i=1

which expresses the determinant of A as a linear combination of the elements of the kth row.
The number det A4, is called the cofactor of entry a,;.

In the next theorem we shal prove that each cofactor is, except for a plus or minus sign,
equal to a determinant of a matrix of order n — 1. These smaller matrices are called
minors.

peFiniTion.  Given a square matrix A of order n > 2, the square matrix of order n — 1
obtained by deleting the kth row and the jth column of A is called the k, j minor of A and is
denoted by A,. .

exaveie. A Matrix A = (g,;) of order 3 has nine minors. Three of them are

Qap gy doy  Gx gy dge
A11=|: :I, A12=[ :l’ A13=|: }
dga  dg3 d31 Qs Q3 dgs
Equation (3.2) expresses the determinant of a 3 x 3 matrix as alinear combination of
determinants of these three minors. The formula can be written as follows

det A: a.,, det A,, - a12 det A,, + ala det A,, .

The next theorem extends this formula to the n x » case for any n > 2.

THEOREM 3.9. ExPANSION BY KTH-ROW Mminors. FOr any n x n matrix A, n > 2, the
cofactor of ,; is related to the minor A4,; by the formula

(320) det AL, = (— 1) det 4,,.

Therefore the expansion of det A in terms of elements of the kth row is given by
(320) det A= ’z_g — 1), det A,;.

Proof. We illustrate the idea of the proof by conddering first the specid case k = j = 1.
The matrix 4;, has the form

1 0o o o+ 0
gy Qge Qgz * " dgy
Q31 dzz QGgz ' ' dgy

Qu1 Quo Qpg 0 0 Ay
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By applying elementary row operations of type (3) we can make every entry below the 1 in
the first column equal to zero, leaving al the remaining entries intact. For example, if we
multiply the first row of 4;, by —a,, and add the result to the second row, the new second
row becomes (0, asz, as3, . . . , as,). By @ succession of such elementary row operations
we obtain a new matrix which we shdl denote by A3, and which has the form

1 0 e 0
0 ..o *° ay,
0 0 agp -+ asz,
Ay, =
—0 Apg " Qpp

Since row operations of type (3) leave the determinant unchanged we have
(322 det A3, = det 45, .
But A%, is a block-diagond matrix so, by Theorem 37, we have

det A9, = det A4;,,
where A, is the 1, 1 minor of A

Qgg  *°° azﬂ
s ' Q3
An =
Lan2 e an’n_

Therefore det 4;, = det 4;,, which proves (320) for k = j = 1
We consder next the specid case k = 1, abitrary, and prove that

Once we prove (323) the more generd formula (3.20) follows a once because matrix A,
can be transformed to a matrix of the form B;; by k — 1 successve interchanges of adjacent
rows. The determinant changes sign a each interchange s0 we have

(3.24) det AL, = (- 1) det B,

where B is an n « n matrix whose first row is 7; and whose 1,7 minor B, is 4,;. By (3.23),
we have

det By, = (—1)"" det B; = (—1)"" det 4,
S0 (3.24) gives us

det 4}, = (= 1)FY(=1)"" det 4, = (— 1)* det 4,,.

Therefore if we prove (3.23) we dso prove (3.20).
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We turn now to the proof of (3.23). The matrix A;; has the form

0 - 1 e D
(121 . azj . agn
, o . .
Au‘ -1 . . .
anl Ap; ann

By elementary row operations of type (3) we introduce a column of zeros below the 1 and
transform this to

0 - O 1 O « 0 O
Aoy . . . Qg 0 a2,j+1 L oy
0 |-
Ay
LS R ¢ P | 0 Apit1 . . Gpud

As before, the determinant is unchanged so det A9, = det 4j;. The 1, j minor 4,; hes the
form

Ay Gpjq Qg "7 Ay
Ay =

2% T S R AP TS ann_

Now we regard det 4?; as a function of the n — 1 rows of A4,;, say det 4, = f(4,;) . The
functionfsatisfies the fird three axioms for a determinant function of order » — 1. There-

fore, by the uniqueness theorem we can write

(3.29) f(AU) = f(J) det Ay s

where J is the identity matrix of order n — 1. Therefore, to prove (3.23) we must show that
f(J = (— 1YL Now f(J is by definition the determinant of the matrix

'0 0 1 0 - 0
1 0 0O 0
N ‘
C=|0 ... 100 +++ 0|« jthrow
0 0 0 1 0
0 - 000 +++ 1
1

jth  column
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The entries dong the doping lines are dl 1. The remaning entries not shown ae dl O.
By interchanging the first row of C successively with rows 2, 3, . . . ,j we arive a the n X n
identity metrix I after j -= 1 interchanges. The deerminant changes sgn a each inter-
change, so det C = (- 1)1, Hence f(J) = (- 1)71, which proves (3.23) and hence (3.20).

3.13 Exigence of the determinant function

In this section we use induction on n, the dze of a marix, to prove that determinant
functions of every order exig. For n = 2 we have dready shown that a determinant function
exits. We can dso dispense with the case n = 1 by defining det [g¢;,] = a,, .

Assuming a determinant function exists of order n — 1, a logicad candidate for a deter-
minant function of order n would be one of the expanson formulas of Theorem 39, for
example, the expandon in tems of the fird-row minors. However, it is esder to verify the
axioms if we use a different but andogous formula expressed in tems of the firg-column
minors.

THEOREM 3.10. Assume determinants of order p — 1 exist. For any n x n matrix
A =(ay), let f be the function defined by the formula

(3.26) fl4y,.. . A)= él(— 1)"a;, det A, .

Then T satisfies all four axiomsfor a determinantfunction of order n. Therefore, by induction,
determinants of order n exist for every n.

Proof. We regard each term of the sum in (3.26) as a function of the rows of A and we
write

S Ay, ..., A) = (= 1y*lg, det 4, .

If we verify that each f; sdtisfies Axioms 1 and 2 the same will be true for f.

Consder the effect of multiplying the first row of A by a scdar z. The minor A,, is not
affected dnce it does not involve the first row. The coefficient a,, is multiplied by ¢, so we
have

fl(tAl,A‘z, L A) = tay det A, = (4, .- A)
Ifi > 1 the first row of each minor 4;; gets multiplied by ¢ and the coefficient a;, is not
affected, so again we have

f;'(tAla Ay v, An) =tfj(A1s Az,---,An)-

Therefore each f; is homogeneous in the first row.

If the kth row of A is multiplied by ¢, where k > 1, the minor A,, is not affected but a,, is
multiplied by ¢, so f, is homogeneous in the kth row. If j # Kk, the coefficient g, is not
dfected but some row of 4, gets multiplied by r. Hence every f, is homogeneous in the
kth row.
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A smilar argument shows that esch f; is additive in every row, so T satisfies Axioms 1 and
2. We prove next that F satisfies Axiom 3’, the wesk verson of Axiom 3. From Theorem
31, it then follows that ¥ saisfies Axiom 3.

To veify that. T sdisfies Axiom 3/, assume two adjacent rows of A are equd, sy A, =
A, Then, except for minors 4,, and 4,,,,, each minor 4; has two equal rows so
det 4;,=0. Therefore the sum in (3.26) consists only of the two terms corresponding to
j=kandj=Fk+ 1,

(327) f(Ala vees An) = (_1)k+1akl det Alcl + ('1 )“-20]”_1,1 det A,,,,, .

But 4y, = Ay, ad @y = @y Since A, = A, . Therefore the two terms in (3.27)
differ only in sign, 0 £ (A, ..., A) = 0. Thus F satisfies Axiom 3.

Findly, we veify that f satisfies Axiom 4 When A= we have a,, =1 and a,, = 0 for
j > 1 Also, A,, is the identity matrix of order n— 1, so each term in (3.26) is zero except
the fird, which is equd to 1. Hence ¥ (1, ..., I,) =1 sof sidfies Axiom 4.

In the foregoing proof we could just as well have used a functionfdefined in terms of the
kth-column minors 4,, instead of the first-column minors 4;, . In fact, if we let

(328) f(Al EERNEI Arz) = z_f— l)ﬂAkaﬂ: det Aik ’

exactly the same type of proof shows that this ¥ saidfies dl four axioms for a determinant
function. Since determinant functions are unique, the expansion formulas in (3.28) and
those in (321) ae dl equa to det A

The expanson formulas (328) not only edablish the exidence of determinant functions
but also revea a new aspect of the theory of determinants-a connection between row-
properties and column-properties. This connection is discussed further in the next section.

3.14 The determinant of a transpose

Associated with each matrix A is another matrix called the transpose of A and denoted
by 4t. The rows of 4t are the columns of A. For example, if

1 4
1 2 3
A= s then A*= 12 5].
4 56
3 6

A formd definition may be given as follows.

DEFINITION OF TRANSPOSE.  The transpose of an m x n matrix A = (a,);2, isthen x m
matrix A* whose i, j entry is a;, .

Although transposition can be applied to any rectangular matrix we shall be concerned

primaily with square matrices We prove next that transposition of a square marix does
not dter its determinant,
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tHeoRem 3. 11.  For any n x n matrix A we have
det A = det A

Proof. The proof is by induction on n. For n = 1 and n = 2 the result is esdly verified.
Assume, then, that the theorem is true for matrices of order n — 1 . Let A = (g;;) and let
B = A* = (6). Expanding det A by its firg-column minors and det B by its first-row
minors we have

det A = Y (—1)""a;, det A;;,  det B= 3 (—1)""'by; det B,;.

i=1 j=1

But from the definition of transpose we have by; = a, and By; = (4,)!. Since we ae
assuming the theorem is true for matrices of order n — 1 we have det B;; = det 4,,.
Hence the foregoing sums are equa term by term, so det A = det B.

315 The cofactor matrix

Theorem 35 showed that if A is nondngular then det A # 0. The next theorem proves
the converse. That is, if det A % 0, then 4! exits Moreover, it gives an explicit formula
for expressing 4! in terms of a matrix formed from the cofactors of the entries of A.

In Theorem 3.9 we proved thet the i, j cofactor of a;; is equd to (— 1)+ det A,; , where

A;; isthe i, jminor of A. Let us denote this cofactor by cof ;. Thus by definition,

ij

oof a;; = (— 1) det 4, .

DEFINTION CF THE COFACTCR MATRIX.  The matrix whose i, j entry is cof a;; is called the
cofactor matrix? of A and is denoted by cof A. Thus, we have

The next theorem shows that the product of A with the trangpose of its cofactor matrix is,
apat from a scdar factor, the identity matrix 1.

THEOREM 3.12. For any n X n matrix A with n > 2 we have
(3.29) A(cof A)t = (det A)I.

In particular, if det A # 0 the inverse of A exists and is given by

= — (cof A)’.

t In much of the matrix literature the transpose of the cofactor matrix is called the adjugate of A. Some of
the older literature calls it the adjoint of A. However, current nomenclature reserves the term adjoint for

an entirely different object, discussed in Section 5.8.
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Proof. Using Theorem 39 we express det A in terms of its kth-row cofactors by the
formula

n
(330) da A= z ak,- COf akj.

j=1
Keep k fixed and gpply this reation to a new matrix B whose ith row is equa to the kth
row of A for some i # Kk, and whose remaining rows are the same as those of A. Then

det B = 0 because the ith and kth rows of B ae equa. Expressng det B in tems of its
ith-row cofactors we have

(3.3) det B= 3 b, oof b= 0,

But since the ith row of B is equd to the kth row of A we have
b= a; and  cof b;= cof a; for everyj .
Hence (3.31) dates that

(3.32) Saycofa; =0 if k # .

j=1

Equations (3.30) and (3.32) together can be written as follows:

3.33) s 0 0, = |

F=1

det A if i=k
0 i f ik,

But the sum gppearing on the left of (3.33) is the k, i entry of the product A(cof A)!. There-
fore (3.33) implies (3.29).

As a direct corollary of Theorems 35 and 312 we have the following necessary and
aufficient condition for a square matrix to be nonsngular.

THEOREM  3.13. A square matrix A is nonsingular if and only if det A # 0.

3.16 Crame’srule

Theorem 3.12 can ds0 be used to give explicit formulas for the solutions of a system of
liner eguaions with a nonsngular coefficient matrix. The formulas are cdled Cramer’s
rule, in honor of the Swiss mathematician Gabried Cramer (1704-1752).

THECREM 3.14. CRAMER' S RULE.  If a system Of #n linear equations in n unknowns
X1y ooy Xy,

za”-xj=bi (i=1,27"',n)

i=1
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has a nonsingular coefficient-matrix A = (a,;) , then there is a unique solution for the system

given by the formulas

1
det

(3.34) xj=~72bkoofakj, for j=1,2,..
k=1

Proof. The sydem can be written as a matrix equation,

AX = B,
X1 by
where X and B ae column matrices X = | - |, B=
X, b,
there is a unique solution X given by
(3.35) X =4'B=—1" (of 4)B.
det A

The formulas in (3.34) follow by equating components in (3.35).

N

. Since A is nonsngular

It should be noted that the formula for x; in (3.34) can be expressed as the quotient of two

determinants,
det. C,
X; = s
det A

where C; is the matrix obtaned from A by replacing the jth column of A by the column

matrix B.

3.17 Exercises

1. Determine the cofactor matrix of each of the following matrices :

2
2 -1 3
1 2 o 1 1 © 2 0
a y b > c
(@ 3 4 (b) 1 -1 -2
1 =2 0
-2 3 2

-

w o

2. Determine the inverse of each of the nonangular matrices in Exercise 1.
3. Find dl vaues of the scdar 4 for which the matrix A1 = A is angular, if A is equd to

0 2 11 -2 8

0 3
(2 [2 1], ® |0 -1 =2f, (@] 19 =3 14
2 =2 0 -8 2 =5
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4. 1f Aisan nx n marix with r > 2, prove esch of the following, properties of its cofactor matrix:
(8 cof (A4%) = (cof A)t. (b) (cof 4)t4 = (det A).
() A(cof Ayt = (cof A)A (A commutes with the transpose of its cofactor matrix).

5. Use Cramer’s rule to solve each of the following systems.
(@ x+ 2y+ 3z =8, 2X-y +4z=7, -y+z=1
M x+y+22=0, Ix -y —-z=3, X + 35y + 3z =4,

6. (@ Explan why eech of the following is a Cartesan equation for a draight line in the xy-plane
passing through two digtinct points (x;, y;) and (x,, y,).

x y 1
det[x_x1 y_y1:|=0; det [x; y, 1| =0.

Xo— X1 Y2 — N Xs yy 1
2 Yo

(b) State and prove corresponding relations for a plane in 3-space passing through three
diginct points.
(c) State and prove corresponding reldions for a circle in the xy-plane passing through three
noncolinear points.

7. Given n? functions f;;, each differentidble on an intervd (3 b), define F(x) = det [fi;(x)] for
each x in (g, b). Prove that the derivative F (X) is a sum of n determinants,

P = é det A,(),

where A4;(x) is the matrix obtained by differentiating the functions in the ith row of [f£;(x)].
8. An »n x n marix of functions of the form W(x) = [u{*2(x)], in which each row &fter the first
is the derivetive of the previous row, is caled a Wronskian matrix in honor of the Polish mathe-
matician J. M. H. Wronski (1778-1853). Prove that the derivative of the determinant of W(x)
is the determinant of the matrix obtained by differentieting each entry in the last row of 1 (x).

[Hint: Use Exercise 7,]
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EIGENVALUES AND EIGENVECTORS

41 Linear transformations with diagonal matrix representations

Let T: ¥— V be a linear trandformation on a finitedimensona liner space V. Those
properties of T which are independent of any coordinate system (basis) for V are cdled
intrinsicproperties of T. They are shared by dl the matrix representations of T. If a beds
can be chosen 0 that the resulting matrix has a paticularly smple form it may be posshble
to detect some of the intrindc properties directly from the matrix representation.

Among the smples types of marices are the diagona matrices. Therefore we might ask
whether every linear transformation has a diagond matrix representation. In Chapter 2
we treated the problem of finding a diagond matrix representation of a linear transfor-
maion T: V— W, where dm V = p and dm W = m . In Theorem 2.14 we proved that
there always exists a besis (ey, . . . , &) for V and a basis (w, , . .., w,) for W such tha the
matrix of T relaive to this par of bases is a diagond matrix. In paticular, if W = V
the matrix will be a square diagond matrix. The new feature now is that we want to use the
same basis for both Vand W. With this redriction it is not dways possble to find a diagond
matrix representation for T. We turn, then, to the problem of determining which trans
formetions do have a diagond matrix representation.

Notation:  If A = (g;;) is a diagond matrix, we write A = diag (a4;, @33, - - - , &)

It is essy to give a necessry and sufficient condition for a linear transformation to have a
diagond  matrix  representation.

THEOREM 4.1. Given a linear transformation T: ¥ — V, where dm V = n. If T has a

diagonal matrix representation, then there exists an independent set of elements u,, ..., u,
in V and a corresponding set of scalars 4, . . ., 4, such that

(4.2) Tw,) = A, for k=1,2,...,n

Conversely, if thereis an independent set %,, . . ., u, in V and a corresponding set of scalars
Ay ...y A, satisfying (4.1), then the matrix

A =diag (4,...,4,)

is a representation of T relative to the basis (i, , . . ., u,).

96
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Proof. Assume first that T has a diagond matrix representetion A = (a,) redive to
some basis (¢;, . . . ,e). The action of T on the bads dements is given by the formula

n
T(ey) = Zl A€ = Apyly
i=

snce g, = 0 for | # k . This proves (4.1) with 4, = e, and 1, = a,, .

Now suppose independent elements u,, . . . , u, and scdars 4,, . . . , 4, eis sisfying
(41). Since u,, . . . , u, ae independent they form a besis for V. If we define a,, = 4, ad
ay = 0 for i # k, then the matrix A = (g,,) is a diagonal matrix which represents T
relative to the besis (i, . . ., u,).

Thus the problem of finding a diagond matrix representation of a linear transformation
hes been transformed to another problem, that of finding independent elements u,, . . . , u,
and scdars 2, . . ., 1, to saisfy (4.1). Elements u, and scaars 1, sdisfying (4.1) are caled
eigenvectors and eigenvalues of T, respectivdly. In the next section we study eigenvectors
and egewvduesd in a more generd Hting.

4.2 Eigenvectors and eigenvalues of a linear transformation

In this discusson V denotes a linear space and S denotes a subspace of V. The spaces S
and V ae not required to be finite dimensond.

DEFI NI TI ON. Let 7:S — V be a linear transformation of S into V. A scalar 4 is called an
eigenvalue of T if there is a nonzero element x in S such that

(4.2) T(x) = Ax.

The element x is called an eigenvector of Thelonging to 1. The scalar A is called an eigenvalue
corresponding to x.

There is exactly one egenvaue corresponding to a given egenvector x. In fact, if we
have T(x) = Ax and T(x) = ux forsome x # O, then Ax « = ux 0 1= p .

Note: Although Equation (4.2) dways holds for x = 0 and any scdar |, the definition
excludes 0 as an eigenvector. One reason for this prejudice againgt 0 is to have exactly one
egenvaue 1 asociated with a given egenvector Xx.

The folowing examples illusrate the meaning of these concepts.
exavete 1. Multiplication by a fixed scalar. Let T: S— V be the linear transformation

defined by the equation T(xX) = cx for each x in S, where c is a fixed scdar. In this example
every nonzero dement of S is an eigenvector beonging to the scdar c.

t The words eigenvector and eigenvalue are partid trandations of the German words Eigenvektor and
Eigenwert, respectively. Some authors use the terms characteristic vector, OF proper vector a synonyms for
eigenvector. Eigenvalues &€ a0 called characteristic values, proper values, Of latent roots.
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exawle 2. The eigenspace E(A) consigting of all x such that T(x) = Ax. Let T: § — V
be a linexr trandformation having an eigenvdue A. Let E(A) be the set of al dements x in
S such that T(x) = Ax. This set contains the zero eement 0 and al eigenvectors belonging
to il. It is easy to prove that E(l) isa subspace of S, because if x and y arein E(1) we have

Tax + by) = aI(x) + bT(y) = alx + bly = A(ax + by)

for dl scdars a and b. Hence (ax + by) € E(1) so E(4) is a subspace. The space E(1) is
cdled the eigenspace corresponding to 2. It may be finite or infinitedimensond. If E(A)
is finite-dimensond then dm E() > 1 , since E(1) contains a least one nonzero dement x
corresponding to 1.

exawle 3. Existence of zero eigenvalues. If an egenvector exisgts it cannot be zero, by
definition. However, the zero scdar can be an eigenvdue In fadt, if O is an egenvdue for
X then T(xX) = Ox = 0, 0 x is in the null space of T. Conversdy, if the null space of T
contains any nonzero eements then esch of these is an eigenvector with eigenvalue 0. In
generd, E(4) is the null space of T — Al.

exavele 4. Rgection in the xy-plane. Let S =V = V,(R) and let T be a reflection in
the xy-plane. Thet is, let Tact on the basis vectors i, j, k as follows T(i) = i, T() = j,
T(k) = -k. Every nonzero vector in the xy-plane is an eigenvector with eigenvalue 1.
The remaining eigenvectors are those of the form ck, where ¢ # 0 ; each of them has
dgenvaue — 1 .

exave 5. Rotation of the plane through a fixed angle «. This example is of spedid interet
because it shows that the existence of eigenvectors may depend on the undelying fidd of
scdars. The plane can be regarded as a linear space in two different ways (1) As a 2-
dimensond real liner spece, V = V,(R), with two bess dements (1, 0) and (0, 1), ad
with real numbers as scdars, or (2) as a |-dimensona complex linear space, V = V,(C),
with one bass dement 1, and complex numbers as scdars.

Consider the second interpretation first. Each dement z 3 0 of V;(C) can be expressed
in polar form, z = ref®, If T rotaes z through an angle o then T(2) = rei®t®) = iy,
Thus, each z # 0 is an eigenvector with eigenvdue 1 = e Note that the eigenvaue e is
not rea unless ¢ is an integer multiple of .

Now consider the plane as a real linear space, V,(R). Since the scaars of V,(R) are red
numbers the rotation T has red egenvaues only if ¢ is an integer multiple of 7. In other
words, if o is not an integer multiple of 7 then T has no red dgenvaues and hence no
eigenvectors. Thus the existence of eigenvectors and eigenvaues may depend on the choice
of scdars for V.

exavee 6. The differentiation gperator. Let V be the linear space of dl red functions f
having derivatives of every order on a given open intervd. Let D be the linear transfor-
mation which maps each f onto its derivative, D(f) = f ’. The dgenvectors of D are those
nonzero functions f saifying an equation of the form
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fr=

for some red 1. This is a fird order linear differentid equation. All its solutions are given
by the formula

f(x) = ce*®,
where ¢ is an arbitrary red congant. Therefore the egenvectors of D are dl exponentia

functions f(x) == ce® with ¢ # 0 . The egenvaue corresponding to f(X) = ce*® is A. In
examples like this one where |/ is a function space the eigenvectors are caled eigenfunctions.

exavLe 7. The integration operator. Let V be the liner space of dl red functions
continuous on a finite interva [a, b]. If f€ V' define g = T(f) to be that function given by

g =70 d it a<x<b.

The eigenfunctions of T (if any exis) are those nonzerofsatisfying an eguation of the form

43 [y ar= a0

for some red 4. If an egenfunction exigs we may differentiste this equation to obtain the
relation f(x) = Af'(x), from which we find f(x) = ce**, provided 7 5 0. In other words,
the only candidates for eigenfunctions are those exponentiad functions of the form f(x) =
ce®* with ¢ ¢ 0 and 2 5 0. However, if we put x = a in (4.3) we obtain

0= Af(a) = lce"".

Since e** is never zero we see that the equation T(f) = Afcannot be satisfied with a non-
zero f, 0 Thas no egenfunctions and no egenvaues.

exavee 8. The subspace spanned by an eigenvector. Let T: S — V be a linear trans
formation having an eigenvaue 1. Let x be an eigenvector belonging to 4 and let L(x) be
the subspace spanned by x. That is, L(x) is the s¢t of dl scdar multiples of x. It is easy to
show that T maps L(x) into itsdf. In fat, if y = cx we have

Ty) = T(ex) = cT(x)= c(Ax)= Acex) = Ay.

If c# 0 then y # 0 so every nonzero dement y of L(x) is dso an egenvector belonging
to A.

A subspace U of Siscdled invariant under Tif Tmaps each eement of U onto an element
of U. We have j ust shown that the subspace spaned by an eigenvector is invariant under T.
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4.3 Linear independence of eigenvectors corresponding to distinct eigenvalues

One of the most important properties of eigenvaues is described in the next theorem. As
before, S denotes a subspace of a linear space V.

THEoREM 4.2, Let u,, ..., u, be eigenvectors of a linear transformation T: S — V, and
assume that the corresponding eigenvalues 4,, . . . , 4, are distinct. Then the eigenvectors
Uy, ..., U, are independent.

Proof. The proof is by induction on k. The result is trivid when k = 1 . Assume, then,
that it has been proved for every st of k = 1 egenvectors. Let u;, . . ., 4, be k egen
vectors belonging to diginct eigenvdues, and assume that scdars ¢; exig such that

(4.4) él cu;, =0,

Applying T to both members of (44) and using the fact that T(u;,) = Au, we find
(4.5) 3 e, = 0.

Multiplying (44) by A, and subtracting from (4.5) we obtan the equation

k-1
Se (i — A, =0.
i=1

Butsince uy, . . ., u,_, ae independent we must have ¢;(4, — 4,) =0foreech i = 1,2, ...,
k — 1. Since the eigenvaues are diginct we have 4, # A, for i #kso ¢;=0 fori= 1, 2
...,k —=1.From (44) we see that ¢, is a0 0 o0 the eigenvectors u;, . . ., U, ae inde-
pendent.

Note that Theorem 4.2 would not be true if the zero dement were dlowed to be an eigen-
vector. This is another reason for excluding O as an egenvector.

Warning:  The converse of Theorem 4.2 does not hold. That is, if T has independent
eigenvectors uy, . . . , 4y, then the corresponding eigenvalues 4;, . . ., 4, need not be dis-
tinct. For example, if T is the identity transformation, T(x) = x for dl x, then every
X # 0 is an eigenvector but there is only one eigenvdue, 4 = 1 .

Theorem 4.2. has important consequences for the finitedimensona case

recrem 4.3. 1T dmV=n, everylinear transformation T: V— V has at most n distinct
eigenvalues. If T has exactly n distinct eigenvalues, then the corresponding eigenvectors form
a basis for V and the matrix of T relative to this basis is a diagonal matrix with the eigenvalues
as diagonal entries.

Proof. If there were n 4+ 1 didinct eigenvadues then, by Theorem 4.2, V would contain
n + 1 independent eements. This is not possble snce dm V = n . The second assertion
follows from Theorems 4.1 and 4.2
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Note  Theorem 4.3 tels us tha the exisence of » distinct eigenvalues is a sufficient
condition for Tto have a diagond matrix representation. This condition is not necessary.
There exig linear trandformations with less then n didinct eigenvalues that can be
represented by diagond matrices. The identity transformation is an example. All its eigen-
values are equal to 1 but it can be represented by the identity matrix. Theorem 4.1
tells us that the existence of » independent eigenvectors is necessary and sufficient for
T to have a diagond matrix representation.

4.4 Exercises

1. (@ If T has an eigenvdue 4, prove that oT has the eigenvaue al.

(b) If x is an eigenvector for both T, and T, , prove that x is dso an eigenvector for a7, + bT, .
How are the eigenvalues related?

2. Assume ‘T: ¥— ¥ has an eigenvector x belonging to an eigenvaue 1. Prove that x'is an egen
vector of T2 beonging to A2 and, more generdly, x is an eigenvector of 7 belonging to A".
Then use the result of Exercise 1 to show that if P is a polynomid, then x is an eigenvector of
P(T) belonging to P(A).

3. Consider the plane as ared linear space, ¥V = V,(R) , and let T be arotation of ¥ through an
angle of =/2 radians. Although T has no egenvectors, prove that every nonzero vector is an
eigenvector for T2

4. If T: ¥V — V has the property that T? has a nonnegative eigenvalue 42, prove that a least one
of 2or -1 isan eigevaue for T. [Hint: T2 = 2] = (T + A(T = i) .]

5. Let ¥ be the linear space of al red functions differentiable on (0, 1). If T € V, define g =
T(f) tomean that g(r) = tf ‘() fordl 7in (0, 1). Prove that every red 2 is an eigenvaue for
7, and determine the eigenfunctions corresponding to A.

6. Let v be the linear space of dl red polynomias p(x) of degree < n. If p € ¥, define q =
T(p) to mean that ¢(r) = p(¢r + 1) for al red ¢ Provethat T has only the eigenvalue 1. What
are the eigenfunctions belonging to this egenvadue?

7. Let ¥ be the linear gpace of dl functions continuous on (= o, + o) and such that the integra
% . f(t) dt exigs for dl red x. If f eV, e g = T(f) be defined by the equation g(x) =
§* T (t)dr. Prove that every podtive | is an eigenvdue for Tand determine the eigenfunctions
corresponding to 4.

8. Let ¥ be the linear space of dl functions continuous on ( =~ o, + ) and such tha the integral
J2 o tf(t) dt exists for &l red x. If f €V let g = T(f) be defined by the equation g(x) =

® o tf(t) dt.Prove that every negative 4 is aneigenvaue for T and determine the eigenfunc-
tions corresponding to 1.

9. Let ¥ = C(0, =) be the red linear space of dl red functions continuous on the interval [0, =].
Let S be the subspace of al functions f which have a continuous second derivative in linear
and which dso stify the boundary conditions f(0) = f(=) = 0. Let T: S — ¥ be the linear
transformation which maps each f onto its second derivative, T(f) = f ”. Prove that the
eigenvaues of Tare the numbers of the form —n2, where n = 1, 2, . . ., and that the eigen-
functions corresponding to —n»® are f(t) = ¢, sn nt , where ¢,  O.

10. Let ¥ be the linear space of dl red convergent sequences {x,}. Define T: ¥V — V &s follows
If x = {x} is a convergent sequence with limit a, let T(x) = {y,}, where y, = a — x, for
n > 1 . Prove that Thas only two eigenvalues, 4 = 0 and A = -1, and determine the egen-
vectors belonging to each such 4,

11. Assume that a linear tranformation T has two eigenvectors X and y beonging to digtinct
eigenvaues 1 and . If ax + by is an eigenvector of T, provethat a=0 or b = 0.

12. Let T: § -> Vbe alinear tranformation such that every nonzero dement of § is an eigenvector.
Prove that there exists a scdar ¢ such that T(x) = cx . In other words, the only transformation
with this property is a scdar times the identity. [Hint: Use Exercise 11.]
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45 The finitedimensional case. Characteristic polynomials

If dm ¥V = n, the problem of finding the dgenvaues of a linear tranformation 7 V' — V'
can be solved with the hdp of determinants. We wish to find those scalars 4 such tha the
equation T(x) = Ax hes a solution x with x % 0. The equation T(x) = Ax can be written
in the form

(Al = T)(x) = 0,

where 7is the identity transformation. If welet 7, = A7 ~ T, then ] is an eigenvaue if and
only if the eguation

(4.6) T,(x) = 0

has a nonzero solution x, in which case T, is not invertible (because of Theorem 2.10).
Therefore, by Theorem 2.20, a nonzero <olution of (4.6) exigs if and only if the matrix of
T, is dnglar. If A is a matrix representetion for T, then A7 — A is a matrix representation
for T,. By Theorem 313, the matrix 4 — A is sngular if and only if det (A — A) = 0.
Thus if A is an eigevdue for Tit sttisfies the equation

4.7 det (A — A) = 0.

Conversdly, any A in the underlying field of scalars which saisfies (4.7) is an eigenvaue.
This suggests that we should study the determinant det (A7 == A) as a function of A.

tveorem 4.4, If Alis any nx nmatrix and if I is the nx n identity matrix, the function f
defined by the equation

f(1) = det (AZ — A)

is a polynomial in 4 of degree n. Moreover, the term of highest degree is A", and the constant
term js f(0) = det (-A) = (- 1)" det A.

Proof. The statement f(0) = det (-A) follows at once from the definition of f. We
prove thatf is a polynomial of degree n only for the cae n < 3. The proof in the generd
cae can be given by induction and is left as an exercise. (See Exercise 9 in Section 4.8)

For n = 1 the determinant is the linear polynomial f(4) = 4 ~ ay,. For n = 2 we have

A—ay  —ap

det (Al — A) = (A — ap)(A = ayp) = a0

=0 A = Gy

2= (ay + Gp)h + (G0 = G120y).,

a quadratic polynomid in 4. For = 3 we have

l -y —ae —~—a3
det (}.I =-A) =| —ay | — ay ~—dy3

—das —3as; A — ag
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v A—ay =ay
= (A = au) + dg
—az A —dy I

—dy = g3 —ay A - )

— dy3

—dy 1 — ag —dy  —dg
The lagt two terms ae linear polynomids in 4. The fird tem is a cubic polynomid, the
term of highest degree being 73.

DEFINTION.  If Alisan n x n matrix the determinant
f(A) = det (] — A)

is called the characteristic polynomial of A.

The roots of the characteridic polynomid of A ae complex numbers, some of which
may be red. If we let F denote either the red fidd R or the complex fidd C, we have the
following theorem,.

THEOREM 4.5. Let T: V> V be a linear transformation, where V has scalars in F, and
dmV =n. Let A be a matrix representation of T. Then the set of eigenvalues of T consists
of those roots of the characteristic polynomial of A which lie in F.

Proof. The discusson preceding Theorem 4.4 shows that every eigenvdue of T satidfies
the equetion det (A/ — A) = 0 and that any root of the characteristic polynomid of A
which lies in F is an eigenvaue of T.

The matrix 4 depends on the choice of bass for V, but the eigenvdues of T were defined
without reference to a basis. Therefore, the set of roots of the characteristic polynomid of
A must be independent of the choice of basis More than this is true. In a later section we
shdl prove tha the characterigtic polynomid itsdf is independent of the choice of basis
We turn now to the problem of actudly caculding the egenvdues and egenvectors in the
finitedimensond  case

4.6 Calculation of' eigenvalues and eigenvectors in the finite-dimensional case

In the finitedimensond case the egenvadues and egenvectors of a linear transformation
Tare dso cdled eigenvalues and eigenvectors of each matrix representation of T. Thus, the
ggenvdues of a square matrix A ae the roots of the characterisic polynomid f(4) =
det (Al — A). The eigenvectors corresponding to an eigenvalue 1 are those nonzero
vectors X = (x;,...,X,) regaded as n x 1 column matrices satisfying the matrix equation

AX =X, or (Al- A)X= 0.

This is a sysem of n linear equations for the components x;, . . . , X,. Once we know A
we can obtan the eigenvectors by solving this sysem. We illusrate with three examples
tha exhibit different features.
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exaveie 1. A matrix with all its eigenvalues distinct. The matrix

2 1 1

A=L-% -3 -
has the characterisic polynomia

1—2 -1 -1
dt (Ml —A)= det| =2 A—3 —4 | =(@-1DA+1D0-3),
1 1 A+2

0 there are three didinct eigenvaues 1, —1,and 3. To find the eigenvectors corresponding
to A = 1 we solve the sygem AX = X, or

2 1 17 [, X3
2 3 4 xZ = .X2 .

-1 -1 =2][x, X3
This gives us

2x1+ x2+ X3=x1
2x; + 3x5 + 4x3 = x,
—X; — X3 — 2X3 = X3,
which can be rewritten as
X1+ x4+ x=0

2x1 + 2x2 + 4X3 = 0

_xl - x2 — 3x3 = 0.

Adding the firs and third eguations we find x; = 0, and dl three equations then reduce to
x; + x, = 0 . Thus the eigenvectors corresponding to A = 1 are X = ¢(1, — 1, 0) , where
t is awy nonzero scaar.

By dmilar caculations we find the eigenvectors X = (0, 1 , -1) corresponding to 4 =
-1 and X = 12,3, = 1) corresponding to A = 3, with # awy nonzero scdar. Since the
gigenvaues are digtinct the correspondingeigenvectors (1, — 1, 0), (0, 1, = 1),and (2,3, — 1)
are independent. The results can be summarized in tebular form as follows In the third
column we have liged the dimenson of the eigenspace E(1).

Eigenvalue 4 Eigenvectors dm E(1)
1 11, —1,0), 1#0 1
-1 10,1, 1), 1#0 1

3 12,3, -1), t#0 1
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pare 2. A matrix with repeated eigenvalues. The matrix

2 -1 1

A=11 § 13
has the characterigic polynomid

A—=2 1 -1
det (A=A =det| 0 2-3 1 |[=(@4=2)(4~2)(4—4.
-2 -1 1-3
The eigenvaues are 2, 2, and 4. (We list the eigenvalue 2 twice to emphasize that it is a

double root of the characteristic polynomial.) To find the eigenvectors corresponding to
A = 2 we lve the system AX = 2X, which reduces to

"'X2+ X3=O
Xy = X3 =0
2x;+ x+ x5 = 0.

This has the solution x, = x; = —x; S0 the eigenvectors corresponding to 4 = 2 are
t(-1, 1, 1), where ¢ # 0. Smilarly we find the eigenvectors (1, — 1, 1) corresponding
tothe eigenvalue: 4 = 4. The results can be summarized as follows:

Eigenvalue Eigenvectors dim E(4)
2’2 t(—l,l, 1)9 t#0 !
4 11, —-1,1), t#0 1

eaee 3. Another matrix with repeated eigenvalues. The matrix

211
A=(2 3 2
3 3 4

has the characteristic polynomial (1 —1)(A —1)(A — 7). When 1 = 7 the system AX =
7X  becomes

5x1 —— x2 — X3 = O
-2X, + 4x, =2x, =0
—3x1 — 3X2 + 3X3 = 0
This has the solution x, = 2X,, x3 = 3x,, SO the eigenvectors corresponding to 4 = 7 are

t(1, 2, 3), where ¢ # 0. For the eigenvalue 4 = 1, the system AX = X consists of the
equation
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Xy + Xp 4+ X% =0

repested three times. To solve this equation we may take x;, = a, x, = b, where aand b
are arbitrary, and then take x; = -a= b . Thus every egenvector corresponding to 4 = 1
has the form

(a, b, -a — b) = a(1,0, -1) + b(0, 1, -1),

where a 0 or b # 0. This means that the vectors (1, 0, -1) and (0, 1, -1) form abasis
for E(1). Hence dim E(A) = 2when4 =1. The results can be summarized as follows:

Eigenvalue Eigenvectors dim E(4)
7 11,2,3), t#0 {
1,1 a(1,0,-1) + b©, 1, —1), a, b not both 0. 2

Note that in this example there are three independent eigenvectors but only two distinct
eigenvalues.

47 Trace of a matrix

Let (1) be the characteristic polynomial of an n xn matrix A. We denote the n roots of
fA) by, ... 4, with each root written as often as its multiplicity indicates. Then we
have the factorization

fA=@A=2) - (h=1,