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PREFACE

This book is a continuation of the author’s Calculus, Volume I, Second Edition. The
present volume has been written with the same underlying philosophy that prevailed in the
first. Sound training in technique is combined with a strong theoretical development.
Every effort has been made to convey the spirit of modern mathematics without undue
emphasis on formalization. As in Volume I, historical remarks are included to give the
student a sense of participation in the evolution of ideas.

The second volume is divided into three parts, entitled Linear Analysis, Nonlinear
Ana!ysis,  and Special Topics. The last two chapters of Volume I have been repeated as the
first two chapters of Volume II so that all the material on linear algebra will be complete
in one volume.

Part 1 contains an introduction to linear algebra, including linear transformations,
matrices, determinants, eigenvalues, and quadratic forms. Applications are given to
analysis, in particular to the study of linear differential equations. Systems of differential
equations are treated with the help of matrix calculus. Existence and uniqueness theorems
are proved by Picard’s  method of successive approximations, which is also cast in the
language of contraction operators.

Part 2 discusses the calculus of functions of several variables. Differential calculus is
unified and simplified with the aid of linear algebra. It includes chain rules for scalar and
vector fields, and applications to partial differential equations and extremum problems.
Integral calculus includes line integrals, multiple integrals, and surface integrals, with
applications to vector analysis. Here the treatment is along more or less classical lines and
does not include a formal development of differential forms.

The special topics treated in Part 3 are Probability and Numerical Analysis. The material
on probability is divided into two chapters, one dealing with finite or countably infinite
sample spaces; the other with uncountable sample spaces, random variables, and dis-
tribution functions. The use of the calculus is illustrated in the study of both one- and
two-dimensional random variables.

The last chapter contains an introduction to numerical analysis, the chief emphasis
being on different kinds of polynomial approximation. Here again the ideas are unified
by the notation and terminology of linear algebra. The book concludes with a treatment of
approximate integration formulas, such as Simpson’s rule, and a discussion of Euler’s
summation formula.



\‘I11 Preface

There is ample material in this volume for a full year’s course meeting three or four times
per week. It presupposes a knowledge of one-variable calculus as covered in most first-year
calculus courses. The author has taught this material in a course with two lectures and two
recitation periods per week, allowing about ten weeks for each part and omitting the
starred sections.

This second volume has been planned so that many chapters can be omitted for a variety
of shorter courses. For example, the last chapter of each part can be skipped without
disrupting the continuity of the presentation. Part 1 by itself provides material for a com-
bined course in linear algebra and ordinary differential equations. The individual instructor
can choose topics to suit his needs and preferences by consulting the diagram on the next
page which shows the logical interdependence of the chapters.

Once again I acknowledge with pleasure the assistance of many friends and colleagues.
In preparing the second edition I received valuable help from Professors Herbert S.
Zuckerman of the University of Washington, and Basil Gordon of the University of
California, Los Angeles, each of whom suggested a number of improvements. Thanks are
also due to the staff of Blaisdell Publishing Company for their assistance and cooperation.

As before, it gives me special pleasure to express my gratitude to my wife for the many
ways in which she has contributed. In grateful acknowledgement I happily dedicate this
book to her.

T. M. A.
Pasadena, California
September 16, 1968
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PART 1
LINEAR ANALYSIS





1

LINEAR SPACES

1.1 Introduction

Throughout mathematics we encounter many examples of mathematical objects that
can be added to each other and multiplied by real numbers. First of all, the real numbers
themselves are such objects. Other examples are real-valued functions, the complex
numbers, infinite series, vectors in n-space, and vector-valued functions. In this chapter we
discuss a general mathematical concept, called a linear space, which includes all these
examples and many others as special cases.

Briefly, a linear space is a set of elements of any kind on which certain operations (called
addition and multiplication by numbers) can be performed. In defining a linear space, we
do not specify the nature of the elements nor do we tell how the operations are to be
performed on them. Instead, we require that the operations have certain properties which
we take as axioms for a linear space. We turn now to a detailed description of these axioms.

1.2 The definition of a linear space

Let V denote a nonempty  set of objects, called elements. The set V is called a linear
space if it satisfies the following ten axioms which we list in three groups.

Closure axioms

AXIOM 1. CLOSURE UNDER ADDITION. For every pair of elements x and y in V there
corresponds a unique element in V called the sum of x and y, denoted by x + y .

AXIOM 2. CLOSURE UNDER MULTIPLICATION BY REAL NUMBERS. For every x in V and
every real number a there corresponds an element in V called the product of a and x, denoted
by ax.

Axioms for addition

AXIOM 3. COMMUTATIVE LAW. For all x and y in V, we have x + y = y + x.

AXIOM 4. ASSOCIATIVELAW. Forallx,y,andzinV,wehave(x+y)  + z =x +(y+z).

?
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AXIOM 5. EXISTENCEOFZEROELEMENT. There is an element in V,  denoted by 0, such that

x+0=x  forallxin  V .

AXIOM 6. EXISTENCEOFNEGATIVES. For every  x in V, the element (- 1)x has the property

x+(-1)x= 0 .

Axioms for multiplication by numbers

AXIOM 7. ASSOCIATIVE LAW. For every x in V and all real numbers a and b, we have

a(bx) = (ab)x.

AXIOM 8. DISTRIBUTIVE LAW FOR ADDITION IN V. For all x andy in V and all real a,
we hare

a(x + y) = ax + ay .

AXIOM 9. DISTRIBUTIVE LAW FOR ADDITION OF NUMBERS. For all x in V and all real
a and b, we have

(a + b)x = ax + bx.

AXIOM 10. EXISTENCE OF IDENTITY. For every x in V,  we have lx = x.

Linear spaces, as defined above, are sometimes called real linear spaces to emphasize
the fact that we are multiplying the elements of V by real numbers. If real number is
replaced by complex number in Axioms 2, 7, 8, and 9, the resulting structure is called a
complex linear space. Sometimes a linear space is referred to as a linear vector space or
simply a vector space; the numbers used as multipliers are also called scalars. A real linear
space has real numbers as scalars; a complex linear space has complex numbers as scalars.
Although we shall deal primarily with examples of real linear spaces, all the theorems are
valid for complex linear spaces as well. When we use the term linear space without further
designation, it is to be understood that the space can be real or complex.

1.3 Examples of linear spaces

If we specify the set V and tell how to add its elements and how to multiply them by
numbers, we get a concrete example of a linear space. The reader can easily verify that
each of the following examples satisfies all the axioms for a real linear space.

EXAMPLE 1. Let V = R , the set of all real numbers, and let x + y and ax be ordinary
addition and multiplication of real numbers.

EXAMPLE 2. Let V = C,  the set of all complex numbers, define x + y to be ordinary
addition of complex numbers, and define ax to be multiplication of the complex number x



Examples of linear spaces

by the real number a. Even though the elements of V are complex numbers, this is a real
linear space because the scalars are real.

EXAMPLE 3. Let V’  = V,,  the vector space of all n-tuples of real numbers, with addition
and multiplication by scalars defined in the usual way in terms of components.

EXAMPLE 4. Let V be the set of all vectors in V,  orthogonal to a given nonzero  vector
IV.  If n = 2, this linear space is a line through 0 with N as a normal vector. If n = 3,
it is a plane through 0 with N as normal vector.

The following examples are called function spaces. The elements of V are real-valued
functions, with addition of two functions f and g defined in the usual way:

(f + g)(x) =f(x) + g(x)

for every real x in the intersection of the domains off and g. Multiplication of a function
f by a real scalar a is defined as follows: af is that function whose value at each x in the
domain off is af (x). The zero element is the function whose values are everywhere zero.
The reader can easily verify that each of the following sets is a function space.

EXAMPLE 5. The set of all functions defined on a given interval.

EXAMPLE 6. The set of all polynomials.

EXAMPLE 7. The set of all polynomials of degree 5 n, where n is fixed. (Whenever we
consider this set it is understood that the zero polynomial is also included.) The set of
all polynomials of degree equal to IZ is not a linear space because the closure axioms are not
satisfied. For example, the sum of two polynomials of degree n need not have degree n.

EXAMPLE 8. The set of all functions continuous on a given interval. If the interval is
[a, b], we denote this space by C(a, b).

EXAMPLE 9. The set of all functions differentiable at a given point.

EXAMPLE 10. The set of all functions integrable on a given interval.

EXAMPLE 11. The set of all functions f defined at 1 with f(1) = 0. The number 0 is
essential in this example. If we replace 0 by a nonzero number c, we violate the closure
axioms.

EXAMPLE 12. The set of all solutions of a homogeneous linear differential equation
y” + ay’ + by = 0, where a and b are given constants. Here again 0 is essential. The set
of solutions of a nonhomogeneous differential equation does not satisfy the closure axioms.

These examples and many others illustrate how the linear space concept permeates
algebra, geometry, and analysis. When a theorem is deduced from the axioms of a linear
space, we obtain, in one stroke, a result valid for each concrete example. By unifying
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diverse examples in this way we gain a deeper insight into each. Sometimes special knowl-
edge of one particular example helps to anticipate or interpret results valid for other
examples and reveals relationships which might otherwise escape notice.

1.4 Elementary consequences of the axioms

The following theorems are easily deduced from the axioms for a linear space.

THEOREM 1.1. UNIQUENESS OF THE ZERO ELEMENT. in any linear space there is one
and only one zero element.

Proof. Axiom 5 tells us that there is at least one zero element. Suppose there were two,
say 0, and 0,. Taking x = OI  and 0 = 0, in Axiom 5, we obtain Or  + O2  = 0,.
Similarly, taking x = 02 and 0 = 0,) we find 02 + 0, = 02. But Or + 02 = 02 + 0,
because of the commutative law, so 0, = 02.

THEOREM 1.2. UNIQUENESS OF NEGATIVE ELEMENTS. In any linear space every element
has exactly one negative. That is, for every x there is one and only one y such that x + y = 0.

Proof. Axiom 6 tells us that each x has at least one negative, namely (- 1)x. Suppose
x has two negatives, say y1 and yZ. Then x + yr = 0 and x + yZ = 0. Adding yZ to both
members of the first equation and using Axioms 5, 4, and 3, we find that

and

Y2 + (x + yd = (y2 + x) + y1 = 0 + y, = y1 + 0 = y,,

Therefore y1 = y2, so x has exactly one negative, the element (- 1)x.

Notation. The negative of x is denoted by -x. The difference y - x is defined to be
the sum y + (-x) .

The next theorem describes a number of properties which govern elementary algebraic
manipulations in a linear space.

THEOREM 1.3. In a given linear space, let x and y denote arbitrary elements and let a and b

denote arbitrary scalars. Then we‘have the following properties:

(a) Ox = 0.
(b)  a 0  =  0 .
( c )  ( - a ) x  =  - ( a x )  =  a ( - x ) .
( d )  I f a x = O , t h e n e i t h e r a = O o r x = O .
( e )  Ifax=ayanda#O,  t h e n x = y .
( f )  Ifax=bxandx#O,thena=b.

(g> -(x +  y) =  (-4 +  C-y)  =  --x  - y.

(h) x + x = 2x,  x + x +x = 3x, andingeneral, &x  = nx.
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We shall prove (a), (b), and (c) and leave the proofs of the other properties as exercises.

Proof of (a). Let z = Ox. We wish to prove that z = 0. Adding z to itself and using
Axiom 9, we find that

Now add -z  to both members to get z = 0.

Proof of(b). Let z = a0, add z to itself, and use Axiom 8.

Proof of(c). Let z = (-a)x. Adding z to ax  and using Axiom 9, we find that

z+ax=(-a)x+ax=(-a+a)x=Ox=O,

so z is the negative of ax, z = -(ax). Similarly, if we add a(-~)  to ax  and use Axiom 8
and property (b), we find that a(-~)  = -(ax).

1.5 Exercises

In Exercises 1 through 28, determine whether each of the given sets is a real linear space, if
addition and multiplication by real scalars are defined in the usual way. For those that are not,
tell which axioms fail to hold. The functions in Exercises 1 through 17 are real-valued. In Exer-
cises 3, 4, and 5, each function has domain containing 0 and 1. In Exercises 7 through 12, each
domain contains all real numbers.

1. All rational functions.
2. All rational functionsflg, with the degree off < the degree ofg (including f = 0).
3 .  Allfwithf(0) = f ( l ) . 8. All even functions.
4 .  Allfwith2f(O) = f ( l ) . 9. All odd functions.
5. Allfwithf(1) = 1 +f(O). 10. All bounded functions.
6. All step functions defined on [0, 11. 11. All increasing functions.
7. Allfwithf(x)-Oasx+ +a. 12. All functions with period 2a.

13. All f  integrable on [0, l] with Ji f(x) dx = 0.
14. All f  integrable on [0, l] with JA  f(x) dx > 0.
15. All f  satisfyingf(x) = f(l - x) for all x.
16. All Taylor polynomials of degree < n for a fixed n (including the zero polynomial).
17. All solutions of a linear second-order homogeneous differential equation’ y” + P(x)y’  +

Q(x)y  = 0, where P and Q are given functions, continuous everywhere.
18. All bounded real sequences. 20. All convergent real series.
19. All convergent real sequences. 21. All absolutely convergent real series.
22. All vectors (x, y, z) in V, with z = 0.
23. All vectors (x, y, z) in V, with x = 0 or y = 0.
24. All vectors (x, y, z) in V, with y = 5x.
25. All vectors (x, y, z) in V, with 3x + 4y = 1, z = 0.
26. All vectors (x, y, z) in V, which are scalar multiples of (1,2,  3).
27. All vectors (x, y, z) in V, whose components satisfy a system of three linear equations of the

form :

allx + a,,y + a13z  = 0, azlx +  a,,y +  uz3z  =  0 , CZ31X  + U33Y  + U33Z = 0.
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28. All vectors in V,,  that are linear combinations of two given vectors A and B.
29. Let V = R+,  the set of positive real numbers. Define the “sum” of two elements x and y in

V to be their product x y (in the usual sense), and define “multiplication” of an element x
in V by a scalar c to be xc.  Prove that V is a real linear space with 1 as the zero element.

30. (a) Prove that Axiom 10 can be deduced from the other axioms.
(b) Prove that Axiom 10 cannot be deduced from the other axioms if Axiom 6 is replaced by

Axiom 6’: For every x in V there is an element y in V such that x + y = 0.
3 1. Let S be the set of all ordered pairs (x1, xZ) of real numbers. In each case determine whether

or not S is a linear space with the operations of addition and multiplication by scalars defined
as indicated. If the set is not a linear space, indicate which axioms are violated.
(4 (x1,x2)  + (y19y2)  = (x1  +y1,x2 +y,), 4x1, x2)  = @Xl)  0).
(b)  (-99x2)  + (y1,y,)  = (~1  +yl,O), 4X1,X,)  = (ax,,  ax,>.

cc>  (Xl,  x2)  + cy1,y2>  = (Xl,  x2  +y2>9 4x1,  x2>  = (~17  QX2>.

(4  @1,x2)  + (yl,y2)  = (Ix,  + x,l,ly1  +y,l)t 4x1,  x2)  = (lql, lq!l)  f

32. Prove parts (d) through (h) of Theorem 1.3.

1.6 Subspaces of a linear space

Given a linear space V,  let S be a nonempty subset of V. If S is also a linear space, with
the same operations of addition and multiplication by scalars, then S is called a subspace
of V. The next theorem gives a simple criterion for determining whether or not a subset of
a linear space is a subspace.

THEOREM 1.4. Let S be a nonempty  subset of a linear space V. Then S is a subspace
if and only if S satisfies the closure axioms.

Proof. If S is a subspace, it satisfies all the axioms for a linear space, and hence, in
particular, it satisfies the closure axioms.

Now we show that if S satisfies the closure axioms it satisfies the others as well. The
commutative and associative laws for addition (Axioms 3 and 4) and the axioms for
multiplication by scalars (Axioms 7 through 10) are automatically satisfied in S because
they hold for all elements of V. It remains to verify Axioms 5 and 6, the existence of a zero
element in S, and the existence of a negative for each element in S.

Let x be any element of S. (S has at least one element since S is not empty.) By Axiom
2, ax is in S for every scalar a. Taking a = 0, it follows that Ox is in S. But Ox = 0, by
Theorem 1.3(a), so 0 E S, and Axiom 5 is satisfied. Taking a = - 1, we see that (-1)x
is in S. But x + (- 1)x = 0 since both x and (- 1)x are in V, so Axiom 6 is satisfied in
S. Therefore S is a subspace  of V.

DEFINITION. Let S be a nonempty  subset of a linear space V. An element x in V of the
form

k

x  =  z:  cixi  )
i=l

where x1,. . . , xk  are all in S and cl,  . . . , ck are scalars, is called a$nite  linear combination
of elements of S. The set of alljnite  linear combinations of elements of S satisjies  the closure
axioms and hence is a subspace  of V. We call this the subspace  spanned by S, or the linear
span of S, and denote it by L(S). If S is empty, we dejne  L(S) to be {0}, the set consisting
of the zero element alone.
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Different sets may span the same subspace. For example, the space V, is spanned by
each of the following sets of vectors: {i,j}, {i,j, i +j},  (0,  i, -i,j,  -j,  i + j}. The space
of all polynomialsp(t)  of degree < n is spanned by the set of n + 1 polynomials

(1, t, t2,  . . . ) P}.

It is also spanned by the set {I,  t/2, t2/3, . . . , t”/(n  + l>>, and by (1, (1 + t), (1 + t)“, . . . ,
(1 + t)“}.  The space of all polynomials is spanned by the infinite set of polynomials
(1, t, t2,  . . .}.

A number of questions arise naturally at this point. For example, which spaces can be
spanned by a finite set of elements? If a space can be spanned by a finite set of elements,
what is the smallest number of elements required? To discuss these and related questions,
we introduce the concepts of dependence, independence, bases, and dimension. These ideas
were encountered in Volume I in our study of the vector space V, . Now we extend them
to general linear spaces.

1.7 Dependent and independent sets in a linear space

DEFINITION. A set S of elements in a linear space V is called dependent if there is a-finite
set of distinct elements in S, say x1, . . . , xg, and a corresponding set of scalars cl,  . . . , c,,
not all zero, such that

An equation 2 c,x( = 0 with not all ci = 0 is said to be a nontrivial representation of 0.
The set S is called independent ifit is not dependent. In this case, for all choices of distinct
elements x1, . . . , xk  in S and scalars cl,  . . . , ck,

ii cixi = O implies c1=c2=..*=ck=o.

Although dependence and independence are properties of sets of elements, we also apply
these terms to the elements themselves. For example, the elements in an independent set
are called independent elements.

If S is a finite set, the foregoing definition agrees with that given in Volume I for the
space V,. However, the present definition is not restricted to finite sets.

EXAMPLE 1. If a subset T of a set S is dependent, then S itself is dependent. This is
logically equivalent to the statement that every subset of an independent set is independent.

EXPMPLE 2. If one element in S is a scalar multiple of another, then S is dependent.

EXAMPLE 3. If 0 E  S,  then S is dependent.

EXAMPLE 4. The empty set is independent,
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Many examples of dependent and independent sets of vectors in V,,  were discussed in
Volume I. The following examples illustrate these concepts in function spaces. In each
case the underlying linear space V is the set of all real-valued functions defined on the real
line.

EXAMPLE 5. Let ui(t) = co? t , uz(t) = sin2 t , us(f)  = 1 for all real t. The Pythagorean
identity shows that u1 + u2 - uQ = 0, so the three functions ui, u2, u, are dependent.

EXAMPLE 6. Let uk(t)  = tk for k = 0, 1,2.  . . . , and t real. The set S = {u,, , ui, u2, . . .}
is independent. To prove this, it suffices to show that for each n the n + 1 polynomials
u,, 4, *. * 3 u, are independent. A relation of the form 1 c,u, = 0 means that

(1.1) -&tk = 0
k=O

for all real 1. When t = 0, this gives co  = 0 . Differentiating (1.1) and setting t = 0,
we find that c1  = 0. Repeating the process, we find that each coefficient ck  is zero.

EXAMPLE 7. If a,,..., a, are distinct real numbers, the n exponential functions

q(x)  = ea@,  . . . , u,(x) = eanr

are independent. We can prove this by induction on n. The result holds trivially when
n = 1 . Therefore, assume it is true for n - 1 exponential functions and consider scalars
Cl, * *. 7 c, such that

(1.2) tckeakx = 0.
k=l

Let alIf  be the largest of the n numbers a,, . . . , a,. Multiplying both members of (1.2)
by e-a~x, we obtain

If k # M, the number ak - aAl is negative. Therefore, when x + + co in Equation (1.3),
each term with k # M tends to zero and we find that cnl = 0. Deleting the Mth term from
(1.2) and applying the induction hypothesis, we find that each of the remaining n - 1
coefficients c, is zero.

THEOREM 1.5. Let s = {X1,..., xk}  be an independent set consisting of k elements in a
linear space V and let L(S) be the subspace spanned by S. Then every set of k + 1 elements
in L(S) is dependent.

Proof. The proof is by induction on k, the number of elements in S. First suppose
k  = 1. Then, by hypothesis, S consists of one element xi, where x1 # 0 since S is
independent. Now take any two distinct elements y1 and yZ in L(S). Then each is a scalar
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multiple of x1, say y1 = clxl and yZ = cZxl, where c, and c2  are not both 0. Multiplying
y1 by c2  and y, by c1  and subtracting, we find that

c2.h  - c,y,  = 0.

This is a nontrivial representation of 0 soy, and y2 are dependent. This proves the theorem
when k = 1 .

Now we assume the theorem is true for k - 1 and prove that it is also true for k. Take
any set of k + 1 elements in L(S), say T = {yr , yZ, . . I , yk+r}  . We wish to prove that Tis
dependent. Since each yi is in L(S) we may write

(1.4)
k

yi = 2 a, jxj
i-1

f o r e a c h i =  1,2,... , k + 1 . We examine all the scalars ai, that multiply x1 and split the
proof into two cases according to whether all these scalars are 0 or not.

CASE 1. ai, = 0 for every i = 1,2, . . . , k + 1 . In this case the sum in (1.4) does not
involve x1, so each yi in T is in the linear span of the set S’ = {x2, . . . , xk}  . But S’ is
independent and consists of k - 1 elements. By the induction hypothesis, the theorem is
true for k - 1 so the set T is dependent. This proves the theorem in Case 1.

CASE 2. Not all the scaIars ai, are zero. Let us assume that a,, # 0. (If necessary, we
can renumber the y’s to achieve this.) Taking i = 1 in Equation (1.4) and multiplying both
members by ci, where ci = ail/all, we get

k

Ciyl  = ailxl  + 1 CiUl  jXj  .
j=2

From this we subtract Equation (1.4) to get

k

C,yl -  yi = x(Cial  j -  aij>xj  3
j=2

fori=2,..., k + 1 . This equation expresses each of the k elements ciy, - yi as a linear
combination of the k - 1 independent elements .x2,  . . . , xk . By the induction hypothesis,
the k elements ciy, - yi must be dependent. Hence, for some choice of scalars t,, . . . ,
tk+l, not all zero, we have

kfl

iz2ti(ciYl  - Yi) = O 9

from which we find

But this is a nontrivial linear combination of y,, . . . , yh.+l which represents the zero ele-
ment, so the elements y1 , . . . , yri.r must be dependent. This completes the proof.
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1.8 Bases and dimension

DEFINITION. A jinite set S of elements in a linear space V is called aJnite  basis .for  V
if S is independent and spans V. The space V is called$nite-dimensional  if it has a jinite
basis, or if V consists of 0 alone. Otherwise, V is called injinite-dimensional.

THEOREM 1.6. Let V be a jnite-dimensional  linear space. Then every jnite  basis for V
has the same number of elements.

Proof. Let S and T be two finite bases for V. Suppose S consists of k elements and T
consists of m elements. Since S is independent and spans V, Theorem 1.5 tells us that
every set of k + 1 elements in Vis dependent. Therefore, every set of more thank elements
in V is dependent. Since T is an independent set, we must have m 5 k. The same argu-
ment with S and T interchanged shows that k < m . Therefore k = m .

DEFINITION. If a linear space V has a basis of n elements, the integer n is called the
dimension of V. We write n = dim V. If V = {O}!,  we say V has dimension 0.

EXAMPLE 1. The space V,  has dimension n. One basis is the set of n unit coordinate
vectors.

EXAMPLE 2. The space of all polynomials p(t) of degree < n has dimension n + 1 . One
basis is the set of n + 1 polynomials (1, t, t2,  . . . , t’“}. Every polynomial of degree 5 n is a
linear combination of these n + 1 polynomials.

EXAMPLE 3. The space of solutions of the differential equation y” - 2y’ - 3y  = 0 has
dimension 2. One basis consists of the two functions ul(x) = e-“,  u2(x) = e3x, Every
solution is a linear combination of these two.

EXAMPLE 4. The space of all polynomials p(t) is infinite-dimensional. Although the
infinite set (1, t, t2,  . . .} spans this space, no$nite  set of polynomials spans the space.

THEOREM 1.7. Let V be a jinite-dimensional linear space with dim V = n. Then we
have the following:

(a) Any set of independent elements in V is a s&set of some basis for V.
(b) Any set of n independent elements is a basisf;pr  V.

Proof. To prove (a), let S = {x1, . . . , xk}  be any independent set of elements in V.
If L(S) = V, then S is a basis. If not, then there is some element y in V which is not in
L(S). Adjoin this element to S and consider the new set S’ = {x1, . . . , xk, y} . If this
set were dependent there would be scalars cl, . . . , c~+~,  not all zero, such that

izlCiXi + cktly = 0 *

But Ck+l # 0 since xi, . . . , xk are independent. Hence, we could solve this equation for
y and find that y E L(S), contradicting the fact that y is not in L(S). Therefore, the set S’
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is independent but contains k + 1 elements. If L(S’)  = V, then S’ is a basis and, since S
is a subset of S’, part (a) is proved. If S’  is not a basis, we can argue with S’ as we did
with S, getting a new set S”  which contains k + 2 elements and is independent. If S” is a
basis, then part (a) is proved. If not, we repeat the process. We must arrive at a basis in
a finite number of steps, otherwise we would eventually obtain an independent set with
it + 1 elements, contradicting Theorem 1.5. Therefore part (a) is proved.

To prove (b), let S be any independent set consisting of II elements. By part (a), S is a
subset of some basis, say B. But by Theorem 1.6, the basis B has exactly n elements, so
S= B.

1.9 Components

Let V be a linear space of dimension II and consider a basis whose elements e, , . . . , e,
are taken in a given order. We denote such an ordered basis as an n-tuple (e,,  . . . , e,).
If x E  V,  we can express x as a linear combination of these basis elements:

(1.5) x = $ ciei .
i=l

The coefficients in this equation determine an n-tuple of numbers (c,, . . . , CJ that is
uniquely determined by x. In fact, if we have another representation of x as a linear
combination of e,, . . . , e,, say x = I7z1 d,e,, then by subtraction from (1.5), we find that
& (ci - d,)e,  = 0. Bu since the basis elements are independent, this implies ci = dit
foreachi,sowehave(c,  ,...,  c,)=(d,  ,..., d,).

The components of the ordered n-tuple (c,, . . . , CJ determined by Equation (1.5) are
called the components of x relative to the ordered basis (e, , . . . , e,).

1.10 Exercises

In each of Exercises 1 through 10, let S denote the set of all vectors (x, y, z) in V3 whose com-
ponents satisfy the condition given. Determine whether S is a subspace of V3.  If S is a subspace,
compute dim S.

1. X = 0. 6.x=y o r  x=z.
2 .  x + y  = o . 7. x2-y2=o.
3.x+y+z=o. 8. x fy = 1.
4 .  x  = y . 9..y=2x  a n d  z=3x.
5 .  x =y =z. 10. x + J + z = 0 and x - y - z = 0.

Let P, denote the linear space of all real polynomials of degree < it, where n is fixed. In each
of Exercises 11 through 20, let S denote the set of all polynomials f in P,  satisfying the condition
given. Determine whether or not S is a subspace of P,  . If S is a subspace, compute dim S.

11. f(0) = 0. 16. f(0) = f(2) .
12. j-‘(O)  = 0. 17. f is even.
13. j-“(O)  = 0. 18. f is odd.
14. f(O) +f’(o>  = 0. 19. f has degree _< k, where k < n, or f = 0.
15. f(0) =f(l). 20. f has degree k, where k < n , or f = 0.

21. In the linear space of all real polynomials p(t),  describe the subspace spanned by each of the
following subsets of polynomials and determine the dimension of this subspace.
6-4  (1,  t2,  t4>; (b) {t, t3, t5>; cc>  0, t2> ; (d) { 1 + t, (1 + t,“}.
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22. In this exercise, L(S) denotes the subspace spanned by a subset S of a linear space V.  Prove
each of the statements (a) through (f).
(a) S G L(S).
(b) If S G T G V and if T is a subspace of V,  then L(S) c T. This property is described by

saying that L(S) is the smallest subspace of V which contains 5’.
(c) A subset S of V is a subspace of V if and only if L(S) = S.
(d) If S c T c V,  then L(S) c L(T).
(e) If S and Tare subspaces of V, then so is S n T.
(f) If S and Tare subsets of V, then L(S n T) E L(S) n L(T).
(g) Give an example in which L(S n T) # L(S) ~-1  L(T).

23. Let V be the linear space consisting of all real-valued functions defined on the real line.
Determine whether each of the following subsets of V is dependent or independent. Compute
the dimension of the subspace  spanned by each set.

I%:  i’
,ea2,ebz},a  #b. (f) {cos x, sin x>.

ear, xeax}. (g) {cosz  x, sin2  x}.

iz il, eaz, xeaz). (h) {‘I, cos 2x, sin2  x}.
eax,  xeax, x2eax}. (i) {sin x, sin 2x}.

(e) {e”, ec”,  cash  x}. (j) {e”  cos x, eP sin x}.
24. Let V be a finite-dimensional linear space, and let S be a subspace of V.  Prove each of the

following statements.
(a) S is finite dimensional and dim S 2 dim V.
(b) dim S = dim V if and only if S = V.
(c) Every basis for S is part of a basis for V.
(d) A basis for V need not contain a basis for S.

1.11 Inner products, Euclidean spaces. Norms

In ordinary Euclidean geometry, those properties that rely on the possibility of measuring
lengths of line segments and angles between lines are called metric properties. In our study
of V,,  we defined lengths and angles in terms of the dot product. Now we wish to extend
these ideas to more general linear spaces. We shall introduce first a generalization of the
dot product, which we call an inner product, and then define length and angle in terms of the
inner product.

The dot product x *y of two vectors x = (x1, . . . , x,) and y = (ul, . . . , yn) in V, was
defined in Volume I by the formula

(1.6) x * y = i x,y,.
i=I

In a general linear space, we write (x, JJ)  instead of x * y for inner products, and we define
the product axiomatically rather than by a specific formula. That is, we state a number of
properties we wish inner products to satisfy and we regard these properties as axioms.

DEFINITION. A real linear space V is said to have an inner product if for each pair of
elements x and y in V there corresponds a unique real number (x, y) satisfying the following
axioms for all choices of x, y, z in V and all real scalars c.

(1) (XT  y> = oi,  4 (commutativity, or symmetry).

(2) (x,  y +  z> =  (x,  y>  +  (x3  z> (distributivity, or linearity).

(3) 4x2 .Y>  = (cx, Y> (associativity, or homogeneity).

(4) (x3  x>  > 0 if x#O (positivity).
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A real linear space with an inner product is called a real Euclidean space.

Note: Taking c = 0 in (3),  we find that (0,~) = 0 for all y.

In a complex linear space, an inner product (x, y) is a complex number satisfying the
same axioms as those for a real inner product, except that the symmetry axiom is replaced
by the relation

(1’) (X>Y>  = (YP 4, (Hermitian?  symmetry)

where (y, x) denotes the complex conjugate of (y, x). In the homogeneity axiom, the scalar
multiplier c can be any complex number. From the homogeneity axiom and (l’), we get
the companion relation

- _ _
(3’) (x, cy) = (cy, x) = Q, x) = qx, y).

A complex linear space with an inner product is called a complex Euclidean ‘space.
(Sometimes the term unitary space is also used.) One example is complex vector space
V,(C)  discussed briefly in Section 12.16 of Volume I.

Although we are interested primarily in examples of real Euclidean spaces, the theorems
of this chapter are valid for complex Euclidean spaces as well. When we use the term
Euclidean space without further designation, it is to be understood that the space can be
real or complex.

The reader should verify that each of the following satisfies all the axioms for an inner
product.

EXAMPLE 1. In I’,  let (x, y) = x . y , the usual dot product of x and y.

EXAMPLE 2. If x = (xi, XJ and y = (yi , yJ are any two vectors in V,, define (x, y) by
the formula

(x3  Y)  = %Yl + XlY2  + X2Yl  + X2Y2 *

This example shows that there may be more than one inner product in a given linear space.

EXAMPLE 3. Let C(a,  b) denote the linear space of all real-valued functions continuous
on an interval [a, b]. Define an inner product of two functions f and g by the formula

CL d = jab J-(&At)  dt .

This formula is analogous to Equation (1.6) which defines the dot product of two vectors
i n  I!,. The function values f(t) and g(t) play the role of the components xi and yi , and
integration takes the place of summation.

t In honor of Charles Hermite  (1822-1901),  a French mathematician who made many contributions to
algebra and analysis.
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EXAMPLE 4. In the space C(a,  b), define

u-3  d = jab  W(W(Od~)  dt,

where w is a fixed positive function in C(a, b). The function w is called a weightfunction.
In Example 3 we have w(t) = 1 for all t.

EXAMPLE 5. In the linear space of all real polynomials, define

CL d = jam  e-tf(MO  dt.
Because of the exponential factor, this improper integral converges for every choice of
polynomials /and g.

THEOREM 1.8. In a Euclidean space V, every inner product satisfies the Cauchy-Schwarz
inequality:

I(x,y)12 5 (x, x)(y,  y) for all x andy in V.

Moreover, the equality sign holds lyand  only if x and y are dependent.

Proof. If either x = 0 or y = 0 the result holds trivially, so we can assume that both
x and y are nonzero. Let z = ax + by, where a and b are scalars to be specified later. We
have the inequality (z, z) >_ 0 for all a and b. When we express this inequality in terms of x
and y with an appropriate choice of a and b we will obtain the Cauchy-Schwarz inequality.

To express (z, z) in terms of x and y we use properties (l’), (2) and (3’) to obtain

(z,Z>  = (ax  + by, ax  + by) = (ax, ax)  + (ax, by) + (by, ax) + (by, by)

= a@,  x>  + a&x,  y) + bii(y,  x) + b&y,  y) 2 0.

Taking a = (y, y) and cancelling the positive factor (J, y) in the inequality we obtain

01,  y>(x,  4 + 6(x, y> + Ny, xl + b6 2 0.

Now we take b = -(x, y) . Then 6 = - (y, x) and the last inequality simplifies to

(Y, y)(x,  x)  2 (x,  y>c.Y9  x> = I(& yv.

This proves the Cauchy-Schwarz inequality. The equality sign holds throughout the proof
if and only if z = 0. This holds, in turn, if and only if x and y are dependent.

EXAMPLE. Applying Theorem 1.8 to the space C(a, b) with the inner product (f, g) =
j,bf(t)g(t) dt , we find that the Cauchy-Schwarz inequality becomes

(jbf(MO  dt)'  I (jabfZW  dt)(  jab  g"(t)  dl).a
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The inner product can be used to introduce the metric concept of length in any Euclidean
space.

DEFINITION. In a Euclidean space V, the nonnegative number IIx  I/ deJned  by the equation

llxjl  = (x, x)”

is called the norm of the element x.

When the Cauchy-Schwarz inequality is expressed in terms of norms, it becomes

IGGY)I  5 llxll M .

Since it may be possible to define an inner product in many different ways, the norm
of an element will depend on the choice of inner product. This lack of uniqueness is to be
expected. It is analogous to the fact that we can assign different numbers to measure the
length of a given line segment, depending on the choice of scale or unit of measurement.
The next theorem gives fundamental properties of norms that do not depend on the choice
of inner product.

THEOREM 1.9. In a Euclidean space, every norm has the following properties for all
elements x and y and all scalars c:

(4 II-4  = 0 if x=0.

@I II4 > 0 if x#O (positivity).

cc> Ilcxll = IcIll4 (homogeneity).

(4  Ilx + YII  I l/x/I  + Ilyll (triangle inequality).
The equality sign holds in (d) if x = 0, ify = 0, or if y = cxfor some c > 0.

Proof. Properties (a), (b) and (c) follow at once from the axioms for an inner product.
To prove (d), we note that

Il.~+yl12=(~+y,~+y>=~~,~~+~y,y>+~~,y>+cv,~>

= lIxl12 + llyl12 + (x3 y> + t-x,  y>.

The sum (x, y) + (x, y) is real. The Cauchy-Schwarz inequality shows that 1(x,  y)l  5

II-4  llyll and IGG y)I I I I4 llyll , so w e have

/lx + yl12 I lIxl12 + llYl12  + 2llxll llyll = Wll + llyll>“.

This proves (d). When y = cx , where c > 0, we have

/lx +yII = IIX  + cxll = (1  + c> IL-II  = llxll + IICXII  = I I4 + llyll .
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DEFINITION. In a real Euclidean space V, the angle between two nonzero  elements x and
y is dejned  to be that number t9 in the interval 0 5 8 < TT which satisfies the equation

(1.7)
(x9 Y)cos e = -

IIXII llvll  ’

Note: The Cauchy-Schwarz inequality shows that the quotient on the right of (1.7)
lies in the interval [ - 1 , 11,  so there is exactly one 0 in [0, 7~1  whose cosine is equal
to this quotient.

1.12 Orthogonality in a Euclidean space

DEFINITION. In a Euclidean space V, two elements x and y are called orthogonal if  their
inner product is zero. A subset S of V is calIed an orthogonal set if  (x, y) = 0 for every pair
of distinct elements x and y in S. An orthogonal set is called orthonormal if  each of its
elements has norm 1.

The zero element is orthogonal to every element of V; it is the only element orthogonal to
itself. The next theorem shows a relation between orthogonality and independence.

THEOREM 1.10. In a Euclidean space V, every orthogonal set of nonzero  elements is
independent. In particular, in a jinite-dimensional Euclidean space with dim V = n,  every
orthogonal set consisting of n nonzero  elements is a basis for V.

Proof. Let S be an orthogonal set of nonzero  elements in V, and suppose some finite
linear combination of elements of S is zero, say

where each xi E  S. Taking the inner product of each member with x1 and using the fact
that (xi , xi) = 0 if i # 1 , we find that cl(xl, x1)  = 0. But (x1, x,) # 0 since xi # 0 so
c1 = 0. Repeating the argument with x1 replaced by xi, we find that each cj = 0. This
proves that S is independent. If dim V = n and if S consists of n elements, Theorem 1.7(b)
shows that S is a basis for V.

EXAMPLE. In the real linear space C(O,27r)  with the inner product (f, g) = JiBf(x)g(x) dx,
let S be the set of trigonometric functions {u,,  ul, u2, . . .} given by

%&4  = 1, uznpl(x) = cos nx, uZn(x) = sin nx, f o r  n =  1,2,....

If m # n, we have the orthogonality relations

s

2n

0
u~(x)u,(x)  dx = 0,



Orthogonality in a Euclidean space 1 9

so S is an orthogonal set. Since no member of S is the zero element, S is independent. The
norm of each element of S is easily calculated. We have (u,, uO)  = j’$’  dx = 27r  and, for
n 2 1, we have

(~1~~~~)  u2,r-l  -wo cos2 nx dx = T,1 - i”” (uzT1, uzvr)  =Ib?”  sin2 nx dx = T.

Therefore, iluOll = J% and lIu,/l = V%  for n 2 1 . Dividing each zd,  by its norm, we
obtain an orthonormal set {pO,  cpi , yz, .  . .} where ~j~ = u,/~Iu,lI  Thus, we have

q+)(x)  = 1
J2n ’

cp2,Ax) = y > ql,,(x) = s= )

\‘G
f o r  n>l

In Section 1.14 we shall prove that every finite-dimensional Euclidean space has an
orthogonal basis. The next theorem shows how to compute the components of an element
relative to such a basis.

THEOREM I .l 1. Let V he a finite-dimerwionai  Euclidean space with  dimension n, and
wume  that S = {El,  . . . , e,>IS  an orthogonal basis,fbr  V. [fan element x is expressed as
g linear combination of the basis elements, say

:1.8) .x = f c,e,  ,
c=l

then  its components relative to the ordered basis (e, , . . . , e,> are given by the,formulas

‘1.9)

rn particular, if S is an orthonormal basis, each cj is given by

11.10) cj = (x, ej) .

Proof. Taking the inner product of each member of (1.8) with ej, we obtain

(X, ej) = i c,(ei,  ej) = c,(ej,  ej)
i=-;*

Ante (ei, eJ = 0 if i #j. This implies (1.9), and when (ej,  ej) = 1, we obtain (1.10).

If {e,, . . . , e,} is an orthonormal basis, Equation (1.9) can be written in the form

1.11) X = f (x, ei)ei .
i=l

The next theorem shows that in a finite-dimensional Euclidean space with an orthonormal
oasis  the inner product of two elements can be computed in terms of their components.



20 Linear spaces

THEOREM 1.12. Let V be a$nite-dimensional  Euclidean space of dimension n, and assume
fhat {e,, . . . , e,} is an orthonormal basis for V. Then for every puir of elements x and y in V,
we have

(1.12) (Parseval’s formula).

In particular, when x = y , we have

Proof, Taking the inner product of both members of Equation (1.11) withy and using
the linearity property of the inner product, we obtain (1.12). When x = y, Equation
(1.12) reduces to (1.13).

Note: Equation (1.12) is named in honor of hf. A. ParsevaI  (circa 1776-1836),  who
obtained this type of formula in a special function space. Equation (1.13) is a
generalization of the theorem of Pythagoras.

1.13 Exercises

1. Let x = (x1,  . . . , x,) andy = (yl, . . . , yn) be arbitrary vectors in V, . In each case, determine
whether (x, y) is an inner product for V,,  if (x, y) is defined by the formula given. In case
(x, y) is not an inner product, tell which axioms are not satisfied.

(4 (A y> = 5 xi lyil
i=l

(4 (x, y) = ( i&:yf)“2  .

(4 0, y> = j$ (xi + yd2 - t$lx1 - $IIK.

2. Suppose we retain the first three axioms for a real inner product (symmetry, linearity, and
homogeneity but replace the fourth axiom by a new axiom (4’): (x, x) = 0 if and only if
x = 0. Prove that either (x, x) > 0 for all x # 0 or else (x, x) < 0 for all x # 0.

[Hint: Assume (x, x) > 0 for some x # 0 and (y, y) < 0 for some y # 0. In the
space spanned by {x, y), find an element z # 0 with (z, z) = 0.1

Prove that each of the statements in Exercises 3 through 7 is valid for all elements x and y in a
real Euclidean space.

3. (x, y) = 0 if and only if /Ix  + yll = l/x - yl/ .
4. (x, y) = 0 if and only if 11x + yj12  = j/x112  + 11~11~.
5. (x, y) = 0 if and only if 11x + cyll > ]jxll for all real c.
6. (x + y, x - y) = 0 if and only if (Ix/I = liyjj.
7. If x and y are nonzero  elements making an angle 0 with each other, then

IIX  - yl12  = llxl12 + Ilyl12 - 2 IIXII  llyll cos  0.
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8. In the real linear space C(l, e), define an inner product by the equation

2 1

Cf,  g>  = 1: (log xv-Wg(4  dx  .

(a) Iff(x) = G, compute lifi1.
(b) Find a linear polynomial g(x) = a + bx that is orthogonal to the constant function
f(x) = 1.

9. In the real linear space C( - 1,  l), let (f, g) = j’, f(t)g(t) dt . Consider the three functions
Ul, u2,  u, given by

u,(t)  = 1 , u2(t) = t 7 Y+(t)  = 1 + t.

Prove that two of them are orthogonal, two make an angle n/3 with each other, and two
make an angle n/6 with each other.

10. In the linear space P, of all real polynomials of degree 5 n, define

(f3g)  = -$ f(3 g(k).
k=O

(a) Prove that (f,g) is an inner product for P,,  .
(b) Compute (f,  g) whenf(t) = t and g(t) = at + b .
(c) Iff(t) = t , find all linear polynomials g orthogonal tof.

Il. In the linear space of all real polynomials, define (f,g)  = sr e&f(t)g(t) dt .
(a) Prove that this improper integral converges absolutely for all polynomials f and g.
(b)Ifx,(t)=t”forn=0,1,2,...,provethat(x,,;r,)=(m+n)!.
(c) Compute (f,g)  when f(t)  = (t + 1)2  andg(t) = t2 + 1 .
(d) Find all linear polynomialsg(t)  = a + bt orthogonal tof(t)  = 1 + t.

12. In the linear space of all real polynomials, determine whether or not (f, g) is an inner product
if (f,g) is defined by the formula given. In case (f,g)  is not an inner product, indicate which
axioms are violated. In (c), f’  and g ’ denote derivatives.

(a> (f,g)  =f(l)g(l).

(b) (f,g)  = ( j";f(t)g(t)  dt (.

(cl (f,g> = /;f’(t)g’(t)dt.

Cd)  Cftg)  =  (j-;f(f,  df)(j-;g(t)  dtj  .

13. Let Vconsist  of all infinite sequences {x,} of real numbers for which the series Cx:  converges.
If x = {x~}  and y = {y,}  are two elements of V,  define

(a) Prove that this series converges absolutely.

[Hint: Use the Cauchy-Schwarz  inequality to estimate the sum 2:&t Ixnynl.]

(b) Prove that V is a linear space with (x, y) as an inner product.
(c) Compute (x, y) if x, = l/n andy,  = l/(n + 1) for n 2 1.
(d) Compute (x, v) if x, =2”andy,  = l/n!forn 2 1.

14.  Let V be the set of all real functions f continuous on [0, + a) and such that the integral
sc e-Ff2(t)  dt converges. Define (f,g)  = j”r  ebf(t)g(t)  dt .
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(a) Prove that the integral for (f, g) converges absolutely for each pair of functions f and g
in V.

[Hint: Use the Cauchy-Schwarz  inequality to estimate the integral jf e-t 1 f (t)g(t)l  dt.]

(b) Prove that V is a linear space with (f, g) as an inner product.
(c) Compute (f,g) iff(t) = e&  and&t) = P, where n = 0, 1,2,  . . . .

15. In a complex Euclidean space, prove that the inner product has the following properties for
all elements X, y and z, and all complex a and b.
(4 (ax, by) = &x, y). (b) (x, ay + bz) = rf(x, y) + 6(x, z).

16. Prove that the following identities are valid in every Euclidean space.
(a) Ilx +yl12 = l/xl12 + llyl12 + (x,y>  + (y, x).
(b) I/x  + yl12  - lb - yl12  = 2(x, y) + xy, 4.
(4 l/x + yl12  + lx - yl12  = 2 llxl12  + 2 IIy112.

17. Prove that the space of all complex-valued functions continuous on an interval [a, b] becomes
a unitary space if we define an inner product by the formula

(fvg)  = s: Wf(QgO4

where w is a fixed positive function, continuous on [a, b].

1.14 Construction of orthogonal sets. The Gram-Scltmidt process

Every finite-dimensional linear space has a finite basis. If the space is Euclidean, we can
always construct an orthogonal basis. This result will be deduced as a consequence of a
general theorem whose proof shows how to construct orthogonal sets in any Euclidean
space, finite or infinite dimensional. The construction is called the Gram-Schmidt orthog-
onalizationprocess, in honor of J. P. Gram (1850-1916) and E. Schmidt (18451921).

THEOREM 1.13. ORTHOGONALIZATION THEOREM. Let x1,x2,.  ..,  be ajinite or intnite
sequence of elements in a Euclidean space V, and let L(x,, . . . , xk) denote the subspace
spanned by thejrst  k of these elements. Then there is a corresponding sequence of elements
y1,y2,  * * * 9 in V which has the following properties for each integer k:

(a) The element yr  is orthogonal to every element in the subspace  L(yl,  . . . , yk-J.
(b) The subspace  spanned by yl, . . . , yk  is the same as that spanned by x1, . . . , x, :

uyl,. . . ,yJ = L(x,, . . . , XTJ.

(c) The sequence yl, y, , . . . , is unique, except for scalar factors. That is, ifyi  , y: , . . . , is
another sequence of elements in V satisfying properties (a) and (b) for all k, then for each k
there is a scalar ck such that y; = ckyr  .

Proof. We construct the elements yr,  y2,  . . . , by induction. To start the process, we
take yr = x1. Now assume we have constructed yl, .  . . , y,. so that (a) and (b) are satisfied
when k = r . Then we define y,.+r  by the equation

(1.14) Yr+1  = Xr+l - & ad+ y
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where the scalars a,, . . . , a, are to be determined. For j < r, the inner product of yI+r
with yj is given by

since (yi, yj) = 0 if i #j  . If yj # 0, we can make yr+r orthogonal to yj by taking

(1.15) a _ (XT+1  7 .Yi)
3

(Yj,  Yi) ’

If yj = 0, then yr+i is orthogonal to yj for any choice of aj,  and in this case we choose
aj=O. Thus, the element Y?+~ is well defined and is orthogonal to each of the earlier
elements yr , . . . , y, . Therefore, it is orthogonal to every element in the subspace

This proves (a) when k = r + 1.
To prove (b) when k = r + 1, we must show that L(y,, . . . , y,.+J  = L(x, , . . . , x,+r),

given that L(y,, . . . , yr)  = L(x,,  . . . , x,)  . The first r elements yl, . . . , y,. are in

and hence they are in the larger subspace  L(x, , . . . , x,+~).  The new element yrsl given by
(1.14) is a difference of two elements in ,5(x,,  . . , , , x,+~)  so it, too, is in L(x,, . . . , x,+r).
This proves that

Equation (1.14) shows that x,+i is the sum of two elements in LQ,  , . . . , yr+r)  so a similar
argument gives the inclusion in the other direction:

UXl,  . . . 9 x,+1)  s uyl,  . . . ,y7+1).

This proves (b) when k = r + 1. Therefore both (a) and (b) are proved by induction on k.
Finally we prove (c) by induction on k. The case k = 1 is trivial. Therefore, assume (c)

is true for k = r and consider the element y:+r  . Because of (b), this element is in

so we can write

Yk+* =;ciyi = ZT + Cr+lYr+l,

where z, E  L(y,, . . . , y,.)  . We wish to prove that z, = 0. By property (a), both vi+,, and
~,+ry,.+~  are orthogonal to z, . Therefore, their difference, z,, is orthogonal to z, . In other
words, z, is orthogonal to itself, so z, = 0. This completes the proof of the orthogonaliza-
tion theorem.
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In the foregoing construction, suppose we have Y?,.~  = 0 for some r. Then (1.14)
shows that x,+~ is a linear combination of yl, . . . ,y,,  and hence of x1, . . . , xc,  so the
elements x1, . . . , x,.,,  are dependent. In other words, if the first k elements x1,.  . . , x,
are independent, then the corresponding elements y1 , . . . , yk are nonzero. In this case the
coefficients ai in (1.14) are given by (1.15), and the formulas defining y, , . . . , yk become

(1.16) y, = x1, Yr+l  = %+1  - for r = 1,2, . . . , k - 1.

These formulas describe the Gram-Schmidt process for constructing an orthogonal set of
nonzero  elements yl, .  . . , y, which spans the same subspace  as a given independent set
Xl,. . . ,x,. In particular, if x1, . . . , x, is a basis for a finite-dimensional Euclidean space,

theny,,  . . . ,yk is an orthogonal basis for the same space. We can also convert this to an
orthonormal basis by normalizing each element yi, that is, by dividing it by its norm.
Therefore, as a corollary of Theorem 1.13 we have the following.

THEOREM 1.14. Every$nite-dimensional  Euclidean space has an orthonormal basis.

If x and y are elements in a Euclidean space, withy # 0, the element

is called the projection of x along y. In the Gram-Schmidt process (1.16), we construct
the element Y,.+~ by subtracting from x,.+~  the projection of x,+r along each of the earlier
elements yl, . . . , yr. Figure 1.1 illustrates the construction geometrically in the vector
space V,.

FrooaE  1.1 The Gram-Schmidt process in V3 . An orthogonal set {yl, yZ  , y3}  is
constructed from a given independent set {x1,  x2,  ~3.
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EXAMPLE 1. In Vd,  find an orthonormal basis for the subspace  spanned by the three
vectors x1 = (1, -1, 1, -l), xZ = (5, 1, 1, l), and xQ = (-3, -3, 1, -3).

Solution. Applying the Gram-Schmidt process, we find

y, = x1 = (1, -1, 1, -l),

(x2 9 Yl)
~ Yl = x2 - Yl = (4,2,0,2),

yz = xp - (Yl, Yl)

(x3 3 Yl) (x3 3 Y2>
~ Y2 = x3 - Yl + Y2 = (0,  0,  0,  0).

y3=x3-(Yl~Yl)y1-(Y2~Y2)

Since y3 = 0, the three vectors x1, x2, x3 must be dependent. But since y1 and y2 are
nonzero,  the vectors x1 and x2 are independent. Therefore L(x,,  x2, x3)  is a subspace  of
dimension 2. The set {y1,y2} is an orthogonal basis for this subspace. Dividing each of
y1 and y2 by its norm we get an orthonormal basis consisting of the two vectors

EXAMPLE 2. The Legendre polynomials. In the linear space of all polynomials, with the
inner product (x, y) = ST,  x(t)y(t)  dt , consider the infinite sequence x,,  , Xl, x2, * * * , where
x,(t) = tn. When the orthogonalization theorem is applied to this sequence it yields
another sequence of polynomials y,, y,, y2,  . . . , first encountered by the French mathe-
matician A. M. Legendre (1752-1833) in his work on potential theory. The first few
polynomials are easily calculated by the Gram-Schmidt process. First of all, we have
ye(t) = x0(t)  = 1 . Since

(yo,yo)=j:,dt=2 and (~1, ~0)  = jtl t dt = 0,

we find that

yl(t)  = x1(t)  - E ye(t) = x1(t)  = t.
07 0

Next, we use the relations

(xzz,yo)= f_llt2dt=$,  b,yl)=  jJ1t3dt=0,  (yl,yl)= jT1t2dt+,

to obtain

y2(t) = x2(t)  - (E; ye(t) - E$l; yl(t)  = t2 - 8.
03 0 17 1

Similarly, we find that

y3(t)  = t3 - St, y4(t)  = t4  - $t2  + -&, y5(t)  = t5 - -gt3  + &t.
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We shall encounter these polynomials again in Chapter 6 in our further study of differential
equations, and we shall prove that

n! d”
yn(f)  = (2n)! dt”

- - (t2 - 1)“.

The polynomials P, given by

p?st> = (2n)!
- y,(t)  = h -$ 0” - 1)”
2”(n  !)”

are known as the Legendrepolynomials. The polynomials in the corresponding orthonormal

sequence  fro,  ply v2,  . . . , given  by  ~7~ = y,/llynll are called the normalized Legendre poly-
nomials. From the formulas for yo,  . . . , y5 given above, we find that

f&l(t) = Ji ) q%(t) = 4 t ) q*(t)  = &JS (3t2 - 1)) Q)3(t) = &J3 (5t3 - 3t),

p4(t)  = +Ji (35th  - 30t*  + 3), p5(t)  = $& (63t”  - 70t3 + 19).

1.15. Orthogonal complements. Projections

Let V be a Euclidean space and let S be a finite-dimensional subspace. We wish to
consider the following type of approximation problem: Given an element x in V, to deter-
mine an element in S whose distance from x is as small as possible. The distance between
two elements x and y is defined to be the norm 11x  - yII  .

Before discussing this problem in its general form, we consider a special case, illustrated
in Figure 1.2. Here V is the vector space V, and S is a two-dimensional subspace, a plane
through the origin. Given x in V, the problem is to find, in the plane S, that point s
nearest to x.

If x E  S,  then clearly s = x is the solution. If x is not in S, then the nearest point s
is obtained by dropping a perpendicular from x to the plane. This simple example suggests
an approach to the general approximation problem and motivates the discussion that
follows.

DEFINITION. Let S be a subset of a Euclidean space V. An element in V is said to be
orthogonal to S if it is orthogonal to every element of S. The set of’ all elements orthogonal
to S is denoted by S-’  and is called “S perpendicular.”

It is a simple exercise to verify that Sl  is a subspace  of V, whether or not S itself is one.
In case S is a subspace, then S1 is called the orthogonal complement of S.

EXAMPLE.  If S is a plane through the origin, as shown in Figure 1.2, then S1 is a line
through the origin perpendicular to this plane. This example also gives a geometric inter-
pretation for the next theorem.
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FIGURE  1.2 Geometric interpretation of the orthogonal decomposition theorem in V,.

THEOREM 1.15. ORTHOGONAL DECOMPOSITION THEOREM. Let V be a Euclidean space
and let S be ajnite-dimensional  subspace of V. Then every element x in V can be represented
uniquely as a sum of two elements, one in S and one in Sl. That is, we have

(1.17) x=s+s’, where s E  S and d-  E 5-l.

Moreover, the norm of x is given by the Pythagorean formula

(1.18) llxl12 = IIsl12 + Il~1112.

Proof. First we prove that an orthogonal decomposition (1.17) actually exists. Since
S is finite-dimensional, it has a finite orthonormal basis, say {e, , . . . , e,}. Given x, define
the elements s and sL as follows:

(1.19) s = i (x, ei)ei, SI = x - s .
i=l

Note that each term (x, e,)e, is the projection of x along e, . The element s is the sum of the
projections of x along each basis element. Since s is a linear combination of the basis
elements, s lies in S. The definition of & shows that Equation (1.17) holds. To prove that
d lies in Sl, we consider the inner product of sL and any basis element ej . We have

(S’, ej> = (x - s, ej)  = (x, e,) - (s, ei) .

But from (1.19), we find that (s, eJ = (x, e,), so sL is orthogonal to ei. Therefore sL
is orthogonal to every element in S, which means that sL E SL  .

Next we prove that the orthogonal decomposition (1.17) is unique. Suppose that x
has two such representations, say

(1.20) x=s+sl- and x=t+tl,
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where s and t are in S, and sL and t’  are in SI. We wish to prove that s = t and sL = t1 .
From (1.20), we have s - t = t1 - sL, so we need only prove that s - I = 0. But
s - t E Sand t1 - s1 E SL  so s - t is both orthogonal to tl  - .sL  and equal to t1 - & .
Since the zero element is the only element orthogonal to itself, we must have s - t = 0.
This shows that the decomposition is unique.

Finally, we prove that the norm of x is given by the Pythagorean formula. We have

llxll2  = (x,  x) = (s + &, s + sl)  = (s,  s) + (sl, s’->,

the remaining terms being zero since s and sL are orthogonal. This proves (1.18).

DEFINITION. Let S be a Jnite-dimensional  subspace of a Euclidean space V, and let

{e,,  . . . , e,} be an orthonormal basis for S. If x E V, the element s dejned  by the equation

s =  2 (x, ei)ei
i=l

is called the projection of x on the subspace S.

We prove next that the projection of x on S is the solution to the approximation problem
stated at the beginning of this section.

1.16 Best approximation of elements ,in a Euclidean space by elements in a finite-
dimensional subspace

THEOREM 1.16.  APPROXIMATION THEOREM. Let S be a ,finite-dimensional  subspace of
a Euclidean space V, and let x be any element of  V. Then the projection of  x  on S is nearer to
x than any other element of  S. That is, [f s is the projection of  x  on S, we have

llx - $11  I IIX  - tll

for all t in S; the equality sign holds if and only if t = s.

Proof. By Theorem 1.15 we can write x = s + sL, where s E  S and s1 E SL. Then,
for any t in S, we have

x - t = (x - s) + (s - t) .

Since s - t E S and x - s = s-l  E  SL, this is an orthogonal decomposition of x - t, so
its norm is given by the Pythagorean formula

lb - tl12 = IIX  - sly + l/s - tll2.

But IIs  - tlj2 2 0, so we have IIx  - tl12 2 [Ix  - sl12,  with equality holding if and only if
s = t. This completes the proof.
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EXAMPLE 1. Approximation of continuous functions on [0,2n]  by trigonometric polynomials.
Let V = C(O,27r),  the linear space of all real functions continuous on the interval [0,2~],
and define an inner product by the equation (f, g) = Ji” f(x)g(x) dx . In Section 1.12
we exhibited an orthonormal set of trigonometric functions pO, all, yz, . . . , where

(1.21)  PO(X)  = $9 cos kx
P)‘m--1(X)  = -

JG ’
Q)‘@(x)  = sE-!k )

JG
f o r  k>l.

7-r

The 2n + 1 elements vO, all,. .  .  , pzn span a subspace  S of dimension 2n + 1. The ele-
ments of S are called trigonometric polynomials.

IffE C(O,27r),  letf, denote the projection off on the subspace  S. Then we have

(1.22) where  (f, PJ = ~oz”fb)plp(x)  dx.

The numbers (f, Q)& are called Fourier coefJicients  off. Using the formulas in (1.21), we
can rewrite (1.22) in the form

(1.23)

where

f,(x) = ba, +$:ak cos kx + b, sin kx),

ak = $ L’>(X)  cos kx dx ,
1

s

2n
b, = - f(x) sin kx dx

i-r 0

fork=0,1,2 ,...,  n. The approximation theorem tells us that the trigonometric poly-
nomial in (1.23) approximates ,f better than any other trigonometric polynomial in S, in
the sense that the norm l\f - f,ll is as small as possible.

EXAMPLE 2. Approximation of continuous functions on [-  1,  I] by polynomials of
degree < n. Let V = C(- 1, 1))  the space of real continuous functions on [- 1, 11,  and let

(f, g) = S’,  f(x)&) dx. The n + 1 normalized Legendre polynomials qo, pl, . . . , P)~,
introduced in Section 1.14, span a subspace  S of dimension n + 1 consisting of all poly-
nomials of degree < n. Iffe C(-  1, 1))  let f, denote the projection off on S. Then we
have

where Cf, Q)A = i_‘,f (Ovdt>  dt .

This is the polynomial of degree < n for which the norm Ilf - f,ll is smallest. For example,
whenf(x)  = sin TX, the coefficients (f, vk) are given by

(f, q&j  = ST,  sin nt  &t) dt.

In particular, we have (f, po) = 0 and
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Therefore the linear polynomialf,(t)  which is nearest to sin nt on [- 1, l] is

Since (f, & = 0, this is also the nearest quadratic approximation.

1.17 Exercises

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

In each case, find an orthonormal basis for the subspace of V, spanned by the given vectors.
(a) x1 = (1,  1, l), x2 = (l,O,l), x3 = (3,2,3).

(b)  xl = (1, 1,  l), x2 = (-l,l, -l), x3 = (l,O,  1).
In each case, find an orthonormal basis for the subspace of V,  spanned by the given vectors.
(a>  x1 = (1,  l,O,  01, x.2 = (%I, 1,  o>, x3  = (0,  0,  1,  l), xq = (l,O,O,  1).
@I  XI  = (1,  l,O,  11, x2 = (1,  0,2, 11, x3 = (1,2,  -2, 1).
In the real linear space C(0,  n), with inner product (x, y) = j; x(t)y(t)  dt, let x,(t) = cos nt
forn =0,1,2 ,.... Prove that the functions yO, y,, y,, . . . , given by

2
and y%(f)  = ; cos nt for II 2 1,

form an orthonormal set spanning the same subspace as x0, x1, x2, . . . .
In the linear space of all real polynomials, with inner product (x,~)  = & x(t)y(r)  dt, let
x,(t) = tn for n = 0, 1, 2, . . . . Prove that the functions

y,(t)  = 11 y1(t)  = 6 (2t - l), y,(t) = 6 (6?  - 6t + 1)

form an orthonormal set spanning the same subspace as {x,,  , x1,  x2}.
Let V be the linear space of all real functions f continuous on [0, + a) and such that the
integral j: eetf2(f) dt converges. Define (f,g)  = jr ePtf(t)g(t)  dt, and let y,, y, ,y,, . . . , be
the set obtained by applying the Gram-Schmidt process to x0,  xi, x2,  . . . , where x,(t) = tn
for n 2 0. Prove that v,,(t) = 1,  I+ = t - 1,  y2(t) = t2 - 4t + 2, y3(t) = t3 - 9t2 +
18t  - 6.
In the real linear space C(1,  3) with inner product (f,g)  = jf  f (x)g(x)  dx, let f(x) = l/x
and show that the constant polynomial g nearest to f is g = 4 log 3. Compute lig -f II2 for
this g.
In the real linear space C(0,  2) with inner product (f,  g) = j”i f (x)g(x)  dx,  let f(x) = en  and
show that the constant polynomial g nearest to f is g = $(e”  - 1). Compute iig -f II2 for
this g.
In the real linear space C( - 1, 1) with inner product (f,  g) = ST1 f (x)g(x)  dx , let f(x) = e5
and find the linear polynomial g nearest to f. Compute ilg - f II2 for this g.
In the real linear space C(0,27~)  with inner product (f,g)  = jiT f(x)g(x)  dx, let f(x) = x.
In the subspace spanned by u,,(x) = 1 , ul(x)  = cos x, u2(x)  = sin x, find the trigonometric
polynomial nearest to J
In the linear space V of Exercise 5, let f (x) = e-” and find the linear polynomial that is nearest
toJ
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LINEAR TRANSFORMATIONS AND MATRICES

2.1 Linear transformations

One of the ultimate goals of analysis is a comprehensive study of functions whose
domains and ranges are subsets of linear spaces. Such functions are called transformations,
mappings, or operators. This chapter treats the simplest examples, called linear transforma-
tions, which occur in all branches of mathematics. Properties of more general transforma-
tions are often obtained by approximating them by linear transformations.

First we introduce some notation and terminology concerning arbitrary functions. Let
V and W be two sets. The symbol

T:V+W

will be used to indicate that T is a function whose domain is V and whose values are in W.
For each x in V, the element T(x) in W is called the image of x under T,  and we say that T
maps x onto T(x). If A is any subset of V, the set of all images T(x)  for x in A is called the
image of A under T and is denoted by T(A). The image of the domain V, T(V), is the range
of T.

Now we assume that V and Ware linear spaces having the same set of scalars, and we
define a linear transformation as follows.

D E F I N I T I O N . If V and Ware linear spaces, a function T: V + W is called a linear trans-
formation of V into W if it has the.following  two properties:

(a) T(x + y) = T(x) + T(y) for all x and y in V,
(b) T(cx) = CT(X) for all x in V and all scalars c.

These properties are verbalized by saying that T preserves addition and multiplication by
scalars. The two properties can be combined into one formula which states that

T(ax + by) = aT(x) + bTQ)

for all x,y in V and all scalars a and 6. By induction, we also have the more general relation

for any n elements x1, . . . , x,inVandanynscalarsa,,...,a,.

31
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The reader can easily verify that the following examples are linear transformations.

EXAMPLE 1. The identity transformation. The transformation T: V + V, where T(x) = x
for each x in V, is called the identity transformation and is denoted by Z or by IV.

EXAMPLE 2. The zero transformation. The transformation T: V--f V which maps each
element of V onto 0 is called the zero transformation and is denoted by 0.

EXAMPLE 3. Multiplication by ajxed  scalar c. Here we have T: V + V, where T(x) = cx
for all x in V. When c = 1 , this is the identity transformation. When c = 0, it is the zero
transformation.

EXAMPLE 4. Linear equations. Let V = V,,  and W = V, . Given mn real numbers aiL,
wherei= 1,2,...,mandk=  1,2,...,n,defineT: V,+V,asfollows:  T m a p s e a c h
vector x = (x1, . . . , x,) in V, onto the vector y = (,vl,  . . . , ym) in V, according to the
equations

Yi = l$ aikXk for i=l,2 ,...,  m.
k=l

EXAMPLE 5. Inner product with afixed  element. Let V be a real Euclidean space. For a
fixed element z in V, define T: V -+  R as follows: If x E  V, then T(x) = (x, z), the inner
product of x with z.

EXAMPLE 6. Projection on a subspace. Let V be a Euclidean space and let S be a finite-
dimensional subspace  of V. Define T: V + S as follows: If x E  V, then T(x) is the
projection of x on S.

EXAMPLE 7. The dzferentiation  operator. Let V be the linear space of all real functions
f differentiable on an open interval (a, b). The linear transformation which maps each
functionfin V onto its derivativef’ is called the differentiation operator and is denoted by
D. Thus, we have D: V + W,  where D (f) = f’ for each f in V. The space W consists of
all derivatives f’.

EXAMPLE 8. The integration operator. Let V be the linear space of all real functions
continuous on an interval [a, b]. IffE V, define g = T(f) to be that function in V given by

g(x)  = JaZfW dt i f  a<x<b.

This transformation T is called the integration operator.

2.2 Null space and range

In this section, Tdenotes a linear transformation of a linear space V into a linear space W.

THEOREM 2.1. The set T(V) (the range of T) is a subspace  of W. Moreover, T maps
the zero element of V onto the zero element of W.
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Proof. To prove that r( I’) is a subspace  of W, we need only verify the closure axioms.
Take any two elements of T(V), say T(x)  and r(y).  Then T(X) + 3-(y) = T(x + y) , so
T(x) + T(y) is in r(V).  Also, for any scalar c we have CT(X)  = T(cx)  , so CT(X)  is in T(V).
Therefore, T( I’) is a subspace  of W. Taking c = 0 in the relation T(cx)  = CT(X),  we find
that T(0) = 0.

DEFINITION. The set of all elements in V that T maps onto 0 is called the null space of
T and is denoted by N(T). Thus, we have

N(T) = {x 1 x E V and T(x) = 0} .

The null space is sometimes called the kernel of T.

THEOREM 2.2. The null space of T is a subspace  of V.

Proof. If x and y are in N(T), then so are x + y and cx for all scalars c, since

T(x + y) = T(x) + T(y) = 0 and T(cx) = CT(~)  = 0.

The following examples describe the null spaces of the linear transformations given in
Section 2.1.

EXAMPLE 1. Identity transformation. The null space is {0}, the subspace  consisting of
the zero element alone.

EXAMPLE 2. Zero transformation, Since every element of V is mapped onto zero, the
null space is V itself.

EXAMPLE 3. Multiplication by a$xed scalar c. If c # 0, the null space contains only 0.
If c = 0, the null space is V.

EXAMPLE 4. Linear equations. The null space consists of all vectors (xi, . . . , x,) in V,
for which

for i=l,2  ,...,  m.

EXAMPLE 5. Inner product with ajxed  element z. The null space consists of all elements
in V orthogonal to z.

EXAMPLE 6. Projection on a subspace  S. If x E  V, we have the unique orthogonal
decomposition x = s + sL (by Theorem I .15). ,‘mce T(x) = s, we have T(x) = 0
if and only if x = sL . Therefore, the null space is zl, the orthogonal complement of S.

EXAMPLE 7. DifSerentiation  operator. The null space consists of all functions that are
constant on the given interval.

EXAMPLE 8. Integration operator. The null space contains only the zero function.
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2.3 Nullity and rank

Linear transformations and matrices

Again in this section T denotes a linear transformation of a linear space V into a linear
space W. We are interested in the relation between the dimensionality of V,  of the null
space N(T), and of the range T(V). If V is finite-dimensional, then the null space is also
finite-dimensional since it is a subspace  of I’. The dimension of N(T) is called the nullity
of T. In the next theorem, we prove that the range is also finite-dimensional; its dimension
is called the rank of T.

THEOREM 2.3. NULLITY PLUS RANK THEOREM. If V is finite-dimensional,  then T(V) is
also finite-dimensional,  and we have

(2.1) dim N( T> + dim T(V) = dim V .

In other words, the nullity plus the rank of a linear transformation is equal to the dimension
of its domain.

Proof. Let n = dim V and let e, , . . . , e,beabasisforN(T),wherek  = dimN(T)< n.
By Theorem 1.7, these elements are part of some basis for V, say the basis

(2.2) e,,  . . . , ek9  ekflp . . . ?  ek+7y

where k + r = n . We shall prove that the r elements

(2.3) T(e,+A  . . . 7 T(%,-r)

form a basis for T(V), thus proving that dim T(V) = r . Since k + r = n , this also proves
(2.1).

First we show that the r elements in (2.3) span T(V). If y E  T(V), we have y = T(x)
for some x in V, and we can write x = clel  + * * * + ck+,.ek+,.  . Hence, we have

since T(e,) = * *‘* = T(e,)  = 0. This shows that the elements in (2.3) span T(V).
Now we show that these elements are independent. Suppose that there are scalars

ck+19  * * - 3 Ck+T such that

k+r

2 ciT(ei) =  0  I
i=k+l

This implies that

SO the element X = Ck+lek+l  + ’ ’ ’ + ck+&k+r is in the null space N(T).  This means there
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are scalars cl, . . . , c, such that x = clel  + * . * + c,e,, so we have

k ktr

x  - x =  2  ciei  - 2  ciei  =  0 .
i=l i=kfl

But since the elements in (2.2) are indepecdent, this implies that all the scalars ci are zero.
Therefore, the elements in (2.3) are independent.

Note: If V is infinite-dimensional, then at least one of N(T) or T(V) is infinite-
dimensional. A proof of of this fact is outlined in Exercise 30 of Section 2.4.

2.4 Exercises

In each of Exercises 1 through 10, a transformation T: V,  -+ VZ  is defined by the formula given
for T(x,  y), where (x, y) is an arbitrary point in VZ . In each case determine whether Tis linear. If
T is linear, describe its null space and range, and compute its nullity and rank.

1. W, y> = Cy,  4. 6. T(x, y) = (e5, ev)  .
2. T(x, y> = (x, -y> . 7. T(x, y) = (x, 1).
3. T(x,y)  = (x,0). 8. T(x,y)  = (x + 1,~ + 1).
4. T(x,  y) = (x, x) . 9. T(x,y)  = (x -y,x  +y).
5. T(x,y)  = (x2,y2). 10. T(x,y)  =(2x -y,x  +y).

Do the same as above for each of Exercises 11 through 15 if the transformation T: V, --f V,
is described as indicated.

11. T rotates every point through the same angle q about the origin. That is, T maps a point
with polar coordinates (r, 0)  onto the point with polar coordinates (r, 0 + v), where q~  is
fixed. Also, T maps 0 onto itself.

12. T maps each point onto its reflection with respect to a fixed line through the origin.
13. T maps every point onto the point (1, 1).
14. T maps each point with polar coordinates (r, 0)  onto the point with polar coordinates (2r,  0).

Also, T maps 0 onto itself.
15. T maps each point with polar coordinates (r, 0)  onto the point with polar coordinates (r, 20).

Also, T maps 0 onto itself.

Do the same as above in each of Exercises 16 through 23 if a transformation T: V,+ V,  is
defined by the formula given for T(x,  y, z), where (x, y, z) is an arbitrary point of V, .

16.  T@,y,z) = (z,y,x). 20. T(x,y,z)  =(x + l,y  + l,z  - 1).
17. W,y,z) = ky,O). 21. T(x,y,z)  = (x + 1,y + 2,z + 3).
18. T(x,  y, z) = (x, 2y, 3~). 22. T(x, y, z) = (x, y2,z3).
19. T(x,y,z) = (x,y,  1). 23. T(x, y, z) = (x + z, 0, x + y).

In each of Exercises 24 through 27, a transformation T: V‘+ V is described as indicated. In
each case, determine whether T is linear. If T is linear, describe its null space and range, and
compute the nullity and rank when they are finite.

24. Let V be the linear space of all real polynomialsp(x)  of degree I; n . Ifp E V, y = T(p) means
that q(x) =p(x  + 1) for all real x.

25. Let V be the linear space of all real functions differentiable on the open interval (- 1, 1).
IffE v, g = T(f) means that g(x) = xf’(x) for all x in ( - 1, 1).
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26. Let V be the linear space of all real functions continuous on [a, b]. Iffg V, g = T(f) means
that

g(x) =/If(t)  sin (x - t) dt for a < x 5 b.

27. Let V be the space of all real functions twice differentiable on an open interval (a, b). If
y E V, define 7”(y) = y” + Py’ + Qy , where P and Q are fixed constants.

28. Let V be the linear space of all real convergent sequences {x,}. Define a transformation
T: V--t V as follows: If x = {x,} is a convergent sequence with limit a, let T(x) = {y,},
where yn = a - x, for n 2 1 . Prove that Tis linear and describe the null space and range of T.

29. Let V denote the linear space of all real functions continuous on the interval [-n, ~1.  Let S
be that subset of Vconsisting  of all f satisfying the three equations

J:gf(t)costdt  = 0 , j:rf(t)sintdt  =O.

(a) Prove that S is a subspace of V.
(b) Prove that S contains the functions f (x) = cos nx and f (x) = sin nx for each n = 2,3,  . . . .
(c) Prove that S is infinite-dimensional.

Let T: V-t  V be the linear transformation defined as follows: Iff E V,g  = T(f) means that

g(x) = j;, (1 + cos (x - t)}f (t) dt .

(d) Prove that T(V), the range of T, is finite-dimensional and find a basis for T(V).
(e) Determine the null space of T.
(f) Find all real c # 0 and all nonzero  f in V such that T(f) = cJ (Note that such an f
lies in the range of 7’.)

30. Let T: V+ W be a linear transformation of a linear space V into a linear space W. If V is
infinite-dimensional, prove that at least one of T(V) or N(T) is infinite-dimensional.

[Hint: Assume dim N(T) = k , dim T(V) = r , let e, , . . , ek  be a basis for N(T) and
let e,,  . . . , ek,  e,+r,  . . . , ek+n  be independent elements in V, where n > r. The
elements T(e,+,),  . . . , T(erc+,)  are dependent since n > r. Use this fact to obtain a
contradiction.]

2.5 Algebraic operations on linear transformations

Functions whose values lie in a given linear space W can be added to each other and can
be multiplied by the scalars in W according to the following definition.

DEFINITION .  Let S: V+ W and T: V + W be two functions with a common domain V
and with values in a linear space W. If c is any scalar in W, we define the sum S + T and the
product CT by the equations

(2.4) (S  + T)(x)  = S(x)  + T(x) 3 (CT)(X)  = CT(X)

for all x in V.
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We are especially interested in the case where V is also a linear space having the same
scalars as W. In this case we denote by .Y(  V,  W) the set of all linear transformations of V
into W.

If S an’d  Tare two linear transformations in =.Y(  V,  W),  it is an easy exercise to verify that
S + T and CT are also linear transformations in LZ’(V,  W). More than this is true. With
the opera.tions  just defined, the set L?(V,  W) itself becomes a new linear space. The zero
transformation serves as the zero element of this space, and the transformation (-1)T
is the neg,ative  of T. It is a straightforward matter to verify that all ten axioms for a linear
space are satisfied. Therefore, we have the following.

THEOREM 2.4. The set Z’(V,  W) of all linear transformations of V into W is a linear
space with the operations of addition and multiplication by scalars de$ned  as in (2.4).

A more interesting algebraic operation on linear ,transformations  is composition or
multiplication of transformations. This operation makes no use of the algebraic structure
of a linear space and can be defined quite generally as follows.

FIGURE 2.1 Illustrating the composition of two transformations.

DEFINITION. Let U,  V, W be sets. Let T: II -+ V be a function with domain U and
values in V, a.nd let S: V--f W be another function with domain V and values in W. Then
the composition ST is the function ST: U---f  W defined b-y  the equation

(ST)(x) = S[T(x)] for every x in U.

Thus, to map x by the composition ST, we first map x by T and then map T(x) by S.
This is illustrated in Figure 2.1.

Compo8sition  of real-valued functions has been encountered repeatedly in our study of
calculus, and we have seen that the operation is, in general, not commutative. However,
as in the (case of real-valued functions, composition does satisfy an associative law.

THEOREM 2.5. If T: u -+ V , S: V + W, and R: W +-  X are three functions, then we have

R(ST) = (RS)T.



38 Linear transformations and matrices

Proof. Both functions R(ST) and (RS)T have domain U and values in X. For each x
in U, we have

DWT)ICd = R[W”Ml  = R[WWll and WS’X4  = W)LWl  = RLW(x)ll,

which proves that R(ST) = (RS)T.

DEFINITION. Let T: V-t V be a function which maps V into itself. We dejne  integral
powers of T inductively as follows:

To= I , T”  = TT”-1 f o r  n>l.

Here I is the identity transformation. The reader may verify that the associative law
implies the law of exponents T”T”  = T m+n for all nonnegative integers m and n.

The next theorem shows that the composition of linear transformations is again linear.

THEOREM 2.6. If U,  V, W are linear spaces with the same scalars, and tf  T: U -+ V
and S: V -+ W are linear transformations, then the composition ST: U + W is linear.

Proof. For all x, y in U and all scalars a and b, we have

(ST)(ax + by) = S[T(ax  + by)] = S[aT(x)  + bT(y)]  = aST(x)  + bST(y)  .

Composition can be combined with the algebraic operations of addition and multiplica-
tion of scalars in 9(V,  W) to give us the following.

THEOREM 2.7. Let U,  V, W be linear spaces with the same scalars, assume S and T are
in Z(V, W),  and let c be any scalar.

(a) For any function R with values in V,  we have

(S + T)R  = SR + TR and (cS)R  = c(SR)  .

(b) For any linear transformation R: W + U,  we have

R ( S +  T)=RS+RT and R(cS) = c(RS)  .

The proof is a straightforward application of the definition of composition and is left as
an exercise.

2.6 Inverses

In our study of real-valued functions we learned how to construct new functions by
inversion of monotonic functions. Now we wish to extend the process of inversion to a
more general class of functions.
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Given a function T, our goal is to find, if possible, another function S whose composition
with T is the identity transformation. Since composition is in general not commutative,
we have to distinguish between ST and TS. Therefore we introduce two kinds of inverses
which we call left and right inverses.

DEFINITION. Given two sets V and Wand a function T: V + W. A function S: T(V) + V
is called a IejYt  inverse of T tj’S[T(x)]  = x for all x in V, that is, if

where r, is the ide,ntity  transformation on V. A function R: T(V) + V is called a right inverse
of T if T[R(y)] = y for ally in T(V), that is, if

TR = IT(V),

where I, ( vj is the identity transformation on T(V).

EXAMPLE. A function with no left inverse but with two right inverses. Let V = (1, 2)
and let W = (0).  Define T: V-+  Was follows: T(1) = T(2) = 0. This function has two
right inverses R: W+ V and R’ : W---f V given by

R(0) = 1, R’(0) = 2.

It cannot have a left inverse S since this would require

1 = S[T(l)] = S(0) and 2 = S[T(2)]  = S(0).

This simple example shows that left inverses need not exist and that right inverses need not
be unique.

Every function T: V --f  W has at least one right inverse.  In fact, each y in T(V) has the
form y = T(x) for at least one x in V. If we select one such x and define R(y) = x , then
T[R(y)]  = T(x) = y for each y in T(V), so R is a right inverse. Nonuniqueness may occur
because there may be more than one x in V which maps onto a given y in T(V). We shall
prove presently (in Theorem 2.9) that if each y in T(V) is the image of exactly one x in V,
then right inverses are unique.

First we prove that if a left inverse exists it is unique and, at the same time, is a right
inverse.

THEOREM 2.8. A function T: V + W can have at most one left inverse. If T has a left
inverse S, then ,S is also a right inverse.

Proof. Assume T has two left inverses, S: T(V)+ Vand S’: T(V)+ V. Choose any
y in T(V). We shall prove that S(y) = S’(y) . Now y = T(x) for some x in V, so we have

S[T(x)]  = x and S’ [T(x)] = x ,
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since both S and S’  are left inverses. Therefore S(y)  = x and S’(y)  = x , so S(y) = S’@)
for all y in T(V). Therefore S = S’ which proves that left inverses are unique.

Now we prove that every left inverse S is also a right inverse. Choose any element y in
r(V).  We shall prove that T[S(y)]  = y . Since y E 7’( I’) , we have y = T(x)  for some x in
V. But S is a left inverse, so

x = S[T(x)]  = S(y).

Applying T, we get T(x) = T[S@)] . But y = T(x), so y = T[S(y)]  , which completes the
proof.

The next theorem characterizes all functions having left inverses.

THEOREM 2.9. A function T: V + W has a left inverse if and only if T maps distinct
elements of V onto distinct elements of W; that is, if and only if, for all x and y in V,

(2.5) X#Y implies T(x) # T(y).

Note: Condition (2.5) is equivalent to the statement

(2.6) T(x)  = T(y) implies x  = y .

A function T satisfying (2.5) or (2.6) for all x and y in V is said to be one-to-one on V.

Proof. Assume T has a left inverse S, and assume that T(x) = T(y). We wish to prove
that x = y . Applying S, we find S[T(x)]  = S[T(y)] S’mce S[T(x)]  = x and S[T(y)]  = y,
this implies x = y. This proves that a function with a left inverse is one-to-one on its
domain.

Now we prove the converse. Assume Tis one-to-one on V. We shall exhibit a function
S: T(V) --f  V which is a left inverse of T. If y E  T(V) , then y = T(x) for some x in V. By
(2.6), there is exactly one x in V for which y = T(x). Define S(y) to be this x. That is,
we define S on T(V) as follows:

S(y)  =  x means that T(x) = y .

Then we have S[T(x)]  = x for each x in V, so ST = I,. Therefore, the function S so
defined is a left inverse of T.

DEFINITION. Let T: V -+ W be one-to-one on V. The unique left inverse of T (which
we know is also a right inverse) is denoted by T-l. We say that T is invertible, and we call
T-l  the inverse of T.

The results of this section refer to arbitrary functions. Now we apply these ideas to
linear transformations.
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In this section, V and W denote linear spaces with the same scalars, and T: V-t W
denotes a linear transformation in Z?(  V,  W). The linearity of T enables us to express the
one-to-one property in several equivalent forms.

THEOREM 2.10~. Let T: V -+ W be a linear transformation in Z( V, W). Then the following
statements are equivalent.

(a) T is one-to-one on V.
(b) T is invertible and its inverse T-l  : T(V) + V is linear.
(c) For all x in V,  T(x) = 0 implies x = 0. That is, the null space N(T) contains only

the zero element of V.

Proof. We shall prove that (a) implies (b), (b) implies (c), and (c) implies (a). First
assume (a) holds. Then T has an inverse (by Theorem 2.‘9),  and we must show that T-l
is linear. Take any two elements u and v in T(V). Then u = T(x) and v = T(y) for some
x and y in V. For any scalars a and b, we have

a* •k bv = aT(x)  + bT(y)  = T(ax + by),

since T is linear. Hence, applying T-l,  we have

T-Yau + bv) = ax + by = aT-l(u) + bT-l(v),

so T-l  is linear.. Therefore (a) implies (b).
Next assume that (b) holds. Take any x in V for which T(x) = 0. Applying T-l,  we

find that x = T-l(O) = 0, since T-l  is linear. Therefore, (b) implies (c).
Finally, assu.me (c) holds. Take any two elements u and v in V with T(u) = T(v). By

linearity, we have T(u - v) = T(u) - T(v) = 0, so u - v = 0. Therefore, Tis one-to-one
on V,  and the proof of the theorem is complete.

When V is finite-dimensional, the one-to-one property can be formulated in terms of
independence and dimensionality, as indicated by the next theorem.

THEOREM 2.1 I. Let T: V + W be a linear transformatton in 3( V, W) and assume that
V is jinite-dime,nsional,  say dim V = n . Then the following statements are equivalent.

(a) T is one-to-one on V.

(b)Zfe,,..., e, are independent elements in V, then T(e,),  . . . , T(e,)  are independent
elements in T(V).

(c) dim T(V) = n .

(4  lfh,..., e,} is a basis for V,  then {T(e,),  . . . , T(e,)}  is a basis for T(V).

Proof. We shall prove that (a) implies (b), (b) implies (c), (c) implies (d), and (d) implies
(a). Assume (a) holds. Let e,, . . . , e, be independent elements of V and consider the
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elements T(e,),  . . . , T(e,)  in T(V). Suppose that

i$ciT(eA  = 0
for certain scalars q, . . . , c,. By linearity, we obtain

and hence

since T is one-to-one. But e,, . . . , e, are independent, so c1  = * * . = c, = 0. Therefore
(a) implies (b).

Now assume (b) holds. Let {e,, . . . , e,} be a basis for V. By (b), the n elements

T(e,),  . . . , T(e,)  in T(V) are independent. Therefore, dim T(V) 2 n . But, by Theorem
2.3, we have dim T(V) < n . Therefore dim T(V) = n, so (b) implies (c).

Next, assume (c) holds and let {e,, . . . , e,} be a basis for V. Take any element y in
T(V). Then y = T(x) for some x in V,  so we have

x = i ciei,
61

and hence y = T(x) = i ciT(ei).
i=l

Therefore {T(e,),  . . . , T(e,)}  spans T(V). But we are assuming dim T(V) = n, so
{Wd, . . . , T(e,)}  is a basis for T(V). Therefore (c) implies (d).

Finally, assume (d) holds. We will prove that T(x) = 0 implies x = 0. Let {e,,  . . . , e,}
be a basis for V. If x E  V, we may write

x = i ciei ,
i=l

and hence T(X) = itlciT(eJ .

IfT(x) =  O,thenc,  =  .* * = c, = 0, since the elements T(e,),  . . . , T(e,) are independent.
Therefore x = 0, so Tis one-to-one on V.  Thus, (d) implies (a) and the proof is complete.

2.8 Exercises

1. Let V = (0,  l} . Describe all functions T: V-t  V . There are four altogether. Label them as
Tl  , Tz  , T3, T4 and make a multiplication table showing the composition of each pair. Indicate
which functions are one-to-one on V and give their inverses.

2. Let V = (0,  1,2}.  Describe all functions T: V+ V for which T(V) = V . There are six
altogether. Label them as T,,  . . . , Ts and make a multiplication table showing the com-
position of each pair. Indicate which functions are one-to-one on V,  and give their inverses.

In each of Exercises 3 through 12, a function T: V2 4 V, is defined by the formula given for
T(x, JJ), where (x, y) is an arbitrary point in Vz . In each case determine whether T is one-to-one
on V,. If it is, describe its range T( Vz);  for each point (u, v) in T( V,),  let (x, y) = T-l(u,  v) and
give formulas for determining x and y in terms of u and v.

3. Thy)  = (y, 4. 8. T(x, y) = (e”, eY).
4. T(x, y) = (x, --.I’). 9. T(x,y)  = (x, 1).
5. T(x,  y) = (x, 0). 10. T(x,y)  = (x + 1,~ + 1).
6. T(x,  y) = (x, x) . 11. T(x,y)  = (x -y,x  +y).
7. T(x,  y) = (x2,  y2). 12. T(x,y)  =(2x -y,x  +y).
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In each of Elxercises  13 through 20, a function T: Va+ I’, is defined by the formula given for
T(x, y, z), where (x, y, z) is an arbitrary point in Vs. In each case, determine whether Tis one-to-
one on Vs. If it is, describe its range T(V,);  for each point (u, v, W)  in T(V,),  let (x,~, Z)  =
T-‘(u,  v, w)  and give formulas for determining x, y, and z in terms of U,  u, and W.

13. T(x,  y, z) = (z. y, x) 17. T(x,y,z)  =:  (x + 1,~  + 1,z  - 1).
14. T(x,y,  z) = (x,y,  0). 18. T(x,y,z)  =:(x  + 1,~ +2,z +3).
15. T(x,  y, z) = (x, 2y,  32). 19.  T(x, y, z) =: (x, x + y, x + y + z).
16. T(x,y,z)=(x,y,x+y+z). 20.  T(x,y,z)  =:(x  +y,y  +z,x  +z).

21. Let T: V -+  V be a function which maps V into itself. Powers are defined inductively by the
formulas ‘To = I, T” = TTn-l  for n 2 1  . Prove that the associative law for composition
implies the law Iof  exponents: TmTn  = Tm+n. If Tis invertiblle,  prove that T” is also invertible
and that ( Tn)-l  = ( T-l)n.

In Exercises, 22 through 25, S and T denote functions with domain V and values in V. In
general, ST # TS. If ST = TS, we say that S and T commute.

22. If S and T commute, prove that (ST)n = SnTn for all integers n 2 0.
23. If S and Tare invertible, prove that ST is also invertible and that (ST)-1  = T-lS-l.  In other

words, the inverse of ST is the composition of inverses, taken in reverse order.
24. If S and Tare invertible and commute, prove that their inverses also commute.
25. Let V be a line,ar space. If S and T commute, prove that

(S + T)’ = S2 + 2ST + T2 and (S + T)3  = S3 + 3S2T + 3ST2 + T3.

Indicate how these formulas must be altered if ST # TS.
26. Let S and T be the linear transformations of V, into V, defined by the formulas S(x,  y, z) =

(z, y, x) and T(x,  y, z) = (x, x + y, x + y + z),  where (x, ;v, z) is an arbitrary point of V,.
(a) Determine the image of (x, y, z) under each of the following transformations : ST, TS,
ST - TS.,  S2,  T2,  (ST)2,  (TS)2, (ST - TS)2.
(b) Prove that S and Tare one-to-one on V, and find the image of (u, v, w) under each of the
following transformations : S-l,  T-l, (ST)-l,  (TS)-l.
(c) Find the image of (x, y, z) under (T - Z)n  for each n 2 1.

27. Let V be the linear space of all real polynomialsp(x). Let D dlenote  the differentiation operator
and let T denote the integration operator which maps each polynomial p onto the polynomial
q given by q(x) = jgp(t) dt . Prove that DT = ZV but that TD # Z,. Describe the null space
and range of TD.

28. Let Vbe the linear space of all real polynomialsp(x). Let D dsenote the differentiation operator
and let T be the linear transformation that maps p(x) onto x,n’(x).
(a) Let p(x) = 2 + 3x - x2 + 4x3  and determine the image ofp under each of the following
transformatiom:  D, T,  DT, TD, DT - TD, T2D2  - D2T2.
(b) Determine those p in V for which T(p) = p .
(c) Determine thosep in V for which (DT - 2D)(p)  = 0.
(d) Determine thosep in V for which (DT - TD)%(p)  = D”(p).

29. Let V and1  D be as in Exercise 28 but let T be the linear transformation that maps p(x) onto
xp(x).  Prove tihat DT - TD = Z and that DTn  - TnD = nTn-l  for n 2 2.

30. Let S and T be in y(V,  V) and assume that ST - TS = I. Prove that STn - TnS = nTn-l
for all II ;z 1 .

3 1. Let V be the linear space of all real polynomialsp(x). Let R, S, T be the functions which map
an arbitrary polynomialp(x)  = co  + clx + . . . + c,xn in V onto the polynomials u(x), s(x),
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and t(x), respectively, where

44 = p(O) ,
k=l

t(x) = i CkX*+l.
Rx0

(a) Let p(x) = 2 + 3x - x2 + x3 and determine the image of p under each of the following
transformations: R, S, T,  ST, TS, (TS)2, T2S2,  S2T2,  TRS, RST.
(b) Prove that R, S, and Tare linear and determine the null space and range of each.
(c) Prove that T is one-to-one on V and determine its inverse.
(d) If n 2 1,  express ( TS)n  and SnTn  in terms of I and R.

32. Refer to Exercise 28 of Section 2.4. Determine whether T is one-to-one on V. If it is, describe
its inverse.

2.9 Linear transformations with prescribed values

If V is finite-dimensional, we can always construct a linear transformation T: V-+  W
with prescribed values at the basis elements of V,  as described in the next theorem.

THEOREM 2.12. Let  e,,..., e, be a basis for an n-dimensional linear space V. Let
Ul,...  7 u, be n arbitrary elements in a linear space W. Then there is one and only one linear
transformation T: V + W such that

(2.7) T(%> = u/c for k=l,2 ,...,  n.

This T maps an arbitrary element x in V as follows:

(2.8) I f  x  =ix,e,, then T(x) = i xkuk.
k=l k=l

Proof. Every x in V can be expressed uniquely as a linear combination of e,, . . . , e, ,
the multipliers x1, . . . , x, being the components of x relative to the ordered basis
(e,,  . . . , e,). If we define T by (2.8), it is a straightforward matter to verify that T is
linear. If x = ek  for some k, then all components of x are 0 except the kth, which is 1, so
(2.8) gives T(e,)  = uk, are required.

To prove that there is only one linear transformation satisfying (2.7), let T’ be another
and compute T’(x). We find that

=k$IxkT’(eb)  = i xkuk  = T(x).
k=l

Since T’(x) = T(x) for all x in V, we have T’ = T, which completes the proof.

EXAMPLE. Determine the linear transformation T: V, -+ V,  which maps the basis elements
i = (1,O) and j = (0, 1) as follows:

T(i) = i +i, T(j) = 2i -j.
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Solution. Nf x ==  x,i + xz j is an arbitrary element of V,, then T(x)  is given by

T(x) = x,T(i) + xzT(j) = Xl(i  +j> + x,(2i - j) = (x, + 2x& + (Xl - x2)j.

2.10 Matrix representations of linear transformations

Theorem 2.12 shows that a linear transformation T: V-+  W of a finite-dimensional
linear space V is completely determined by its action on a given set of basis elements
e,, . . . , e,. Now, suppose the space W is also finite-dimensional, say dim W = m,  and let

6,  * * *, w, be a basis for W. (The dimensions n and m may or may not be equal.) Since T
has values in IV,  each element T(e,)  can be expressed uniquely as a linear combination of the
basis elements wl, . . . , w,, say

T(e,)  = 2 tikwi,
i=l

where t,,  , . . . , t,, are the components of T(e,)  relative to the: ordered basis (w,,  . . . , w,).
We shall display the m-tuple  (t,, , , . . , tmk)  vertically, as follows:

hk

(2.9)

This array is called a column vector or a column matrix. We have such a column vector for
each of the n elements T(e,),  . . . , T(e,).  We place them side by side and enclose them in
one pair of brackets to obtain the following rectangular array:

-t11 t,, *-* t1,

t21 t22  - * * t 2n
. .1 :-. .

. .

t ml tnl2  * * * trim-

This array is ca.lled a matrix consisting of m rows and n columns. We call it an m by n matrix,
or an m x n matrix. The first row is the 1 x n matrix (tl-, , t,,,  . . . , tl,).  The m x 1
matrix displayed in (2.9) is the kth column. The scalars tik are indexed so the first subscript
i indicates the row:, and the second subscript k indicates the column in which tik occurs.
We call tik the ik-entry or the ik-element of the matrix. The more compact notation

is also used to denote the matrix whose ik-entry is tik .
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Thus, every linear transformation T of an n-dimensional space V into an m-dimensional
space W gives rise to an m x n matrix (tik) whose columns consist of the components of
T(e,>,  . . . , T(e,)  relative to the basis (wl, . . . , w,). We call this the matrix representation
of T relative to the given choice of ordered bases (e,, . . . , e,) for Vand (wl, . . . , w,) for
W. Once we know the matrix (tik),  the components of any element T(x) relative to the
basis (w,, . . . , w,) can be determined as described in the next theorem.

THEOREM 2.13. Let T be a linear transformation in 9( V, W), bchere dim V = n and
dim W = m. Let (e,,  . . . , e,,) and (wl,  . . . , w,) be OrderedbasesJor  Vand W, respectively,
and let (tik) be the m x n matrix whose entries are determined by the equations

(2.10) T(e,)  = 2  tikWi  3 for k=1,2 ,.,.,  n.
i=l

Then an arbitrary element

(2.11)
n

x = zxkek
k = l

in V with components (x1, . . . , x,) relative to (e,,  . , . , e,) is mapped by T onto the element

(2.12) T(x) = 2 yiwi
i=l

in W with components (yl,  . . . , y,) relative to (w, , . . . , w,). The yi are related to the
components of x by the linear equations

(2.13) Y, = i tikXk for i=l,2 ,.,.,  m.
k=l

Proof. Applying T to each member of (2.11) and using (2.10), we obtain

where each yi is given by (2.13). This completes the proof.

Having chosen a pair of bases (e,, . . . , e,) and (+,  . . . , MI,) for V and W, respectively,
every linear transformation T:  V + W has a matrix representation (tik).  Conversely, if
we start with any ~FIII  scalars arranged as a rectangular matrix (rik) and choose a pair of
ordered bases for V and W, then it is easy to prove that there is exactly one linear trans-
formation T: V-t  W having this matrix representation. We simply define Tat the basis
elements of V by the equations in (2.10). Then, by Theorem 2.12, there is one and only
one linear transformation T: V + W with these prescribed values. The image T(x) of an
arbitrary point x in V is then given by Equations (2.12) and (2.13).
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EXAMPLE.  1. Construction of a linear transformation from a given matrix. Suppose we
start with the 2 x 3 matrix

r3 1 -21

Choose the usual bases of unit coordinate vectors for V, and V,. Then the given matrix
represents a linear transformation T: V, ---f  V, which maps an arbitrary vector (xi, x2, x8)
in V3 onto the vector Q1, yZ) in V, according to the linear equations

y,  = 3x, + xg - 2X,)

yz =  Xl +  ox ,  +  4x,.

EXAMPLE 2. (?OnStrUCtiOn  of a matrix  representation ?f  a giVt?a  linear transformation.
Let V be the linear space of all real polynomials p(x) of degree < 3. This space has dimen-
sion 4, and we choose the basis (I, x, x2,  x3).  Let D be the differentiation operator which
maps each polynomial p(x) in V onto its derivative p’(x). We can regard D as a linear
transformation of V into W, where W is the 3-dimensional space of all real polynomials
of degree <:  2’. In W we choose the basis (1, x, x2). To find the matrix representation of D
relative to this (choice of bases, we transform (differentiate) each basis element of V and
express it as a linear combination of the basis elements of W. Thus, we find that

D(1) = 0 = 0 + ox + 0x2, D(x)=1  =1+0x+0x2,

D(x2) = 2 x  =  0 +  2 X  +  0X2, D(x3)=3x2=0+0x+3X2.

The coefficients of these polynomials determine the columns of the matrix representation of
D. Therefore, the required representation is given by the following 3 x 4 matrix:

0 1 0 0

i I0 0 2 0 .

0 0 0 3

To emphasize that the matrix representation depends not only on the basis elements but
also on their order, let us reverse the order of the basis elements in Wand use, instead, the
ordered basis ($3,  x, 1). Then the basis elements of V are transformed into the same poly-
nomials obtained above, but the components of these polynomials relative to the new
basis (x2,  x.,  1) appear in reversed order. Therefore, the matrix representation of D now

becomes
0 0 0 3

[ I0 0 2 0 .

0 1 0 0
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Let us compute a third matrix representation for D, usingthebasis (1, 1 + x , 1 + x + x2,
1 + x + x2 + x3)  for V,  and the basis (1, x, x2)  for W. The basis elements of Vare  trans-
formed as follows:

D(1) = 0, D(1 + x) = 1, D ( l  + x + x 2 ) = 1  + 2 x ,

D ( l  +x+x2+x3)=1  + 2 x + 3 x 2 ,

so the matrix representation in this case is

0 1 1 1[ 10 0 2 2 .

0 0 0 3

2.11 Construction of a matrix representation in diagonal form

Since it is possible to obtain different matrix representations of a given linear transforma-
tion by different choices of bases, it is natural to try to choose the bases so that the resulting
matrix will have a particularly simple form. The next theorem shows that we can make
all the entries 0 except possibIy  along the diagonal starting from the upper left-hand corner
of the matrix. Along this diagonal there will be a string of ones followed by zeros, the
number of ones being equal to the rank of the transformation. A matrix (tik) with all
entries ti, = 0 when i # k is said to be a diagonal matrix.

THEOREM 2.14. Let V and W be finite-dimensional linear spaces, with dim V = n and
dim W = m . Assume T E Z( V, W) and let r = dim T(V) denote the rank of T. Then there
exists a basis (e, , . . . , e,) for V and a basis (wl,  . . . , w,)for  W such that

(2.14) T(eJ  = wi for i=1,2 ,...,  r,

and

(2.15) T(e,)=O  f o r  i=r+l,...,n.

Therefore, the matrix (tir) of T relative to these bases has all entries zero except for the r
diagonal entries

tll = tzz = ’ * ’ = t,, = 1 .

Proof. First we construct a basis for W. Since T(V) is a subspace  of W with dim T(V) =
r, the space T(V) has a basis of r elements in W, say wr, . . . , w,, By Theorem 1.7, these
elements form a subset of some basis for W. Therefore we can adjoin elements w,+~,  . . . ,
w, so that

(2.16) (Wl,.  * * 7 WT,  Wr+l,  * . . 2 w,)

is a basis for W.
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Now we construct a basis for V. Each of the first r elements u’~ in (2.16) is the image of at
least one element in V. Choose one such element in V and call it e, . Then T(e,) = wji for
i= 1,2,..., r so (2.14) is satisfied. Now let k be the dimension of the null space N(T).
By Theorem 2.3 we have n = k + r. Since dim N(T) =: k, the space N(T) has a basis
consisting of k elements in V which we designate as e,,,  , . . . , er.tlc.  For each of these
elements, Equation (2.15) is satisfied. Therefore, to comlplete  the proof, we must show
that the ordered set

(2.17) (e,,  . . . , e,, ql, . . . , q.+k)

is a basis flar V. Since dim V = n = r + k, we need only show that these elements are
independent. Suppose that some linear combination of th,em is zero, say

(2.18)

Applying 7’  and using Equations (2.14) and (2.19, we find that

But wl,...,w, are independent, and hence c1  = * * * = c, = 0. Therefore, the first r
terms in (2.18) a.re  zero, so (2.18) reduces to

r+k

i&lc,ei  = O.

But  e,,, ,  *  *  *  ,  er+kare independent since they form a basis for N(T), and hence c,+~  =
. ..=c r+k  = 0. Therefore, all the ci in (2.18) are zero, S,D  the elements in (2.17) form a
basis for V. This completes the proof.

EXAMPLE. We refer to Example 2 of Section 2.10, where D is the differentiation operator
which maps the space V of polynomials of degree < 3 into the space W of polynomials of
degree 52. In this example, the range T(V) = W, so T has rank 3. Applying the method
used to prove Theorem 2.14, we choose any basis for W, for example the basis (1, x, x2).
A set of polynomials in V which map onto these elements is given by (x, +x2,  +x3).  We
extend this set to get a basis for V by adjoining the constant polynomial 1, which is a basis
for the null space of D. lTherefore, if we use the basis (x, Zx 2, &x3, 1) for V and the basis
(1, x, x2)  for W, the corresponding matrix representation for D has the diagonal form

1 0 0 0

1 10 1 0 0 .

10 0 1 01
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2.12 Exercises

In all exercises involving the vector space V, , the usual basis of unit coordinate vectors is to be
chosen unless another basis is specifically mentioned. In exercises concerned with the matrix of
a linear transformation T: Y + W where V = W,  we take the same basis in both Y and W unless
another choice is indicated.

1. Determine the matrix of each of the following linear transformations of V, into V, :
(a) the identity transformation,
(b) the zero transformation,
(c) multiplication by a fixed scalar c.

2. Determine the matrix for each of the following projections.
(a) T: V,-  V,, where T(x,  , x2, x3) = (x1, xJ  .
(b) T: V,+ 7’,, where Th,  x2,  x2) = (x2,  x2).
(c) T: V,+  V,, where  Wl,x2,x3,x4,x5)  =(x2,x2,x4).

3. A linear transformation T: V, + V,  maps the basis vectors i andj as follows:

T(i) = i + j, T(j)=2i-j.

(a) Compute T(3i - 4j) and T2(3i - 4j) in terms of i and j.
(b) Determine the matrix of T and of T2.
(c) Solve part (b) if the basis (i, j) is replaced by (er , e,), where e, = i - j, e2  = 3i + j.

4. A linear transformation T: V, + V2 is defined as follows: Each vector (x, y) is reflected in
the y-axis and then doubled in length to yield T(x, v). Determine the matrix of T and of T2.

5. Let T: Va-t  V, be a linear transformation such that

T(k) =2i+3j+5k, T ( j + k )  =i, T ( i + j + k ) = j - k .

(a) Compute T(i + 2j + 3k) and determine the nullity and rank of T.
(b) Determine the matrix of T.

6. For the linear transformation in Exercise 5, choose both bases to be (e,, e2,  e,), where e, =
(2, 3, 5))  e2  = (1, 0, 0)) e3  = (0, 1, -1))  and determine the matrix of T relative to the new
bases.

7. A linear transformation T: Va  -+ V2 maps the basis vectors as follows: T(i) = (0, 0)) T(j) =
(1, I),  T(k) = (1, -1).
(a) Compute T(4i -j + k) and determine the nullity and rank of T.
(b) Determine the matrix of T.
(c) Use the basis (i, j, k) in V, and the basis (wr  , we)  in V,, where wr = (1, 1), w2  = (1,2).
Determine the matrix of T relative to these bases.
(d) Find bases (er , e2,  ea)  for V, and (wr  , wZ)  for Y2 relative to which the matrix of Twill be
in diagonal form.

8. A linear transformation T: V2 --f  V’s  maps the basis vectors as follows: T(i) = (I, 0, l),
T(j) = (-l,O,  1).
(a) Compute T(2i  - 3j) and determine the nullity and rank of T.
(b) Determine the matrix of T.
(c) Find bases (e,, e,) for V, and (w,, w2, wa)  for V, relative to which the matrix of Twill be
in diagonal form.

9. Solve Exercise 8 if T(i) = (1,  0, 1) and T(j) = (1, 1, 1).
10. Let Vand W belinear  spaces, each with dimension 2 and each with basis (er , e2). Let T: V-t W

be a linear transformation such that T(e,  + e2) = 3e,  + 9e,,  T(3e,  + 2e,) = 7e,  + 23e,.
(a) Compute T(e, - er)  and determine the nullity and rank of T.
(b) Determine the matrix of T relative to the given basis.
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(c) Use the basis (q , e,) for V and find a new basis of the form (el + uez, 2e,  + be,) for W,
relative to which the matrix of Twill be in diagonal form.

In the linear space of all real-valued functions, each of the following sets is independent and
spans a finite-dimensional subspace V. Use the given set as a basis for V and let D: VA  V be
the differentiation  operator. In each case, find the matrix of D and of D2  relative to this choice
of basis.

11. (sin x, cos x). 15. (-cos x, sin x).
12. (1, x, e5). 16. (sin x, cos x.,  x sin x, x cos x).
13. (1, I -t  x, I + x + er). 17. (eX sin x, e2  cos x).
14. (e”, xe”). 18. (ezz sin 3x, ezs cos 3x).

19. Choose the basis (1, x, x2,  x3) in the linear space V of all real polynomials of degree 13.
Let D denote the differentiation operator and let T: V + 1’ be the linear transformation
which map’sp(x:, onto x$(x). Relative to the given basis, determine the matrix of each of the
followingtransformations: (a) T; (b) DT; (c)  TD; (d) TD - DT; (e)  T2; (f) T2D2  - D2T2.

20. Refer to Exercise 19. Let W be the image of Vunder TD. Find bases for Vand for W relative
to which the matrix of TD is in diagonal form.

2.13 Linear spaces of matrices

We have seen how matrices arise in a natural way as representations of linear trans-
formations. Matrices can also be considered as objects existing in their own right, without
necessarily being connected to linear transformations. As such, they form another class of
mathematical objects on which algebraic operations can be defined. The connection
with linear transformations serves as motivation for these definitions, but this connection
will be ignored for the moment.

Let nz and n be two positive integers, and let I,,, be the set of all pairs of integers (i,j)
such that 1 I; i 5 m, 1 <j 5 PI.  Any function A whose domain is I,,, is called an m x n
matrix. The flJnction  value A(i, j) is called the g-entry or ij-element of the matrix and will
be denoted also by aij . It is customary to display all the function values in a rectangular
array consisting of m rows and n columns, as follows:

azl az2  **a azn
. .

The elements a;j may be arbitrary objects of any kind. Usually they will be real or complex
numbers, but sometimes it is convenient to consider matrices whose elements are other
objects, for example, functions. We also denote matrices by the more compact notation

A = (u,,)~;~~ or A = (aij).

If m = n , the matr.ix  is said to be a square matrix. A 1 x n matrix is called a row matrix;
an m x 1 matrix is called a column matrix.
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Two functions are equal if and only if they have the same domain and take the same
function value at each element in the domain. Since matrices are functions, two matrices
A = (a,J  and B = (bJ are equal if and only if they have the same number of rows, the
same number of columns, and equal entries aij  = bij  for each pair (i,j).

Now we assume the entries are numbers (real or complex) and we define addition of
matrices and multiplication by scalars by the same method used for any real- or complex-
valued functions.

DEFINITION. If A = (aij)  and B = (bij)  are two m x n matrices and if c is any scalar,
we define matrices A + B and CA as follows:

A + B = (a,j  + b,j>, CA = (caij).

The sum is defined only when A and B have the same size.

EXAMPLE. If

1 2 - 3
A = -1 0 4 I and B = [: -1 i],

then we have

A+.=[;  -; -:]. 2A=  [-‘z ; -;], (-1)B=  [I; ; I:].

We define the zero matrix 0 to be the m x n matrix all of whose elements are 0. -With
these definitions, it is a straightforward exercise to verify that the collection of all m x n
matrices is a linear space. We denote this linear space by M,,,.  If the entries are real
numbers, the space M,,, is a real linear space. If the entries are complex, M,,,  is a complex
linear space. It is also easy to prove that this space has dimension mn. In fact, a basis for
M consists of the mn matrices having one entry equal to 1 and all others equal to 0.
Fo?“example,  the six matrices

form a basis for the set of all 2 x 3 matrices.

2.14 Isomorphism between linear transformations and matrices

We return now to the connection between matrices and linear transformations. Let V
and W be finite-dimensional linear spaces with dim V = n and dim W = m. Choose a
basis (e,, . . . , e,) for V and a basis (wl, . . . , w,) for W. In this discussion, these bases are
kept fixed. Let p(V,  W) denote the linear space of all linear transformations of V into
W. If T E P(V,  W), let m(T) denote the matrix of T relative to the given bases. We recall
that m(T) is defined as follows.
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The image of each basis element e, is expressed as a linear combination of the basis
elements in IV:

(2.19) T(e,)  = g tikWi for k=l,2  ,...,  n.
i=l

The scalar multipliers ci, are the ik-entries of m(T). Thus, we have

(2.20) 47 = (4,>~&.

Equation (2.20) defines a new function m whose domain is L?‘(V,  W) and whose values
are matrices in M,,  ~. Since every m x n matrix is the,matrix m(T) for some Tin A?( V, W),
the range of m is ii,,, . The next theorem shows that the transformation m: LZ(V,  W) +
M112.11 is linear and one-to-one on LY(  V, W).

THEOREM 2.15. ISOMORPHISM  THEOREM. For all S and 1” in P(V,  W) and all scalars
c, we have

4s + T>  = m(S) + m(T) and m(cT) = cm(T).
Moreover,

m(S) = m(T) implies S = T,

so m is one-to-one on 9(V,  W).

Proof. The matrix m(T) is formed from the multipliers ti,  in (2.19). Similarly, the
matrix m(S) is formed from the multipliers sik in the equations

(2.21)

Since we have

S(e,)  = 5 SikWi for k=1,2 ,...,  n.
i=l

and

we obtainm(S + 73  = (sik + tile)  = m(S) + m(T) and m(cT) = (ctJ = cm(T). This proves
that m is linear.

To prove that m is one-to-one, suppose that m(S) = m(Z3,  where S = (sik)  and T =
(t&.  Equations (2.19) and (2.21) show that S(e,)  = T(e,)  for each basis element e,,
so S(x) = T(x)  for all x in V, and hence S = T.

Note: The function m is called an isomorphism. For a given choice of bases, m
establishes a one-to-one correspondence between the set of linear transformations
U(V, W) and the set of m x n matrices M,,,  . The operations of addition and multipli-
cation by scalars are preserved under this correspondence. The linear spaces -Y(V,  W)

and  Mm,, are said to be isomorphic. Incidentally, Theorem 2.11 shows that the domain
of a one-to-one linear transformation has the same dimension as its range. Therefore,
dim Y(V,  IV) = dim M,,, = mn .

If V = Wand if we choose the same basis in both V and W, then the matrix m(Z) which
corresponds to the identity transformation I: V ---f  V is an n x n diagonal matrix with each
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diagonal entry equal to 1 and all others equal to 0. This is called the identity or unit matrix
and is denoted by I or by I,.

2.15 Multiplication of matrices

Some linear transformations can be multiplied by means of composition. Now we shall
define multiplication of matrices in such a way that the product of two matrices corresponds
to the composition of the linear transformations they represent.

We recall that if T: U--f V and S: V + Ware linear transformations, their composition
ST: U--j  W is a linear transformation given by

ST(x) = S[T(x)] f o r a l l x i n  U.

Suppose that U, V, and Ware finite-dimensional, say

dim U = n, dim V=p, dim W= m.

Choose bases for U, V, and W. Relative to these bases, the matrix m(s) is an m x p
matrix, the matrix T is a p x n matrix, and the matrix of ST is an m x n matrix. The
following definition of matrix multiplication will enable us to deduce the relation m(ST) =
m(S)m(T). This extends the isomorphism property to products.

DEFINITION. Let A be any m x p matrix, and let B be any p x n matrix, say

A = (u,,);;Z)~ and B = (bij);,8jn=1.

Then the product AB is defined to be the m x n matrix C = (cJ whose ij-entry is given by

(2.22)

Note: The product AB is not defined unless the number of columns of A is equal to
the number of rows of B.

If we write Ai for the ith row of A, and Bi for thejth column of B, and think of these as
p-dimensional vectors, then the sum in (2.22) is simply the dot product Ai * Bj. In other
words, the q-entry  of AB is the dot product of the ith row of A with thejth column of B:

AB = (Ai  . B’);3”1.

Thus, matrix multiplication can be regarded as a generalization of the dot product.

ExAMPLnl. LetA=  [-:  : i]andB= [ --!I.  S i n c e A i s 2  x  3andBis3 x  2 ,
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the product AB  is the 2 x 2 matrix

The entries of AB are computed as follows:

A,.B1=3.4+1.5+2.0=17, A, . B2 = 3*6+1.(-1)+2.2=21,

A, h B1 = (-1) * 4 + 1 -5  + 0.0  = 1, A,*B2=(---1)*6+1.(-1)+0.2=-7.

EXAMPLE 2. Let

A= [: : -3  and B= -i  .

[I

Here A is; 2 x 3 and B is 3 x 1, so AB is the 2 x I matrix given by

A B =  [;::;I]  =  [-;I,

since A, * B1 = 2.(-2)+1.1+(-3).2= -9andA,nBr=  l-(-2)+2*1 +4*2=8.

EXAMPLE 3. If A and B are both square matrices of the same size, then both AB and BA
are defined. For example, if

3 4
A = and B = [ 15 2’

we find that

AB=[1:  -3, BA=[-: ;;I.

This example shows that in general AB # BA . If AB = BA , we say A and B commute.

EXAMPLE 4. If 1, is the p x p identity matrix, then I,A
and BI, = B for every m x p matrix B. For example,

= A for every p x n matrix A,

0  1 [ 1 2 3

0 = 4 5
1

I6 ’

Now we prove that the matrix of a composition ST is the product of the matrices m(S)
and m(r).
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THEOREM 2.16. Let T: U + V and S: V --f W be linear transformations, where U,  V,  W
are jnite-dimensional  linear spaces. Then, for a$xed  choice of bases, the matrices of S, T,
and ST are related by the equation

Proof. Assume dim U = n, dim V = p, dim W = m. Let (ul, . . . , u,) be a basis for

U,h,..., v,) a basis for V, and (wl, . . . , w,) a basis for W. Relative to these bases, we
have

and

m(S)  = (sii)~;El, where S(v,)  = 5 SikWi for k = 1,2, . . . , p,
i=l

m(T) = (fij)Y;kl, where T(uJ  = i tkjvR for j=1,2  ,..., n.
k=l

Therefore, we have

so we find that

= m(S)m(T).

We have already noted that matrix multiplication does not always satisfy the com-
mutative law. The next theorem shows that it does satisfy the associative and distributive
laws.

THEOREM 2.17. ASSOCIATIVE AND DISTRIBUTIVE LAWS FOR MATRIX MULTIPLICATION.

Given matrices A, B, C.
(a) If the products A(BC) and (AB)C are meaningful, we have

A(K)  = (AB)C (associative law).

(b) Assume A and B are of the same size. If AC and BC are meaningful, we have

(A + B)C = AC + BC (right distributive law),

whereas if CA and CB are meaningjiil, we have

C(A + B) = CA + CB (left distributive law).

Proof. These properties can be deduced directly from the definition of matrix multi-
plication, but we prefer the following type of argument. Introduce finite-dimensional
linear spaces U, V, W, X and linear transformations T: U---f  V, S: V---f  W, R: W-t X
such that, for a fixed choice of bases, we have

A = m(R), B = m(S), C=m(T).



Exercises 5 7

By Theorem 2.16, we have m(M) = AB and m(ST)  = BC From the associative law for
composition, we find that R(ST) = (RS)T. Applying Theorem 2.16 once more to this
equation, we obtain m(R)m(ST) = m(RS)m(T)  or A(X)  = (AB)C,  which proves (a). The
proof of (b) can be given by a similar type of argument.

DEFINITION. VA  is a square matrix, we define integral powers of A inductively as follows:

A” = I, A” = AA-1 f o r  n>l.

2.16 Exercises

,.,,.=[_:  -1 -;I,  B+ -3. c=

BA, AC, CA, .4(2B  - 3C).

i-0  11

compute B + C, AB,

2.LetA=
1 J0 2 .

Find all 2 x 2 matrices B such that (a) .4B  = 0 ; (b) BA = 0.

3. In each case find a, b, c, d to satisfy the given equation.

(4
a b c d

(b) [ 11 4 9 2

4. Calculate AB - BA in each case.

(b)A=[;  ; ;],  B=[-;  -f ---].

5. If A is a square matrix, prove that A”Am  = Am-tn  for all integers m 2 0, n 2 0.

1 and compute A”.

Compute A3 and A4.  Guess a general

formula for A” and prove it by induction,
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1 0
9. Let A =

[ I-1 1 *
Prove that A2 = 2A - Z and compute Aloo.

10. Find all 2 x 2 matrices A such that A2 = 0.
11. (a) Prove that a 2 x 2 matrix A commutes with every 2 x 2 matrix if and only if A commutes

with each of the four matrices

(b) Find all such matrices A.
12. The equation A2 = Z is satisfied by each of the 2 x 2 matrices

where b and c are arbitrary real numbers. Find all 2 x 2 matrices A such that A2 = I.

U.IfA=[-:  -t] andB=[i  11, find 2 x 2 matrices C and D such that AC = B

a n d D A = B .
14. (a) Verify that the algebraic identities

(A + B)2  = A2 + 2AB + B2 and (A + B)(A - B) = A2 - B2

do not hold for the 2 x 2 matrices A = [t -t]andB=[: J.

(b) Amend the right-hand members of these identities to obtain formulas valid for all square
matrices A and B.
(c) For which matrices A and B are the identities valid as stated in (a)?

2.17 Systems of linear equations

Let A = (aJ be a given m x n matrix of numbers, and let cl, . . . , c,  be m further
numbers. A set of m equations of the form

(2.23) $Fixxk  = ci for i = 1, 2, . . . , m,

is called a system of m linear equations in n unknowns. Here x1, . . . , X, are regarded as
unknown. A solution of the system is any n-tuple of numbers (x1, . . . , x,) for which all the
equations are satisfied. The matrix A is called the coefJicient-matrix  of the system.

Linear systems can be studied with the help of linear transformations. Choose the usual
bases of unit coordinate vectors in V, and in V,,. The coefficient-matrix A determines a
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linear transformation, T: V,  + V,, which maps an arbitrary vector x = (xi, . . . , x,) in V,
onto the vector y = (yl, .  . . , ym) in V,  given by the m linear equations

yi  = i aikXk for i=1,2 ,...,  m.
k=l

Let c = (cr , . . . , c,) be the vector in V,  whose components are the numbers appearing in
system (2.23). This system can be written more simply as;

T(x) = c.

The system has a solution if and only if c is in the range of T. If exactly one x in V,,  maps
onto c, the system has exactly one solution. If more than one x maps onto c, the system
has more than one solution.

EXAMPLE: 1. A system with no solution. The system x + y = 1, x + y = 2 has no
solution. ‘The sum of two numbers cannot be both I and 2.

EXAMPLE 2. .4 system with exactly one solution. The system x + y = 1, x - y = 0 has
exactly one solution: (x, y) = (4, 4).

EXAMPLE: 3. .4 system with more than one solution. The system x + y = 1 , consisting
of one equation in two unknowns, has more than one solution. Any two numbers whose
sum is 1 gives ii solution.

With each linear system (2.23), we can associate another system

&kXk  = 0 for i = 1, 2, . . . , m,

obtained by replacing each ci in (2.23) by 0. This is called the homogeneous system corre-
sponding to (2.23). If c Z 0, system (2.23) is called a nonhomogeneous system. A vector
x in V,  will satisfy the homogeneous system if and only if

T(x) = 0,

where T is, the linear transformation determined by the coefficient-matrix. The homogene-
ous system always has one solution, namely x = 0, but it may have others. The set of
solutions of the homogeneous system is the null space of 7: The next theorem describes the
relation between solutions of the homogeneous system and those of the nonhomogeneous
system.

THEOREM 2.18. Assume the nonhomogeneous system (2.23) has a solution, say 6.
(a) If a vector x is a solution of the nonhomogeneous system, then the vector v = x - b

is a solution of the corresponding homogeneous system.
(b) If a vector v is a solution of the homogeneous+ system, then the vector x = v + b is a

solution #of  the nonhomogeneous system.
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Proof. Let T: V,  + V,  be the linear transformation determined by the coefficient-
matrix, as described above. Since b is a solution of the nonhomogeneous system we have
T(b) = c . Let x and v be two vectors in V,  such that v = x - b. Then we have

T(u) = T(x  - b) = T(x) - T(b) = T(x) - c.

Therefore T(x) = c if and only if T(v) = 0. This proves both (a) and (b).

This theorem shows that the problem of finding all solutions of a nonhomogeneous
system splits naturally into two parts: (1) Finding all solutions v of the homogeneous
system, that is, determining the null space of T; and (2) finding one particular solution b of
the nonhomogeneous system. By adding b to each vector v in the null space of T, we thereby
obtain all solutions x = v + b of the nonhomogeneous system.

Let k denote the dimension of N(T) (the nullity of T). If we can find k independent
solutions vi, . . . , vk of the homogeneous system, they will form a basis for N(T), and we
can obtain every v in N(T) by forming all possible linear combinations

u = t,v, + * * * + t,v,  ,

where t,, . . . , t, are arbitrary scalars. This linear combination is called the general solution

of the homogeneous system. If b is one particular solution of the nonhomogeneous system,
then all solutions x are given by

x = b + t,V,  + * * . + t,V,.

This linear combination is called the general solution of the nonhomogeneous system.
Theorem 2.18 can now be restated as follows.

THEOREM 2.19. Let T: V,  -+ V,  be the linear transformation such that T(x) = y, where
x = (x1,*--, x,),  y = Q1,  . . . , ym> and

Yi  = &ikXk f o r i=l,2 ,,..,  m.
k = l

Let k denote the nullity of T. If vl,  . . . , vk  are k independent solutions of the homogeneous

system T(x) = 0 , and if b is one particular solution of the nonhomogeneous system T(x) = c ,
then the general solution of the nonhomogeneous system is

x = b + t,v, + . . . + tkvk,

where t,, . . . , t, are arbitrary scalars.

This theorem does not tell us how to decide if a nonhomogeneous system has a particular
solution b, nor does it tell us how to determine solutions vl, . . . , vk of the homogeneous
system. It does tell us what to expect when the nonhomogeneous system has a solution.
The following example, although very simple, illustrates the theorem.
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EXAMPLE. The system x + y = 2 has for its associated homogeneous system the equation
x + y = 0. Therefore, the null space consists of all vectors in V, of the form (t, -t),
where t is arbitrary. Since (t,  -t)  = t(1, -I),  this is a one-dimensional subspace  of V,
with basis (1, -- 1). A particular solution of the nonhomogeneous system is (0,2). There-
fore the general solution of the nonhomogeneous system is given by

(x,y>  = (0,2) + t(1,  -1) or x  =  t, y=2-tt,

where t is arbitrary.

2.18 Computation techniques

We turn now to the problem of actually computing the solutions of a nonhomogeneous
linear system. Although many methods have been developed for attacking this problem,
all of them require considerable computation if the system is large. For example, to solve
a system of ten equations in as many unknowns can require several hours of hand com-
putation, (even with the aid of a desk calculator.

We shall discuss a widely-used method, known as the Gauss-Jordan elimination method,
which is relatively simple and can be easily programmed for high-speed electronic computing
machines. The method consists of applying three basic types of operations on the equations
of a linear system:

(1) Interchanging two equations;
(2) Mui’tiply,ing  all the terms of an equation by a nonzero scalar:
(3) Adding tlg one equation a multiple of another.

Each time we perform one of these operations on the system we obtain a new system having
exactly the same solutions. Two such systems are called equivalent. By performing these
operations over and over again in a systematic fashion we finally arrive at an equivalent
system which can be solved by inspection.

We shall illustrate the method with some specific examples. It will then be clear how the
method is to be applied in general.

EXAMPLE 1. .4 system with a unique solution. Consider .the system

2x-5y+42=  - 3
x-2y+ z=5
x-4y+6z=lO.

This partiizular  system has a unique solution, x = 124, y = 75, z = 31 , which we shall
obtain by the Gauss-Jordan elimination process. To save labor we do not bother to copy
the letters x, y,, z and the equals sign over and over again, but work instead with the aug-
mented matrix

2 -5 4 -3

(2.24) l-2 1 5

1 -4 6 10
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obtained by adjoining the right-hand members of the system to the coefficient matrix. The
three basic types of operation mentioned above are performed on the rows of the augmented
matrix and are called row operations. At any stage of the process we can put the letters
x, y, z back again and insert equals signs along the vertical line to obtain equations. Our
ultimate goal is to arrive at the augmented matrix

1 0 0 124

(2.25) [ 10 10 75

0 0 1  3 1

after a succession of row operations. The corresponding system of equations is x = 124,
y = 75, z = 31 , which gives the desired solution.

The first step is to obtain a 1 in the upper left-hand corner of the matrix. We can do this
by interchanging the first row of the given matrix (2.24) with either the second or third
row. Or, we can multiply the first row by h. Interchanging the first and second rows, we get

l-2 1 5

! I2 -5 4 -3 .

1 -4 6 10

The next step is to make all the remaining entries in the first column equal to zero, leaving
the first row intact. To do this we multiply the first row by -2 and add the result to the
second row. Then we multiply the first row by -1 and add the result to the third row.
After these two operations, we ob tstin

(2.26)

‘1 -2 1

0 -1 2 - 1 3 .

o - 2 5 5 15
Now we repeat the process on the smaller matrix [  1: : / -‘:I which appears

adjacent to the two zeros. We can obtain a 1 in its upper left-hand corner by multiplying
the second row of (2.26) by - 1 . This gives us the matrixi 0 o-2 l-2 1 -2 5 1 13 5 5 1 .

Multiplying the second row by 2 and adding the result to the third, we get

l - 2 1 5

(2.27) [ 0 1 - 2 13 I .

0 0 1 3 1
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At this stage, the corresponding system of equations is given by
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x-2y+ z= 5

y - 22 = 13

2 = 31.

These equations can be solved in succession, starting with the third one and working
backwards, to give us

z = 31, y = 13 + 22 = 13 + 62 = 75, x = 5 + 2~ - z = 5 + 150 - 31 = 124.

Or, we can continue the Gauss-Jordan process by making all the entries zero above the
diagonal elernents in the second and third columns. MultiFllying the second row of (2.27)
by 2 and adding rhe result to the first row, we obtain

[ 0 0 1 0 0 1 -3 -2 1 31 31 13 1 .

Finally, we multiply the third row by 3 and add the result to the first row, and then multiply
the third row by :2 and add the result to the second row to get the matrix in (2.25).

EXAMPLE 2. A system with more than one solution. Consider the following system of 3
equations in 5 unknowns:

2x-55y+4z+ u-vu-3

(2.28) x-2y+ z -  u+v=5

x-44y+62+2u--v=lO.

The corresponding augmented matrix is

[ 2-5 1 1 -2 -4 4 6 l-l 2 1 -1 -1 1 -3 10 5. 1

The coefficients of x, y, z and the right-hand members are the same as those in Example 1.
If we perform the same row operations used in Example 1, we: finally arrive at the augmented
matrix

1 0 0  - 1 6 19 124

0 1 0 -9 1 1 7 5  1 .

0 0 1 -3 4 3 1
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The corresponding system of equations can be solved for x, y, and z in terms of u and u,
giving us

x = 124 + 162~  - 190

y =  75+ 9U-110

z =  3 1  +  3u- 4v.

If we let u = t, and u = t,, where t, and t2 are arbitrary real numbers, and determine
x, y, z by these equations, the vector (x, y, z, U, u) in V, given by

(x,y,z,  u, u) = (124 + 16t, - 19t,,  75 + 9t, - llt,, 31 + 3t, - 4t,, t,, t,)

is a solution. By separating the parts involving t, and t,, we can rewrite this as follows:

(x,y,z,  u, u) = (124, 75, 31,0,0)  + t1(16, 9,3,  1,0) + &C-19, -11, -4,O,  1)s

This equation gives the general solution of the system. The vector (124, 75, 31,0,0)  is a
particular solution of the nonhomogeneous system (2.28). The two vectors (16, 9, 3, 1,0)
and  ( -19 ,  -11, -4 , 0, 1) are solutions of the corresponding homogeneous system. Since
they are independent, they form a basis for the space of all solutions of the homogeneous
system.

EXAMPLE 3. A system with no solution. Consider the system

2x-5y+4z= - 3

(2.29) x-2y+ z =  5

x-4y+5z= 1 0 .

This system is almost identical to that of Example 1 except that the coefficient of z in the
third equation has been changed from 6 to 5. The corresponding augmented matrix is

i 2 1 l-2 -5 -4 4  5  1 -3 10 5.I
Applying the same row operations used in Example 1 to transform (2.24) into (2.27),  we
arrive at the augmented matrix

(2.30) i 0 0 l-2 0 1 -2 0 1 3 1  1 3  5 1 .

When the bottom row is expressed as an equation, it states that 0 = 31. Therefore the
original system has no solution since the two systems (2.29) and (2.30) are equivalent.
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In each of the foregoing examples, the number of equations did not exceed the number
of unknowns. If there are more equations than unknowm, the Gauss-Jordan process is
still applicable. For example, suppose we consider the syste:m of Example 1, which has the
solution x = 124 , , y = 75, z = 31. If we adjoin a new equation to this system which is also
satisfied by the same triple, for example, the equation 2x - 3~ + z = 54, then the
elimination process leads to the agumented matrix

0 10 75

0 0 1  3 1

000 0

with a row of zeros along the bottom. But if we adjoin a new equation which is not satisfied
by the triple (124, 75, 31), for example the equation x + y + z = 1, then the elimination
process leads to an augmented matrix of the form

1 0 0 124

where a # 0. The last row now gives a contradictory equation 0 = a which shows that
the system has no solution.

2.19 Inverses of square matrices

Let A = (a,J  be a square n x n matrix. If there is another n x n matrix B such that
BA = I, where Z is the n x n identity matrix, then A is called nonsinpdar  and B is called a
left inverse of A.

Choose the usual basis of unit coordinate vectors in V, and let T: V,  + V, be the linear
transformation with matrix m(7’) = A. Then we have the following.

THEOREM 2.20. The matrix A is nonsingular if and only if T is invertible. If BA = I
then B = m(T-I).

Proof. Assume that A is nonsingular and that BA = I. We shall prove that T(x) = 0
implies x = 0. Given x such that T(x) = 0, let X be the n x 1 column matrix formed
from the components of x. Since T(x) = 0, the matrix product AX is an n x 1 column
matrix consisting of zeros, so B(AX) is also acolumn matrixof zeros. But B(AX) = (BA)X =
IX = X, so every component of x is 0. Therefore, Tis invertible, and the equation TT-l= Z
implies that m(73m(T-l) = Z or Am(T-l)  = I. Multiplying on the left by B, we find
m(T-l) = B , , Conversely, if T is invertible, then T-lT  is the identity transformation so
m(T-l)m(T)i.s  the identity matrix. Therefore A is nonsingular and m(F)A  = I.
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All the properties of invertible linear transformations have their counterparts for non-
singular matrices. In particular, left inverses (if they exist) are unique, and every left
inverse is also a right inverse. In other words, if A is nonsingular and BA = I, then
AB = I. We call B the inverse of A and denote it by A-l.  The inverse A-’ is also non-
singular and its inverse is A.

Now we show that the problem of actually determining the entries of the inverse of a
nonsingular matrix is equivalent to solving n separate nonhomogeneous linear systems.

Let A = (a,J  be nonsingular and let A-l  = (hij)  be its inverse. The entries of A and
A-l  are related by the II?  equations

(2.31)

where aij = 1 if i = j , and dij = 0 if i # j. For each fixed choice of j, we can regard this
as a nonhomogeneous system of n linear equations in n unknowns bli,  bzj, . . . , b,, . Since
A is nonsingular, each of these systems has a unique solution, the jth column of B. All
these systems have the same coefficient-matrix A and differ only in their right members.
For example, if A is a 3 x 3 matrix, there are 9 equations in (2.31) which can be expressed
as 3 separate linear systems having the following augmented matrices :

If we apply the Gauss-Jordan process, we arrive at the respective augmented matrices

In actual practice we exploit the fact that all three systems have the same coefficient-matrix
and solve all three systems at once by working with the enlarged matrix

all

i

62 al3

a21 az2 a23

a3, a32 a33

The elimination process then leads to

1 0 0

0  1 0 .

0 0 1 1
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The matrix on the right of the vertical line is the required inverse. The matrix on the left
of the line is the 3 x 3 identity matrix.

It is not necessary to know in advance whether A is nonsingular. If A is singular (not
nonsingular), we can still apply the Gauss-Jordan method, but somewhere in the process
one of the diagonal elements will become zero, and it w.ill not be possible to transform A
to the identity matrix.

A system of n linear equations in n unknowns, say

i = 1, 2, . . . , n ,

can be written more simply as a matrix equation,

AX= C,

where A := (aij)  is the coefficient matrix, and X and C are column matrices,

Xl Cl

X2 c2

x= : )1.. ::c= 1 .

X73 cn

If A is nonsingular there is a unique solution of the system given by X = A-T.

2.20 Exercises

Apply the Gauss-Jordan elimination process to each of the following systems. If a solution
exists, determine the general solution.

1. x+y+3z= 5
2x -;v  + 4z = 11

-y  + z = 3.
2. 3x + 2y + z = 1

5x :3y 32  =+ + 2
xs y -  z = l .

3. 3x + 2y + z = 1
5x  :3y 32  =+ + 2
7x + 4y + sz = 3.

4. 3x + 2y + z = 1
5x 3y 32  =+ + 2
7x + 4y  + 5z = 3

x +  y -  z = o .

5 . 3X - 2J1  + 5Z  + U = 1
X + J’  - 3Z + 2U = 2
6x+ JI-42+3U=7.

6. x+y-3z+  u=5
2x-y+ z-2u=2
7x+y-72+3u=3.

7. X + J’ + 22  + 3U + 4U = 0
2X + 2J,  + 72 + 1lU  + 14U = 0
3x + 3J'  + 62 + 10~  + 15~  =O.

8. X - 21’  + Z + 2U = - 2
2X + 3J,  - Z -  5U = 9
4 x  - Jj+Z-U= 5
5X - 31’  + 22 + U = 3.

9.Provethatthesystemx+y+2~=2,2x-y+3~=2,5x--y+az=6,hasaunique
solution if IZ # 8. Find all solutions when a = 8.

10. (a) Determine all solutions of the system

5x+2y-62+2u=  --1

x- y+ z- u=--2.
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(b) Determine all solutions of the system

5x +2y -6z+2u=  - 1

x - y +  z -  u = - 2

x+y+z  = 6.
/

11. This exercise tells how to determine all nonsingular 2 x 2 matrices. Prove that

a b
Deduce that [ 1c d

is nonsingular if and only if ad - bc # 0, in which case its inverse is

Determine the inverse of each of the matrices in Exercises 12 through 16.

13.

14.

15.

16.

‘ 1 2 3 4

0 1 2 3 1
0 0 12’

I
p 0 0 1_1

-0  1 0 0 0 o-

2 0 2 0 0 0

0 3 0 1 0 0

_ !

0 0 1 0 2 0 ’

0 0 0 3 0 1

0 0 0 0 2 0

2.21 Miscellaneous exercises on matrices

1. If a square matrix has a row of zeros or a column of zeros, prove that it is singular.
2. For each of the following statements about II x n matrices, give a proof or exhibit a counter

example.
(a) If AB + BA = 0, then A2B3  = B3A2.
(b) If A and B are nonsingular, then A + B is nonsingular.
(c) If A and B are nonsingular, then AB is nonsingular.
(d) If A, B, and A + B are nonsingular, then A - B is nonsingular.
(e) If A3  = 0, then A - Z is nonsingular.
(f) If the product of k matrices A, . . . A, is nonsingular, then each matrix Ai is nonsingular.
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find a nonsingular matrix P such that P-‘AP  =

a i
4. The matrix A = [ I , where i2 =

i b
-1,a  =$(l  + $$,andb  =$(l  - &),hastheprop-

erty that A2 = A. Describe completely all 2 x 2 matrices A with complex entries such that
A2=A.

5. If A2 = A, prove that (A + I)” = Z f (2k - l)A.
6. The special theory of relativity makes use of a set of equations of the form x’ = a(x - ut),

y’ = y, z’ = z, t’ = a(t  - vx/c2). Here v represents the velocity of a moving object, c the
speed of light, and a = c/Jc2 - v2, where Ju] < c . The linear transformation which maps the
two-dimensional vector (x, t) onto (x’, t’) is called a L,orentz  transformation. Its matrix
relative to the usual bases is denoted by L(v) and is given by

1 - v
L(u) = a[ I,,--DC-Z  1

Note that L(v) is nonsingular and that L(O)  = I. Prove that L(v)L(u)  = L(w), where w =
(u + v)c2/(uv  + c2).  In other words, the product of two Lorentz transformations is another
Lorentz transformation.

7. If we interchange the rows and columns of a rectangular matrix A, the new matrix so obtained
is called the transpose of A and is denoted by At.  For example, if we have

[ 1 2 3

A = 4 5 16 ’

Prove that transposes have the following properties :
(a) (At)t = A
(d) (AB)t  = B”A”.

(b) (A + B)t = At  + Bt. (c) (cA)~ = cAt,
(e) (At)-l  = (A-l)t if A is nonsingular.

8. A square matrix A is called an orthogonal matrix if AA t := I. Verify that the 2 x 2 matrix

[::e” z]
is orthogonal for each real 0.  If A is any n x II orthogonal matrix, prove

that its rows, considered as vectors in V, , form an orthonormal set.
9. For each of the following statements about n x n matrices, give a proof or else exhibit a

counter example.
(a) If A and B are orthogonal, then A + B is orthogonal.
(b) If A and B are orthogonal, then AB is orthogonal.
(c) If A and B are orthogonal, then B is orthogonal.

10. Hadumard matrices, named for Jacques Hadamard (1865-1963),  are those n x n matrices
with the following properties:

I. Each entry is 1 or -1 .
II. Each row, considered as a vector in V, , has length &.

III. The dot product of any two distinct rows is 0.
Hadamard matrices arise in certain problems in geometry and the theory of numbers, and
they have been applied recently to the construction of optimum code words in space com-
munication. In spite of their apparent simplicity, they present many unsolved problems. The
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main unsolved problem at this time is to determine all n for which an n x n Hadamard matrix
exists. This exercise outlines a partial solution.
(a) Determine all 2 x 2 Hadamard matrices (there are exactly 8).
(b) This part of the exercise outlines a simple proof of the following theorem: ZfA is an n x n
Hadamard matrix, where n > 2, then n is a multiple of 4. The proof is based on two very simple
lemmas concerning vectors in n-space. Prove each of these lemmas and apply them to the
rows of Hadamard matrix to prove the theorem.

LEMMA 1. If X, Y, Z are orthogonal vectors in V, , then we have

(x+  Y)*(X+Z)=  lpq2.

LEMMA 2. Write X=(x, ,...,  xn), Y=(yl  ,...,  yn), Z=(z,  ,...,  zn). Zf  each
component xi,  yi,  zi is either 1 or - 1 , then the product (xi + yi)(xi  + zi) is either 0 or 4.



3
DETERMINANTS

3.1 Introduction

In many applications of linear algebra to geometry and analysis the concept of a
determinant plays an important part. This chapter studies the basic properties of determi-
nants and some of their applications.

Determinants of order two and three were intoduced  in Volume I as a useful notation for
expressing certain formulas in a compact form. We recall ‘that a determinant of order two
was defined by the formula

(3.1)
Qll QlzI I =  Q l l Q 2 2  - Ql2Q21  *
Q21 a 2 2

Despite similarity in notation, the determinant
Qll

I I
‘I2 (written with vertical bars) is

a21 Q22

conceptually distinct from the matrix ( ‘ttwn en with square brackets). The

determinant is ;i  number assigned to the matrix according to Formula (3.1). To emphasize
this connection we also write

Determinants of order three were defined in Volume I in terms of second-order determi-
nants by the formula

This chapter treats the more general case, the determinant of a square matrix of order n
for any integer n 2 1 . Our point of view is to treat the: determinant as a function which

71
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assigns to each square matrix A a number called the determinant of A and denoted by det A.
It is possible to define this function by an explicit formula generalizing (3.1) and (3.2).
This formula is a sum containing n! products of entries of A. For large n the formula is
unwieldy and is rarely used in practice. It seems preferable to study determinants from
another point of view which emphasizes more clearly their essential properties. These
properties, which are important in the applications, will be taken as axioms for a determi-
nant function. Initially, our program will consist of three parts: (1) To motivate the
choice of axioms. (2) To deduce further properties of determinants from the axioms.
(3) To prove that there is one and only one function which satisfies the axioms.

3.2 Motivation for the choice of axioms for a determinant function

In Volume I we proved that the scalar triple product of three vectors A,, A,, A, in 3-space
can be expressed as the determinant of a matrix whose rows are the given vectors. Thus
we have

[ 1all al2 al3
A, x A, - A, = det aZ1  aZ2  aZ3  ,

a31 a32 a33

where Al  = (a,, , a12,  a13>,  A2  = (azl  , a22,  a23>,  and  A3 = (a31,  a32T  a33)  -

If the rows are linearly independent the scalar triple product is nonzero; the absolute
value of the product is equal to the volume of the parallelepiped determined by the three
vectors A,, A,, A,. If the rows are dependent the scalar triple product is zero. In this case
the vectors A,, A,, A, are coplanar and the parallelepiped degenerates to a plane figure of
zero volume.

Some of the properties of the scalar triple product will serve as motivation for the choice
of axioms for a determinant function in the higher-dimensional case. To state these
properties in a form suitable for generalization, we consider the scalar triple product as a
function of the three row-vectors A,, A,, A,. We denote this function by d; thus,

d(A,,A,,A,)=A,  X A2*A3.

We focus our attention on the following properties:
(a) Homogeneity in each row. For example, homogeneity in the first row states that

dOA,,  A,,  A31  = t 44, A2  9 A31 for every scalar t .

(b) Additivity in each row. For example, additivity in the second row states that

441,  4 + C, ~43)  = 44, A,,  A31  + d(A,,  C, A31

for every vector C.
(c) The scalar triple product is zero if two of the rows are equal.
(d) Normalization:

d(i,j, k) = 1, w h e r e  i=(l,O,O), j=(O,l,O),  k=(O,O,l).
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Each of these properties can be easily verified from properties of the dot and cross
product. Some of these properties are suggested by the geometric relation between the scalar
triple product and the volume of the parallelepiped determined by the geometric vectors

A,,  A,, A:,. The geometric meaning of the additive prc’perty  (b) in a special case is of
particular interest. If we take C = A, in (b) the second term on the right is zero because of
(c), and relation (b) becomes

(3.3) 44, A, + A,, 4) = d(A,  , A,, A&.

This property is illustrated in Figure 3.1 which shows a parallelepiped determined by
A,, A,, A,, and another parallelepiped determined by A,, A, + AZ,  A,. Equation (3.3)
merely states that these two parallelepipeds have equal volumes. This is evident geometri-
cally because the parallelepipeds have equal altitudes and bases of equal area.

Volume = d(A , , A 2r  A 3) Volume =: d(A ,, A, + A,, AZ)

FIGURE  3.1

Geometric interpretation of the property d(A,,  A,, AS)  = d(A,,  A, + A,, A&.  The
two parallelepipeds have equal volumes.

3.3 A set of axioms for a determinant function

The properties of the scalar triple product mentioned in the foregoing section can be
suitably generalized and used as axioms for determinants of order n. If A = (a,J  is an
n x n matrix with real or complex entries, we denote its rows by A,, . . . , A,, . Thus, the
ith row of .4 is a vector in n-space given by

Ai = (ail,  ai2,  . . . , a,,J.

We regard the determinant as a function of the n rows A,, . . . , A,, and denote its values by

d(A,,..., A,) or by det A.

AXIOMATIC DEFINITION OF A DETERMINANT FUNCTION. A real- or complex-valuedfunction
d, dejinedfor  each ordered n-tuple  of vectors A,, . . . , A, ir;l  n-space, is called a determinant
function of order n if it satisjes  the following axioms for al’1 choices of vectors A,, , . . , A,
and C in n-space:
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AXIOM 1. HOMOGENEITY IN EACH ROW. If the kth row A, is multiplied by a scalar t,
then the determinant is also multiplied by t:

d(. . . , tA,,  . . .) = td(. . . , A,, . . .).

A X I O M  2 . A D D I T I V I T Y  I N  E A C H  R O W . For each k we have

d(A,  ,...,  A,+C ,...,  A,)=d(A,  ,...,  A, ,...,  A,)+&(A,  ,...,  C ,...,  A,).

AXIOM 3. THE DETERMINANT VANISHES IF ANY TWO ROWS ARE EQUAL:

d(A,,...,A,)=O if Ai  = Ai for some i and j with i # j.

AXIOM 4. THE DETERMINANT OF THE IDENTITY MATRIX IS EQUAL TO 1:

d(I,, . . . , Z,) = 1 , where I, is the kth unit coordinate vector.

The first two axioms state that the determinant of a matrix is a linear function of each of
its rows. This is often described by saying that the determinant is a multilinear function of
its rows. By repeated application of linearity in the first row we can write

&,C,,A,,...,A,
k=l

=~~hWwb,.  . . ,A,),

where tl, . . . , t, are scalars and C,,  . . . , C,  are any vectors in n-space.
Sometimes a weaker version of Axiom 3 is used:

AXIOM 3’. THE DETERMINANT VANISHES IF TWO ADJACENT ROWS ARE EQUAL:

d(A,,  . . . , A,) = 0 if Ak = A,+, forsomek=1,2  ,...,  n - l .

It is a remarkable fact that for a given n there is one and only one function d which
satisfies Axioms 1, 2, 3’ and 4. The proof of this fact, one of the principal results of this
chapter, will be given later. The next theorem gives properties of determinants deduced
from Axioms 1,2,  and 3’ alone. One of these properties is Axiom 3. It should be noted that
Axiom 4 is not used in the proof of this theorem. This observation will be useful later when
we prove uniqueness of the determinant function.

THEOREM 3.1. A determinant function satisfying Axioms 1, 2, and 3’ has the following
further properties:

(a) The determinant vanishes if  some row is 0:

d(A,,  . . .,A,)=0 if  A,=0 for some k .
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(b) The determinant changes sign if two adjacent rows are interchanged:

4..  . , A,,  &+I,.  . .> = -d(.  . . , AB+:,, A,, . . .).

(c) The determinant changes sign if any two rows Ai and A)  with i # j are interchanged.
(d) The determinant vanishes if any two rows are equal:

d(A,.,  . . .,A,)=0 i f  Ai =  Aj for some i and j with i # j.

(e) The determinant vanishes $ its rows are dependent.

Proof. To prove (a) we simply take t = 0 in Axiom 1. To prove (b), let B be a matrix
having the same rows as A except for row k and row k + 11. Let both rows Bk and BKfl
be equal to /I, + A,,,  . Then det B = 0 by Axiom 3’. Thus we may write

d(. . . , Ak+Ak+l,Ak+Ak+l,...)=O.

Applying the additive property to row k and to row k + 1 we can rewrite this equation as
follows :

d( . . . . A,,& ,... )+d(...,A,,A,+,  ,... )+d( . . . . &+I,& ,...)

+d( . . . . Ak+l,Ak+l,... )=O.

The first and fourth terms are zero by Axiom 3’. Hence the second and third terms are
negatives of each other, which proves (b).

To prove (c) we can assume that i < j . We can interchange rows Ai and Aj by performing
an odd number of interchanges of adjacent rows. First we interchange row A, successively
with the earlier adjacent rows Aj+l,  Ajpz,.  . . , Ai. This requires j - i interchanges.
Then we interchan,ge  row Ai successively with the later adjacent rows Ai+l,  Ai+z, . . . , Ajpl.
This requires j - i - I further interchanges. Each interchange of adjacent rows reverses
the sign of the determinant. Since there are (j - i) + (j -- i - 1) = 2(j - i) - 1 inter-
changes altogether (an odd number), the determinant changes,  sign an odd number of times,
which proves (c).

To prove (d), let B be the matrix obtained from A by interchanging rows Ai and Ad.
Since Ai = Aj we have B = A and hence det B = det A. But by (c), det B = -det A.
Therefore det A = 0.

To prove (e) suppose scalars cr,  . . . , c, exist, not all zero, such that I;=:=,  ckA, = 0.
Then any row A, with cK # 0 can be expressed as a linear combination of the other rows.
For simplicity, suppose that A, is a linear combination of the others, say A, = zE=,  t,A,  .
By linearity of the first row we have

d(A,,A,,  t.. , &Ak,A2,...,An
k=2

=kt2ft  44x.,  A,,  . . . , A,).

But each term d(A,, A,, . . . , A,) in the last sum is zero since A, is equal to at least one of
A A2,“‘, n* Hence the whole sum is zero. If row A, is a linear combination of the other
rows we argue the same way, using linearity in the ith row. This proves (e).
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3.4 Computation of determinants

Determinants

At this stage it may be instructive to compute some determinants, using only the axioms
and the properties in Theorem 3.1, assuming throughout that determinant functions exist.
In each of the following examples we do not use Axiom 4 until the very last step in the
computation.

EXAMPLE 1. Determinant of a 2 x 2 matrix. We shall prove that

(3.4) det
all al2[ 1 = a11a22 - a12a21.azl a22

Write the row vectors as linear combinations of the unit coordinate vectors i = (1,O) and
j = (0, 1):

Al = (all, al,)  = alli  + ad, A2 = (a,,  , a22)  = a,+ + a22  j .
Using linearity in the first row we have

WI, A2) = d(alli  + a12j, A,) = a,, d(i, A,) + a,, d(j, A,).

Now we use linearity in the second row to obtain

d(i,  A,)  = d(i,  a,,i + a2zj)  = u21  d(i,  i)  + a22  d(i,j) = a22  d(i,j),

since d(i, i) = 0. Similarly we find

d(j,  A,)  = d(j,  a,,i + az2j)  = a21  d(j, 9 = -a21 dG,j).

Hence we obtain

44, A,)  = Gw22 - a12a2d  4&j)  .

But d(i,j)  = 1 by Axiom 4, so d(A,,  A,) = a11u22 - ur2u2r,  as asserted.
This argument shows that if a determinant function exists for 2 x 2 matrices, then it

must necessarily have the form (3.4). Conversely, it is easy to verify that this formula does,
indeed, define a determinant function of order 2. Therefore we have shown that there is one
and only one determinant function of order 2.

EXAMPLE 2. Determinant of a diagonal matrix. A square matrix of the form

a11 0 . . . 0

0 a22 0

A=' * *I I. .

. .

_ 0 0 - * - arm
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is called a diagonal matrix. Each entry ai, off the main diag,onal  (i #j)  is zero. We shall
prove that the det.erminant  of A is equal to the product of its diagonal elements,

(3.5) det A = a11az2  * * - arm ,

The kth row of .A is simply a scalar multiple of the kth unit ‘coordinate vector, A, = a,,Z, .
Applying the homogeneity property repeatedly to factor out the scalars one at a time we get

det  A = d(Al,  . . . , A,)  = %A,  . . . , a,,Z,J  = all * * * arm d(Z,, . . . , I,).

This formula can be written in the form

det A = a,, - - * a,,,, det I,

where Z is the identity matrix. Axiom 4 tells us that det Z = 1 so we obtain (3.5).

EXAMPLE 3. Determinant of an upper triangular matrix. A square matrix of the form

is called an upper triangular matrix. All the entries below the main diagonal are zero. We
shall prove that the determinant of such a matrix is equal to the product of its diagonal
elements,

det U = ullu22  * * * u,,  .

First we prove that det U = 0 if some diagonal element Q = 0. If the last diagonal
element u nn  is zero., then the last row is 0 and det U  = 0 by Theorem 3.1 (a). Suppose, then,
that some earlier diagonal element uii  is zero. To be specific, say uz2  = 0. Then each of
the n - 1 row-vectors U,, . . . , U, has its first two components zero. Hence these vectors
span a subspace  of dimension at most n - 2. Therefore these n - 1 rows (and hence all
the rows) are dependent. By Theorem 3.1(e),  det U = 0. In the same way we find that
det U = 0 if any diagonal element is zero.

Now we treat the general case. First we write the first row UL as a sum of two row-vectors,

where V, = [ull, 0, . . . , 0] and Vi = [O,  Q, u,,, . . . , uln]. By linearity in the first row
we have

det. U = det  (V,, U,,  . . . , U,)  + det (Vi, U2,.  . . , U,).
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But det (Vi,  U,,  . . . , U,)  = 0 since this is the determinant of an upper triangular matrix
with a diagonal element equal to 0. Hence we have

(3.6) detU=det(T/,,U,  ,...,  U,,).

Now we treat row-vector U, in a similar way, expressing it as a sum,

where

v2 = LO,  u22,0,  * * . 3 01 and v; = [o, O,  u23,  . . . , UZn]  *

We use this on the right of (3.6) and apply linearity in the second row to obtain

(3.7) det U = det (V,, V,,  U,,  . , . , U,,),

since det (V,, Vi, U3,  . . . , U,) = 0. Repeating the argument on each of the succeeding
rows in the right member of (3.7) we finally obtain

detU=det(VI,V,  ,...,  V,),

where (V,, V,,  . . . , V,)  is a diagonal matrix with the same diagonal elements as U. There-
fore, by Example 2 we have

det U = ullu22 . + * u,,,

as required.

EXAMPLE 4. Computation by the Gauss-Jordan process. The Gauss-Jordan elimination
process for solving systems of linear equations is also one of the best methods for com-
puting determinants. We recall that the method consists in applying three types of operations
to the rows of a matrix:

(1) Interchanging two rows.
(2) Multiplying all the elements in a row by a nonzero scalar.
(3) Adding to one row a scalar multiple of another.

By performing these operations over and over again in a systematic fashion we can transform
any square matrix A to an upper triangular matrix U whose determinant we now know
how to compute. It is easy to determine the relation between det A and det U. Each time
operation (1) is performed the determinant changes sign. Each time (2) is performed with
a scalar c # 0, the determinant is multiplied by c. Each time (3) is performed the deter-
minant is unaltered. Therefore, if operation (1) is performedp times and if c1 , . . . , C~  are
the nonzero scalar multipliers used in connection with operation (2), then we have

(3.8) det A = (- 1)P(c,c2  * * * c,)-l  det U.

Again we note that this formula is a consequence of the first three axioms alone. Its proof
does not depend on Axiom 4.
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In Example 3 of the foregoing section we showed that Axioms 1, 2, and 3 imply the
formula det U == ulluz2  * * . u,, det I. Combining this with (3.8) we see that for every n x n
matrix A there is a scalar c (depending on A) such that

(3.9) d(A,  ) . . . ) A,) = c d(Z, ) . . . ) I,).

Moreover, this formula is a consequence of Axioms 1, 2, and 3 alone. From this we can
easily prove that there cannot be more than one determinant function.

THEOREM 3.2, UNIQUENESS THEOREM FOR DETERMINANTS. Let d be afunction satisfying
all four axioms for a determinant function of order n, and let f be another function satisfying
Axioms 1, 2, and 3. Then for every choice of vectors A,, . . , A, in n-space we have

(3.10) .f(A,>. . . , A,)  = 44,.  . . , A,)f(Z,,  . . . , Z,).

In particular, ifJf  also satisjies  Axiom 4 we have f (A,, , . . , A,,) = d(A,  , . . . , A,,).

Proof. Let g(A,,  . . . , A,) = f(A,,  . . . , A,) - d(A,, . . . , A,)f(Z,,  . . . , I,). We will
prove that g(A,,  . . . , A,,) = 0 for every choice of A,, . . . , A,. Since both d and f satisfy
Axioms 1,2,  and 3 the same is true of g. Hence g also satisfies Equation (3.9) since this was
deduced from the first three axioms alone. Therefore we can write

(3.11) g(4,.  . . , A,)  = c&Z,, . . . , fn),

where c is a sca1a.r  depending on A. Taking A = Z in the dlefinition  of g and noting that d
satisfies Axiom 4 we find

gu,, * * * , L>  =f(4,  * * * , Z,) -f(Z,,  *. * , Z,) = 0.

Therefore Equation (3.11) becomes g(A,,  . . . , A,) = 0. This completes the proof.

3.6 Exercises

In this set of exercises you may assume existence of a determinant function. Determinants of
order 3 may be computed by Equation (3.2).

1. Compute each of the following determinants

2 1 1 3 0 8

(4 1 4 -4, (b) 5 0 7

1 0 2 - 1 4 2

a 1 0

, (c) 2 a 2

0 1 a
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= 1,  compute the determinant of each of the following matrices:

3. (a) Prove that a b c = (b - a)(c - a)(c  - b).

a2  b2  c2

(b) Find corresponding formulas for the determinants

1 1 1

a b c and

a3  b3  c3

1 1 1

a2  b2  c2

a3  b3  c3

4 . Compute the determinant of each of the following matrices by transforming each of them to an
upper triangular matrix.

I
1

a

a2

u3

1 1 1

b c d

1

b2  c2 d2 ’
(4

b3  c3 d3

-1 1 1 1

a b c d

a2  b2  c2

1

d2 ’

-a4  b4  c4 d4

:: 11 - 1- 1 1 11 1

11 - 1- 1 -1 -1-1 -1

Ca)Ca) 11 11 -1  -1-1  -1 11 ’’ (b)(b)

11 11 1 - l1 - l

(4

- a 1 0 0 o-

4 a 2 0 0

0 3 a 3 0

0 0 2 a 4

-0 0 0 1 a -

, Cd

‘ 1

1

1 1 1

1 1 1 -1 - 1 - 1

1 1 -1 -1 1 1

1 - 1 -1 1 - 1 1

1 - 1 l - l 1

1 !*

1

1 - 1 -1 1 1 - 1

5. A lower triangular matrix A = (Q)  is a square matrix with all entries above the main diagonal
equal to 0; that is, aij = 0 whenever i <j. Prove that the determinant of such a matrix is
equal to the product of its diagonal entries: det A = a11u22  . . . nnla .

6. Letfr , f2,  gr , g, be four functions differentiable on an interval (a, b). Define

F(x) = flw b(x)

I Ig1(4 gzw

for each x in (a, b). Prove that
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7. State and prove a generalization of Exercise 6 for the determinant

prove that F’(x) = I;,!:) ii::) 1.

(b) State and prove a corresponding result for 3 x 3 determinants, assuming the validity of
Equation (3.2).

9. Let U and V be two 12 x n upper triangular matrices.
(a) Prove that each of U + Vand  UV is an upper triangular matrix.
(h) Prove that det (UV) = (det U)(det V) .
(c) If det U # 0 prove that there is an upper triangular matrix CJ-l  such that UU-l  = I,
and deduce that det (U-l)  = l/det  U.

10. Calculate det ‘4,  det (A-l),  and 4-l  for the following upper triangular matrix:

2 3 4 5

0 2 3I 4

A =

0 0 2 13 ’

0 0 0 2

3.7 The product formula for determinants

In this section ‘we use the uniqueness theorem to prove that the determinant of a product
of two square matrices is equal to the product of their determinants,

det (AB) = (det A)(det  B) ,

assuming that a determinant function exists.
We recall that the product AB of two matrices A = (a,,) and B = (bij)  is the matrix

C = (cij)  whose i, j entry is given by the formula

(3.12)
12

cii  = C aikbkj.
k=l

The product is de:fined  only if the number of columns of the left-hand factor A is equal to
the number of rows of the right-hand factor B. This is always the case if both A and B are
square matrices of the same size.

The proof of the product formula will make use of a simple relation which holds between
the rows of AB a:nd the rows of A. We state this as a lemma. As usual, we let Ai denote
the ith row of matrix A.
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LEMMA 3.3. If A is an m x n matrix and B an n x p matrix, then we have

(AB)i  = A,B.

That is, the ith row of the product AB is equal to the product of row matrix Ai  with B.

Proof. Let Bj denote thejth column of B and let C = AB. Then the sum in (3.12) can
be regarded as the dot product of the ith row of A with thejth column of B,

cij = A,.&‘.

Therefore the ith row Ci  is the row matrix

Ci  = [Ai  . B’, Ai  . B2,  . . . , Ai  - BP].

But this is also the result of matrix multiplication of row matrix Ai with B, since

A,B = [ail,  . . . , ain] = [Ai-B1,...,Ai*BP].

Therefore Ci = A,B  , which proves the lemma.

THEOREM 3.4. PRODUCTFORMULA FOR DETERMINANTS. For any n x n matrices A andB
we have

det (AB) = (det A)(det  B) .

Proof. Since (AB), = A,B, we are to prove that

d(A,B,  . . . , A,B) = d(A,, . . . , A,)d(B,,  . . . , B,).

Using the lemma again we also have Bi = (ZB), = Z,B,  where Z is the n x n identity
matrix. Therefore d(B,, . . . , B,) = d(Z,B,  . . . , Z,B)  , and we are to prove that

d(A,B,  . . . , A,B) = d(A,, . . . , A,)d(Z,B, . . . , Z,B).

We keep B fixed and introduce a function f defined by the formula

f(A,,  . . . , A,) = d(A,B,  . . . , A,B).

The equation we wish to prove states that

(3.13) f(A,,  , . . ,A,) = W,,...,  A,)fU,, . . . ,4>.



Determinants and independence of vectors 83

But now it is a simple matter to verify that f satisfies Axioms 1, 2, and 3 for a determinant
function so, by the uniqueness theorem, Equation (3.13) holds for every matrix A. This
completes the proof.

Applications of the product formula are given in the next two sections.

3.8 The determinant of the inverse of a nonsingular matrix

We recall that a. square matrix A is called nonsingular if it has a left inverse B such that
BA = I. If a left inverse exists it is unique and is also a right inverse, AB = I. We denote
the inverse by A-l.  The relation between det A and det A-’ is as natural as one could expect.

THEOREM 3.5. If matrix A is nonsingular, then det A # 0 and we have

(3.14) &t  A-l = 1
det A ’

Proqfi From the product formula we have

(det A)(det  A-l)  = det (AA-‘) = det .I = 1.

Hence det A # 0 and (3.14) holds.

Theorem 3.5 shows that nonvanishing of det A is a necessary condition for A to be non-
singular. Later we will prove that this condition is also sufficient. That is, if det A # 0
then A--l exists.

3.9 Determinants and independence of vectors

A simple criterion for testing independence of vectors can be deduced from Theorem 3.5.

THEOREM 3.6. A set of n vectors A,, . . . , A, in n-space is independent if and only if
W, , . . . , A,) # 0.

Proof. We already proved in Theorem 3.2(e) that dependence implies d(A,  , . . . , A,) =
0. To prove the converse, we assume that A,, . . . , A, are independent and prove that
d(A,, . . . , A,) # 0.

Let Vn denote the linear space of n-tuples of scalars. Since A’, , . . . , A, are n independent
elements in an n-dimensional space they form a basis for V, . By Theorem 2.12 there is a
linear transformation T: V, + V, which maps these n vectors onto the unit coordinate
vectors,

TV,) = Ire for k=l,2 ,...,  n.

Therefore there is an n x n matrix B such that

A,B = I, for k=l,2 ,...,  n.
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But by Lemma 3.3 we have A,B = (AB), , where A is the matrix with rows A,, . . . , A,.
Hence AB = I, so A is nonsingular and det A # 0.

3.10 The determinant of a block-diagonal matrix

A square matrix C of the form
A 0

c
= 0 B’[ 1

where A and B are square matrices and each 0 denotes a matrix of zeros, is called a block-
diagonal matrix with two diagonal blocks A and B. An example is the 5 x 5 matrix

0 0 4 5 6

The diagonal blocks in this case are1 0
A = [ 1 and

0 1

The next theorem shows that the determinant of a block-diagonal matrix is equal to the
product of the determinants of its diagonal blocks.

THEOREM 3.7. For any two square matrices A and B we have

(3.15) det = (det A)(det B).

Proof. AssumeAisnxnandBismxm. We note that the given block-diagonal
matrix can be expressed as a product of the form

where I,,  and I,,,  are identity matrices of orders n and m, respectively. Therefore, by the
product formula for determinants we have

(3.16) det[t I]=det[t ZI]det[z Og].



---
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A 0
Now we regard the determinant det [ I as a function of the n rows of A. This is

0 An
possible because of the block of zeros in the upper right-hand corner. It is easily verified
that this function satisfies all four axioms for a determinant function of order n. Therefore,
by the uniqueness theorem, we must have

det = det A.

A similar argument shows that det

3.11 Exercises

= det B. Hence (3.16) implies (3.15).

1. For each of the rfollowing statements about square matrices, give a proof or exhibit a counter
example.
(a) det(A +B) =detA +detB.
(b) det {(A + B)12} = {det (A + B)}2
(c) det {(A + B)2} = det (A2 + 2AB + B2)
(d) det {(A + B)2}  = det (A2  + B2).

2. (a) Extend ‘Theorem 3.7 to block-diagonal matrices with three diagonal blocks:

= (det A)(det B)(det C).

(b) State and prove a generalization for block-diagonal matrices with any number of diagonal
blocks.

3.L,etA=[  i! i, B=i i 21. ProvethatdetA=det[i  t]andthat

a $b
det B = det [ 1e .f ’

4. State and prove a generalization of Exercise 3 for n x n matrices.
a b 0 0

c d 0 0
5,LetA=

I 1

efgh’
ProvethatdetA=det[I z]detK L].

x y .z w
6. State and prove a generalization of Exercise 5 for II x n matrices of the form

A =

where B, C, D denote square matrices and 0 denotes a matrix of zeros.
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7. Use Theorem 3.6 to determine whether the following sets of vectors are linearly dependent or
independent.
(a) A, = (1, -l,O),  A, = (O,l,  -l),  A, = (2,3,  -1).
(b)A,=(1,-1,2,1),A,=(-1,2,-1,O),Ag=(3,-1,1,0),A~=(1,0,0,1).

Cc)  A,=(1,0,0,0,1),A,=(1,1,0,0,O),As=(1,0,1,0,1),Aq=(1,1,0,1,1),
A, = (O,l,O,  1,O).

3.12 Expansion formulas for determinants. Minors and cofactors

We still have not shown that a determinant function actually exists, except in the 2 x 2
case. In this section we exploit the linearity property and the uniqueness theorem to show
that if determinants exist they can be computed by a formula which expresses every deter-
minant of order n as a linear combination of determinants of order n - 1 . Equation (3.2)
in Section 3.1 is an example of this formula in the 3 x 3 case. The general formula will
suggest a method for proving existence of determinant functions by induction.

Every row of an n x n matrix A can be expressed as a linear combination of the n unit
coordinate vectors II, . . . , Z, . For example, the first row A, can be written as follows:

A, = $a,J,  .
61

Since determinants are linear in the first row we have

ia,$,,A,  ,...,  A,
j=l

=$;u  d(l,,  AZ,. . . , A,).

Therefore to compute det A it suffices to compute d(Z,, A,, . . . , A,) for each unit coordinate
vector Zj  .

Let us use the notation ,4ij to denote the matrix obtained from A by replacing the first
row A, by the unit vector Zj  . For example, if IZ = 3 there are three such ma&ices:

Note that det Aij  = d(Zj, AZ, . . . , A,). Equation (3.17) can now be written in the form

(3.18) det A = i all det Ali.
j=l

This is called an expansion formula; it expresses the determinant of A as a linear combina-
tion of the elements in its first row.

The argument used to derive (3.18) can be applied to the kth row instead of the first row.
The result is an expansion formula in terms of elements of the kth row.
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THEOREM 3.8. EXPANSION BY COFACTORS. Let Akj denote the matrix obtained from A
by replacing the kth row A, by the unit coordinate vector Ij. Then we have the expansion
formula

(3.19) det A = takj det Akj
j,l

which expresses the determinant of A as a linear combination of the elements of the kth row.
The number det Akj is called the cofactor of entry akj.

In the next theorem we shall prove that each cofactor is, except for a plus or minus sign,
equal to a determinant of a matrix of order n - 1 . These smaller matrices are called
minors.

DEFINITION. Given a square matrix A of order n 2 2, the square matrix of order n - 1
obtained by deleting the kth row and the jth column of A is called the k, j minor of A and is
denoted by A,. .

EXAMPLE . A matrix A = (alei)  of order 3 has nine minors. Three of them are

&I=[;;:  ;;;]y  Alz=[;:: ;;l]r &a=[;;;  ;:]-

Equation (3.2) expresses the determinant of a 3 x 3 matrix as a linear combination of
determinants of these three minors. The formula can be written as follows:

det A = a,, det A,, - aI det A,, + aI3  det A,, .

The next theorem extends this formula to the n x n case for any n 2 2.

THEOREM 3.9. EXPANSION BY kTH-ROW  MINORS. For any n x n matrix A, n > 2, the
cofactor of ski is related to the minor Aki by the formula

(3.20) det ALj  = (- l)kfj det Aki.

Therefore the expansion of det A in terms of elements of the kth row is given by

(3.21) det A = $( - l)“+jakj  det A,$.
j=l

Proof. We illustrate the idea of the proof by considering first the special case k = j = 1 .

The matrix ,4&  has the form

A;, =

1 0 0 *a*  o-

azl az2 az3  *** azn

a31 a32 a33  * *a a3n

.a,,  an2 an3 * * * an+
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By applying elementary row operations of type (3) we can make every entry below the 1 in
the first column equal to zero, leaving all the remaining entries intact. For example, if we
multiply the first row of Ai, by -azl and add the result to the second row, the new second
row becomes (0, az2,  az3,  . . . , a2J.  By a succession of such elementary row operations
we obtain a new matrix which we shall denote by A&  and which has the form

0
a 2 2

a32

Since row operations of type (3) leave the determinant unchanged we have

(3.22) det A!,  = det A;, .

But A,O,  is a block-diagonal matrix so, by Theorem 3.7, we have

det A!,  = det AlI,

where A,, is the 1, 1 minor of A,

Therefore det Ai, = det AlI, which proves (3.20) for k = j = 1.
We consider next the special case k = 1 ,i  arbitrary, and prove that

(3.23) det Aij = (- l)j-’ det A,$.

Once we prove (3.23) the more general formula (3.20) follows at once because matrix AJ,
can be transformed to a matrix of the form Bij by k - 1 successive interchanges of adjacent
rows. The determinant changes sign at each interchange so we have

(3.24) det Akj = (- l)“-1  det B&,

where B is an n x n matrix whose first row is Ij and whose 1 ,i  minor BIj is Akj. By (3.23),
we have

det Bij = (- l)‘-l det Blj = (- l)j-’ det Aki,
so (3.24) gives us

det ALj  = (- l)“-l(  - l)j-’ det Akj = (- l)“+j  det Akj.

Therefore if we prove (3.23) we also prove (3.20).
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We turn now to the proof of (3.23). The matrix Aij  has the form

0 . . . 1 . . . 0
azl .  .  . azj ..’

I*  1

azn

Aii  = :

a nl  ...  anj a** a 11

. .

nn

By elementar,y  row operations of type (3) we introduce a column of zeros below the 1 and
transform this to

0 . . . 0 1 0 .‘* 0
azl .  .  . a2,j-1  0 a2,j+l  * ’ . aPn

Ayi  = : . *

-an1  . * * a,,j-l 0 a,,j+l  . * . h-

As before, the determinant is unchanged so det Ayj = det Aij. The 1, j minor AIj  has the

1
form

a2n

Now we regard det AL  as a function of the n - 1 rows of AIj, say det AL  = f(A,J  . The
functionfsatisfies the first three axioms for a determinant function of order n - 1. There-
fore, by the uniqueness theorem we can write

(3.25) f(Alj) = f(J) det  Alj 3

where J is the identity matrix of order n - 1. Therefore, to prove (3.23) we must show that
f(J) = (- l)i-l. Now f(J) is by definition the determinant of the matrix

-0  .  .  . 0 1 0 *** o-

1 0 0 0 0

c=

:\
. . .
. . .

\... .

0 . . . 1 0 0 *** 0

0 . . . 0 0 1 *.* 0
. . .
\. . .

. . . \:
0 . . . 0 0 0 *a- 1

t -
jth column

c jth row
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The entries along the sloping lines are all 1. The remaining entries not shown are all 0.
By interchanging the first row of C successively with rows 2, 3, . . . ,j we arrive at the n x n
identity matrix I after j - 1 interchanges. The determinant changes sign at each inter-
change, so det C = (- l)j-‘. Hencef(J)  = (- l)j-‘,  which proves (3.23) and hence (3.20).

3.13 Existence of the determinant function

In this section we use induction on n, the size of a matrix, to prove that determinant
functions of every order exist. For n = 2 we have already shown that a determinant function
exists. We can also dispense with the case n = 1 by defining det [aa,,] = a,, .

Assuming a determinant function exists of order n - 1, a logical candidate for a deter-
minant function of order n would be one of the expansion formulas of Theorem 3.9, for
example, the expansion in terms of the first-row minors. However, it is easier to verify the
axioms if we use a different but analogous formula expressed in terms of the first-column
minors.

THEOREM 3.10. Assume determinants of order n - 1 exist. For any n X n matrix
A = (aik)  , let f be the function dejned  by the formula

(3.26) f(A,, . . . , A,) = i(- l)j+‘aj,  det Aj,.
j=l

Then f satisjes allfour axiomsfor a determinantfunction of order n. Therefore, by induction,
determinants of order n exist for every n.

Proof. We regard each term of the sum in (3.26) as a function of the rows of A and we
write

.fW,,.. . , A,) = (- l)jflaj, det Aj, .

If we verify that eachf,  satisfies Axioms 1 and 2 the same will be true forf.
Consider the effect of multiplying the first row of A by a scalar t. The minor A,, is not

affected since it does not involve the first row. The coefficient a,, is multiplied by t, so we
have

f,(tA, 9 A,z  3 . . . > A,) = tall  det A,, = tf,(A,,  . . . , A,).

Ifj > 1 the first row of each minor Aj,  gets multiplied by t and the coefficient ajI  is not
affected, so again we have

&@A,,  A,, . . . , A,)  = tY&h,  A,,  . . . , A,).

Therefore each fj  is homogeneous in the first row.
If the kth row of A is multiplied by t, where k > 1, the minor A,, is not affected but akl  is

multiplied by t, so fk  is homogeneous in the kth row. If j # k, the coefficient aj,  is not
affected but some row of Aj,  gets multiplied by t. Hence every J; is homogeneous in the
kth row.
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A similar argument shows that each fi is additive in every row, so f satisfies Axioms 1 and
2 . We prove next that f satisfies Axiom 3’, the weak version of Axiom 3. From Theorem
3.1, it then follows that f satisfies Axiom 3.

To verify that. f satisfies Axiom 3’, assume two adjacent rows of A are equal, say A, =
A k+l' Then, except for minors Akl  and A,+, 1, each mi,nor  A),  has two equal rows so
det .4,,  = 0. Therefore the sum in (3.26) consists only of the two terms corresponding to
J‘=kand,i=k+  1,

(3.27) f(A,>..., An)  = (-l)k+lakl  det  A,, + (-1 )“i-2ak+,,, det A,,, , ,  .

But  A,,  = A,,,,, and akl = a,,,,,  since A, = A,,, . Therefore the two terms in (3.27)
differ only in sign, so f (A,, . . . , A,) = 0. Thus, f satisfies Axiom 3’.

Finally, we verify that f satisfies Axiom 4. When A = 1 we have a,, = 1 and a,, = 0 for
i > 1. Also, A,, is the identity matrix of order n - 1, so each term in (3.26) is zero except
the first, which is equal to 1. Hence f (f,  , . . . , 1,)  = 1 sgof  satisfies Axiom 4.

In the foregoing proof we could just as well have used a. functionfdefined in terms of the
kth-column minors Aik instead of the first-column minors Aj, . In fact, if we let

(3.28) f(Al,..., A,) = 2 (- l)ii-kajl,  det Ajk  ,
j=l

exactly the same type of proof shows that this f satisfies all four axioms for a determinant
function. Since determinant functions are unique, the expansion formulas in (3.28) and
those in (3.21) are all equal to det A.

The expansion formulas (3.28) not only establish the existence of determinant functions
but also reveal a new aspect of the theory of determinants-a connection between row-
properties and column-properties. This connection is discussed further in the next section.

3.14 The determinant of a transpose

Assoc:iated  with each matrix A is another matrix called the transpose of A and denoted
by At.  The rows of At  are the columns of A. For example, if

A =

A formal definition may be given as follows.

DEFI’VITION OF TRANSPOSE. The transpose of an m X:  n matrix A = (a&~&  is the n X m
matrix At whose i, j entry is aji  .

Although transposition can be applied to any rectangular matrix we shall be concerned
primarily with square matrices. We prove next that transposition of a square matrix does
not alter its determinant,
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THEOREM 3. Il. For any n x n matrix A we have

det A = det At.

Proof. The proof is by induction on n. For n = 1 and n = 2 the result is easily verified.
Assume, then, that the theorem is true for matrices of order n - 1 . Let A = (aij)  and let
B = At = (6,). Expanding det A by its first-column minors and det B by its first-row
minors we have

det A = &-l)‘flaj, det Ajl, det B = i (- l)‘+‘blj det Blj.
kl i=l

But from the definition of transpose we have bli = a,, and Blj = (AJ”.  Since we are
assuming the theorem is true for matrices of order n - 1 we have det Blj = det Aj,.
Hence the foregoing sums are equal term by term, so det A = det B.

3.15 The cofactor matrix

Theorem 3.5 showed that if A is nonsingular then det A # 0. The next theorem proves
the converse. That is, if det A # 0, then A-l  exists. Moreover, it gives an explicit formula
for expressing A-l  in terms of a matrix formed from the cofactors of the entries of A.

In Theorem 3.9 we proved that the i, j cofactor of aij is equal to (- l)i+i det Aii  , where
Aii is the i, j minor of A. Let us denote this cofactor by cof aij. Thus, by definition,

cof aij = (- l)ifj det Aij  .

DEFINITION OF THE COFACTOR MATRIX. The matrix whose i, j entry is cof aii is called the
cofactor matrix? of A and is denoted by cof A. Thus, we have

cof A = (cof aij)&  = (( - l)i+i det Ai,)tj=, .

The next theorem shows that the product of A with the transpose of its cofactor matrix is,
apart from a scalar factor, the identity matrix I.

THEOREM 3.12. For any n x n matrix A with n 2 2 we have

(3.29) A(cof A)t  = (det A)Z.

In particular, if det A # 0 the inverse of A exists and is given by

A-l = bA (cof A)t.

t In much of the matrix literature the transpose of the cofactor matrix is called the adjugate  of A. Some of
the older literature calls it the adjoint  of A. However, current nomenclature reserves the term adjoint for
an entirely different object, discussed in Section 5.8.
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Proof. Using Theorem 3.9 we express det A in terms of its kth-row cofactors by the
formula

(3.30) det A = i akj  cof akj.
j=l

Keep k fixed and apply this relation to a new matrix B whose ith row is equal to the kth
row of A for some i # k, and whose remaining rows are the same as those of A. Then
det B = 0 because the ith and kth rows of B are equal. Expressing det B in terms of its
ith-row cofactors we have

(3.31) det B = 5 bij  cof bij  = 0.
j=l

But since the ith row of B is equal to the kth row of A wc have

bii  = akj and cof bij  = cof aij for every j .

Hence (3.31) states that

(3.32) if k + i.

Equations ((3.30)  and (3.32) together can be written as follows:

(3.33)
12cakj  cof aij  =

det A i f  i = k
0j=l i f  i#k.

But the sum appearing on the left of (3.33) is the k, i entry of the product A(cof  #. There-
fore (3.33) implies (3.29).

As a direct corollary of Theorems 3.5 and 3.12 we have the following necessary and
sufficient condition for a square matrix to be nonsingular.

THEOREM 3.13. A square matrix A is nonsingular if and <only  if det A # 0.

3.16 Cramer’s rule

Theorem 3.12 can also be used to give explicit formulas for the solutions of a system of
linear equations with a nonsingular coefficient matrix. The formulas are called Cramer’s
rule, in honor of the Swiss mathematician Gabriel Cramer (1704-1752).

THEOREM 3.14. CRAMER'S RULE. If a system of n &near  equations in n unknowns
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has a nonsingular  coeficient-matrix  A = (aij)  , then there is a unique solution for the system
&en  by the formulas

(3.34)
1 n

xj  =det k=lc
b, cof akj , for j=l,2  ,..., n.

Proof. The system can be written as a matrix equation,

’ AX=B,

where X and B are column matrices, X = Since A is nonsingular

there is a unique solution X given by

(3.35) X = A-‘B  = bA (cof A)tB.

The formulas in (3.34) follow by equating components in (3.35).

It should be noted that the formula for xj in (3.34) can be expressed as the quotient of two
determinants,

det C.x.=2,I
det A

where Cj is the matrix obtained from A by replacing the jth column of A by the column
matrix B.

3.17 Exercises

1. Determine the cofactor matrix of each of the following matrices :

2. Determine the inverse of each of the nonsingular matrices in Exercise 1.
3. Find all values of the scalar A for which the matrix II - A is singular, if A is equal to
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4. If A is an n x n matrix with n 2 2, prove each of the following, properties of its cofactor matrix:
(a) cof (At) = (cof #. (b) (cof #A  = (det A)Z.
(c) A(cof ~1)~  = (cof #A (A commutes with the transpose of its cofactor matrix).

5. Use Cramer’s rule to solve each of the following systems:
(a) x + 5 + 3.z = 8, 2 x - y  +4z =7, -y + z = 1.
(b) x +y  +2z  =O, 3x-y-z=3, 2x +5y +3z  =4.

6. (a) Explain why each of the following is a Cartesian equation for a straight line in the xy-plane
passing thtough  two distinct points (x1, yl) and (x2, yz).

(b) State and prove corresponding relations for a plane in 3-space passing through three
distinct points.
(c) State alnd prove corresponding relations for a circle in the xy-plane passing through three
noncolinear  points.

7. Given n2 functions fij, each differentiable on an interval (a, i5),  define F(x) = det [j&x)] for
each x in (a, b). Prove that the derivative F’(x) is a sum of n determinants,

F’(x) = 2 det A,(x),
i=l

where Ai is the matrix obtained by differentiating the fun’ctions in the ith row of [f&(x)].

8. An n x n matrix of functions of the form W(x) = [uji-l’(x)],  in which each row after the first
is the derivative Iof  the previous row, is called a Wronskian  matrix in honor of the Polish mathe-
matician J. M. II. Wronski (1778-1853). Prove that the derivative of the determinant of W(x)
is the determinant of the matrix obtained by differentiating each entry in the last row of W(X).

[Hint: Use Exercise 7.1



4
EIGENVALUES AND EIGENVECTORS

4.1 Linear transformations with diagonal matrix representations

Let T: V+ V be a linear transformation on a finite-dimensional linear space V. Those
properties of T which are independent of any coordinate system (basis) for V are called
intrinsicproperties of T. They are shared by all the matrix representations of T. If a basis
can be chosen so that the resulting matrix has a particularly simple form it may be possible
to detect some of the intrinsic properties directly from the matrix representation.

Among the simplest types of matrices are the diagonal matrices. Therefore we might ask
whether every linear transformation has a diagonal matrix representation. In Chapter 2
we treated the problem of finding a diagonal matrix representation of a linear transfor-
mation T: V+ W, where dim V = n and dim W = m . In Theorem 2.14 we proved that
there always exists a basis (el, . . . , e,) for V and a basis (M.‘,  , . . . , w,) for W such that the
matrix of T relative to this pair of bases is a diagonal matrix. In particular, if W = V
the matrix will be a square diagonal matrix. The new feature now is that we want to use the
same basis for both Vand W. With this restriction it is not always possible to find a diagonal
matrix representation for T. We turn, then, to the problem of determining which trans-
formations do have a diagonal matrix representation.

Notation: If A = (aij)  is a diagonal matrix, we write A = diag (all,  az2, . . . , a,,).

It is easy to give a necessary and sufficient condition for a linear transformation to have a
diagonal matrix representation.

THEOREM 4.1. Given a linear transformation T: V--f  V, where dim V = n. If T has a
diagonal matrix representation, then there exists an independent set of  elements ul, . . . , u,
in V and a corresponding set of  scalars A,, . . . , A, such that

(4.1) T&J = &curt f o r k=1,2  ,...,  n.

Conversely, i f  there is an independent set ul, . . . , u, in V and a corresponding set of  scalars
A I,“‘, 1, satisfying (4.1), then the matrix

A =diag(&,...,&)

is a representation of  T relative to the basis (uI , . . . , u,).

96
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Proof. Assume first that T has a diagonal matrix representation A = (ai& relative to
some basis (e,,  . . . , e,). The action of T on the basis elements is given by the formula

T(eJ  = i aikei  = akBek
i=l

since aik = 01  for i Z k . This proves (4.1) with uk = ek  and 1, = a,, .
Now suppose independent elements ul, . . . , U, and scalars &, . . . , A, exist satisfying

(4.1). Since zfl, . . . , u, are independent they form a basis for V. If we define a,, = 1, and
aik = 0 for i # Ic, then the matrix A = (a& is a diagonal matrix which represents T
relative to the basis (ul, . . . , u,).

Thus the probkm of finding a diagonal matrix representation of a linear transformation
has been transformed to another problem, that of finding independent elements ul, . . . , U,
and scalars ;I,, . . . , 1, to satisfy (4.1). Elements uk and scalars 1, satisfying (4.1) are called
eigenvectors and eigenvalues of T,  respectively. In the next section we study eigenvectors
and eigenvaluesf in a more general setting.

4.2 Eigenvectors and eigenvalues of a linear transformation

In this discussion V denotes a linear space and S denotes a subspace  of V. The spaces S
and V are not required to be finite dimensional.

DEFINITION. Let T: S 4 V be a linear transformation of S into V. A scalar ;i is called an
eigenvalue of‘  T if’there  is a nonzero  element x in S such that

(4.2) T(x) = Ix.

The element .x  is called an eigenvector of Tbelonging to 1. The scalar 1 is called an eigenvalue
corresponding to .x.

There is exactly one eigenvalue corresponding to a given eigenvector x. In fact, if we
have T(x)  = iix and T(x) = ,UX for some x # 0, then 1x q = yx so il = ,u .

Note: Although Equation (4.2) always holds for x = 0 and any scalar I, the definition
excludes 0 as an eigenvector. One reason for this prejudice against 0 is to have exactly one
eigenvalue ), associated with a given eigenvector x.

The following examples illustrate the meaning of these concepts.

EXAMPLE 1. Multiplication by a fixed scalar. Let T: S + V be the linear transformation
defined by the equation T(x) = cx for each x in S, where c is a fixed scalar. In this example
every nonzero  element of S is an eigenvector belonging to the scalar c.

t The words eigenvector and eigenvalue are partial translations of the German words Egenvektor  and
Eigenwert,  respectively. Some authors use the terms characteristic vector, or proper vector as synonyms for
eigenvector. Eigenv,alues  are also called characteristic values, proper values, or latent roots.
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EXAMPLE 2. The eigenspace E(A) consisting of all x such that T(x) = Ax.  Let T: S -+ V
be a linear transformation having an eigenvalue 1. Let E(A)  be the set of all elements x in
S such that T(x) = 1.~.  This set contains the zero element 0 and all eigenvectors belonging
to il. It is easy to prove that E(I) is a subspace  of S, because if x and y are in E(1)  we have

T(aX + by) = aT(x)  + bT(y)  = ailx + bAy  = A(ax + by)

for all scalars a and b. Hence (ax + by) E  E(1) so E(A)  is a subspace. The space E(1) is
called the eigenspace corresponding to 1. It may be finite- or infinite-dimensional. If E(A)
is finite-dimensional then dim E(I) 2 1 , since E(1) contains at least one nonzero  element x
corresponding to 1.

EXAMPLE 3. Existence of zero eigenvalues. If an eigenvector exists it cannot be zero, by
definition. However, the zero scalar can be an eigenvalue. In fact, if 0 is an eigenvalue for
x then T(x) = Ox = 0, so x is in the null space of T. Conversely, if the null space of T
contains any nonzero  elements then each of these is an eigenvector with eigenvalue 0. In
general, E(A) is the null space of T - AZ.

EXAMPLE 4. Rejection in the xy-plane. Let S = V = V,(R) and let T be a reflection in
the xy-plane. That is, let Tact on the basis vectors i, j, k as follows: T(i) = i, T(j) = j,
T(k) = -k. Every nonzero  vector in the xy-plane is an eigenvector with eigenvalue 1.
The remaining eigenvectors are those of the form ck, where c # 0 ; each of them has
eigenvalue - 1  .

EXAMPLE 5. Rotation of theplane  through ajxedangle  u. This example is of special interest
because it shows that the existence of eigenvectors may depend on the underlying field of
scalars. The plane can be regarded as a linear space in two different ways: (1) As a 2-
dimensional real linear space, V = V,(R), with two basis elements (1, 0) and (0, l), and
with real numbers as scalars; or (2) as a l-dimensional complex linear space, V = V,(C),
with one basis element 1, and complex numbers as scalars.

Consider the second interpretation first. Each element z # 0 of V,(C) can be expressed
in polar form, z = yei*. If T rotates z through an angle cc then T(z) = reicefa)  = eiaz.
Thus, each z # 0 is an eigenvector with eigenvalue il = eia. Note that the eigenvalue ei” is
not real unless c4 is an integer multiple of r.

Now consider the plane as a real linear space, V,(R). Since the scalars of V,(R) are real
numbers the rotation T has real eigenvalues only if tc  is an integer multiple of n. In other
words, if CI  is not an integer multiple of v then T has no real eigenvalues and hence no
eigenvectors. Thus the existence of eigenvectors and eigenvalues may depend on the choice
of scalars for V.

EXAMPLE 6. The dzyerentiation  gperator. Let V be the linear space of all real functions f
having derivatives of every order on a given open interval. Let D be the linear transfor-
mation which maps each f onto its derivative, D(f)  = f ‘ . The eigenvectors of D are those
nonzero  functions f satisfying an equation of the form
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f’ = If

for some real 1.  This is a first order linear differential equation. All its solutions are given
by the formula

f(x) = ce”“,

where c is an arbitrary real constant. Therefore the eigenvectors of D are all exponential
functions f(x) == ceAx  with c # 0 . The eigenvalue corresponding to f(x) = celZ is 1.  In
examples li’ke  this one where V is a function space the eigenvectors are called eigenfunctions.

EXAMPLE 7. The integration operator. Let V be the linear space of all real functions
continuous on a finite interval [a, b]. Iffg V define g = T(f) to be that function given by

g(x) = azf(t)  dts i f  a<x<b.

The eigenfunctions of T (if any exist) are those nonzerofsatisfying an equation of the form

(4.3) I; f(t)  dt  = Y(x)

for some real 4. If an eigenfunction exists we may differentiate this equation to obtain the
relationf(x) = 3tf’(x),  from which we findf(x) = ce”‘“, provided 3, # 0. In other words,
the only candidates for eigenfunctions are those exponential functions of the formf(x) =
cexlk  with c # 0 and 1 # 0. However, if we put x = a in (4.3) we obtain

0 = If(a)  = Ice”‘“.

Since call is never zero we see that the equation T(f) = @-cannot  be satisfied with a non-
zero f,  so Thas no eigenfunctions and no eigenvalues.

EXAMPLE 8. The subspace spanned by an eigenvector. Let T: S + V be a linear trans-
formation having an eigenvalue 1. Let x be an eigenvector belonging to 3, and let L(x) be
the subspace  spanned by x. That is, L(x) is the set of all scalar multiples of x. It is easy to
show that T maps L(x) into itself. In fact, if y = cx we Ihave

T(y) = T(cx) = CT(X)  = c(Ax)  = l(cx)  = Ay.

If c # 0 then y # 0 so every nonzero element y of L(x) is also an eigenvector belonging
to 1.

A subspace  U of S is called invariant under Tif Tmaps each element of U onto an element
of U. We have j ust shown that the subspace  spanned by an eigenvector is invariant under T.
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4.3 Linear independence of eigenvectors corresponding to distinct eigenvalues

One of the most important properties of eigenvalues is described in the next theorem. As
before, S denotes a subspace  of a linear space V.

THEOREM 4.2. Let ul, . . . , uk be eigenvectors of a linear transformation T: S + V, and
assume that the corresponding eigenvalues A,, . . . , ii, are distinct. Then the eigenvectors

%, * *. 9 uk  are independent.

Proof. The proof is by induction on k. The result is trivial when k = 1 . Assume, then,
that it has been proved for every set of k - 1 eigenvectors. Let ul, . . . , uk be k eigen-
vectors belonging to distinct eigenvalues, and assume that scalars ci exist such that

(4.4) iciui = O *

Applying T to both members of (4.4) and using the fact that T(uJ  = ii,u, we find

Multiplying (4.4) by 1.,  and subtracting from (4.5) we obtain the equation

k-l

isCi(A  - ‘kj”i  = 0 *

But since ul, . . . , uk-l are independent we must have ci(ili - jlk)  = 0 for each i = 1, 2, . . . ,
k - 1 . Since the eigenvalues are distinct we have ai # )Lk for i # k so ci = 0 for i = 1, 2,
. . . ) k - 1 . From (4.4) we see that ck  is also 0 so the eigenvectors ul, . . . , uk are inde-
pendent.

Note that Theorem 4.2 would not be true if the zero element were allowed to be an eigen-
vector. This is another reason for excluding 0 as an eigenvector.

Warning: The converse of Theorem 4.2 does not hold. That is, if T has independent
eigenvectors ul, . . . , uk, then the corresponding eigenvalues A,, . . . , 2, need not be dis-
tinct. For example, if T is the identity transformation, T(x) = x for all x, then every
x # 0 is an eigenvector but there is only one eigenvalue, ii = 1 .

Theorem 4.2. has important consequences for the finite-dimensional case.

THEOREM 4.3. If dim V = n , every linear transformation T: V + V has at most n distinct
eigenvalues. If T has exactly n distinct eigenvalues, then the corresponding eigenvectors form
a basis for V and the matrix of T relative to this basis is a diagonal matrix with the eigenvalues
as diagonal entries.

Proof. If there were n + 1 distinct eigenvalues then, by Theorem 4.2, V would contain
n + 1 independent elements. This is not possible since dim V = n . The second assertion
follows from Theorems 4.1 and 4.2.
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Note: Theorem 4.3 tells us that the existence of n distinct eigenvalues is a s@cient
condition for Tto have a diagonal matrix representation. This condition is not necessary.
There exist linear transformations with less than n distinct eigenvalues that can be
represented by diagonal matrices. The identity transformation is an example. All its eigen-
values are eqiual to 1 but it can be represented by the identity matrix. Theorem 4.1
tells us that the existence of n independent eigenvectors is necessary and sufJient  for
T to have a diagonal matrix representation.

4.4 Exercises

1. (a) If T has an eigenvalue 1, prove that aT  has the eigenvalue al.
(b) If x is an eigenvector for both Tl and T,  , prove that x is also an eigenvector for aT,  + bT,  .
How are the eigenvalues related?

2. Assume ‘T: V-- Vhas an eigenvector x belonging to an eigenvalue 1. Prove that xGs  an eigen-
vector of T2 belonging to A2 and, more generally, x is an eigenvector of Tn  belonging to 2”.
Then use the result of Exercise 1 to show that if P is a polynomial, then x is an eigenvector of
P(T) belongin,g to P(A).

3. Consider the plane as a real linear space, V = V,(R)  , and let T be a rotation of V through an
angle of ~12  radians. Although T has no eigenvectors, prove that every nonzero  vector is an
eigenvector for T2.

4. If T: V--c  V has the property that T2 has a nonnegative eigenvalue A2,  prove that at least one
of 3, or --3,  is an eigenvalue for T. [Hint: T2 - A21  = (T + lZ)( T - AZ)  .]

5. Let V be the linear space of all real functions differentiable on (0, 1). If f E V, define g =
T(f) to mean i:hatg(t)  = tf ‘(t)  for all t in (0, 1). Prove that every real 1 is an eigenvalue for
T,  and determine the eigenfunctions corresponding to A.

6. Let V be the linear  space of all real polynomials p(x) of degree < n. If p E  V, define q =
T(p) to mean that q(t)  = p(t  + 1) for all real t. Prove that T has only the eigenvalue 1. What
are the eigenfunctions belonging to this eigenvalue?

7. Let V be the linear space of all functions continuous on ( - 00,  + to) and such that the integral
J?., f(t) dt exists for all real x. If f E V,  let g = T(f) be defined by the equation g(x) =
5”.  co  f (t) dt . F’rove that every positive I is an eigenvalue for Tand determine the eigenfunctions
corresponding to 1.

8. Let V be lthe linear space of all functions continuous on ( - ~1,  + a) and such that the integral
I”., t f(t) dt exists for all real x. If f 6 Y let g = T(f) be defined by the equationg(x) =
JY  m t f (t) dt . Prove that every negative 1 is aneigenvalue for T and determine the eigenfunc-
tions corresponding to 1.

9. Let V = C(0,  n) be the real linear space of all real functions continuous on the interval [0, ~1.
Let S be the subspace of all functions f which have a continuous second derivative in linear
and which also satisfy the boundary conditions f(0) =f”(r) = 0. Let T: S + V be the linear
transformation which maps each f onto its second derivative, T(f) = f II.  Prove that the
eigenvalues of Tare the numbers of the form -n2,  where n = 1, 2, . . . , and that the eigen-
functions corresponding to -n2  are f(t) = c, sin nt , where L’, # 0.

10. Let V be the linear space of all real convergent sequences {x,}. Define T: V---t  V as follows:
If x = {x,} is a convergent sequence with limit a, let T(x) = {y,},  where yS = a - x,  for
n 2 1 . Prove that Thas only two eigenvalues, 1 = 0 and 3, = -1, and determine the eigen-
vectors belonging to each such 1.

11. Assume that a linear transformation T has two eigenvectors x and y belonging to distinct
eigenvalues i, and p. If ax + by is an eigenvector of T, prove that a = 0 or b = 0.

12. Let T: S -+  Vbe a linear transformation such that every nonzero  element of S is an eigenvector.
Prove that therle exists a scalar c such that T(x) = cx . In other words, the only transformation
with this property is a scalar times the identity. [Hint: Use Exercise 11.1
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4.5 The finite-dimensional case. Characteristic polynomials

If dim V = it, the problem of finding the eigenvalues of a linear transformation T: V+ V
can be solved with the help of determinants. We wish to find those scalars I such that the
equation T(x) = 4x has a solution x with x # 0. The equation T(x) = Ax can be written
in the form

(U-  T)(x) = 0,

where Zis the identity transformation. If we let TA  = AZ - T, then 1 is an eigenvalue if and
only if the equation

(4.6) T,(x) = 0

has a nonzero  solution x, in which case TA  is not invertible (because of Theorem 2.10).
Therefore, by Theorem 2.20, a nonzero  solution of (4.6) exists if and only if the matrix of
T, is singular. If A is a matrix representation for T, then AZ - A is a matrix representation
for TL.  By Theorem 3.13, the matrix AZ - A is singular if and only if det (AZ  - A) = 0.
Thus, if il is an eigenvalue for Tit satisfies the equation

(4.7) det (AZ- A) = 0.

Conversely, any 1 in the underlying jield  of scalars which satisfies (4.7) is an eigenvalue.
This suggests that we should study the determinant det (AZ  - A) as a function of A.

THEOREM 4.4. Zf  A is any n x n matrix and lyZ  is the n x n identity matrix, thefinctionf
defined by the equation

,f(ii) = det (AZ - A)

is a polynomial in 1 of degree n. Moreover, the term of highest degree is I”, and the constant
term isf(0) = det (-A) = (- 1)” det A.

Proof. The statement f(0) = det (-A) follows at once from the definition of J We
prove thatf is a polynomial of degree n only for the case n 5 3. The proof in the general
case can be given by induction and is left as an exercise. (See Exercise 9 in Section 4.8.)

For n = 1 the determinant is the linear polynomialf(l) = 1 - alI. For n = 2 we have

det (AZ  - A) =
1 - alI --al2

= (a - ada  - a,,) - a12a21
- azl a - a22

= a2  - (all  + az2M  + (w22  - a12azl>)

a quadratic polynomial in 1. For n = 3 we have

a - all -al2 -al3
det (ill - A) = -a21 I - a22 - a23

-4, -a32 1 - a,,
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= 0 - all>
1 - a22 - az3

I I

--a,, - az3 -azl a - az2

1 - a33
+ al2

-a32 -a31 1 -. a,, -a31 -a32

The last two .terms are linear polynomials in 1. The first term is a cubic polynomial, the
term of highest degree being L3.

DEFINITION. If A is an n x n matrix the determinant

f(A) = det (AZ  - A)

is called the characteristic polynomial of A.

The roots of the characteristic polynomial of A are complex numbers, some of which
may be real. If we let F denote either the real field R or the complex field C, we have the
following theorem,.

THEOREM 43. Let T: V+  V be a linear transformation, where V has scaIars  in F, and
dim V = n . Let A be a matrix representation of T. Then the set of eigenvalues of T consists
of those roots of the characteristic polynomial of A which lie in F.

Proof. The discussion preceding Theorem 4.4 shows that every eigenvalue of T satisfies
the equation det (AZ  - A) = 0 and that any root of the characteristic polynomial of A
which lies in 17 is an eigenvalue of T.

,

The matrix .4 depends on the choice of basis for V, but the eigenvalues of T were defined
without reference t’o a basis. Therefore, the set of roots of the characteristic polynomial of
A must be independent of the choice of basis. More than this is true. In a later section we
shall prove that thie characteristic polynomial itself is independent of the choice of basis.
We turn now to the problem of actually calculating the eigenvalues and eigenvectors in the
finite-dimensional case.

4.6 Calculation of’ eigenvalues and eigenvectors in the finite-dimensional case

In the finite-dimensional case the eigenvalues and eigenvectors of a linear transformation
Tare also called eig,envalues  and eigenvectors of each matrix representation of T. Thus, the
eigenvalues of a square matrix A are the roots of the characteristic polynomial f(A) =
det (AZ  - A). The eigenvectors corresponding to an eigenvalue A are those nonzero
vectorsX=  (x.r,.  . . , x,) regarded as n x 1 column matrices satisfying the matrix equation

AX = IX, or (AI-  A)X=  0 .

This is a system of n linear equations for the components x1, . . . , x,. Once we know ;1
we can obtain the eigenvectors by solving this system. We illustrate with three examples
that exhibit difrerent features.
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EXAMPLE 1. A matrix with all its eigenvalues distinct. The matrix

2 1 1

A = [ 2 3- 1 - 1 4  1- 2

has the characteristic polynomial

det (AZ  - A) = det [:’ t3 ;,:d =(n-l>(n+l)(n-3),

so there are three distinct eigenvalues: 1 , - 1 , and 3. To find the eigenvectors corresponding
to 1 = 1 we solve the system AX = X, or

This gives us

which can be rewritten as

-x1 - x2 - 3x, = 0.

Adding the first and third equations we find xQ = 0, and all three equations then reduce to
x1 + x2 = 0 . Thus the eigenvectors corresponding to 1 = 1 are X = t(l, - 1 , 0) , where
t is any nonzero scalar.

By similar calculations we find the eigenvectors X = t(0,  1 , -1) corresponding to L =
- 1, and X = t(2,3, - 1) corresponding to il = 3, with t any nonzero scalar. Since the
eigenvalues are distinct the correspondingeigenvectors (1, - 1 , 0), (0, 1,  - l), and (2,3, - 1)
are independent. The results can be summarized in tabular form as follows. In the third
column we have listed the dimension of the eigenspace E(1).

Eigenvalue L Eigenvectors dim E(l)

1 t(1, -1,  O), t # 0 1
- 1 t(O, 1,  -11, t # 0 1

3 r(2; 3, -1), t # 0 1



Calculation of eigenvalues and eigenvectors in thejnite-dimensional case 105

EXAMPLE 2. A matrix with repeated eigenvalues. The matrix

2 - 1 1

A = [ 0 32 1 -1 I3

has the characteristic polynomial

det (AZ - A) = det

The eigenvalues are 2, 2, and 4. (We list the eigenvalue 2 twice to emphasize that it is a
double root of the characteristic polynomial.) To find the eigenvectors corresponding to
A = 2 we solve the system AX = 2X, which reduces to

-x2  + XQ  = 0

x.2 - xg = 0

2x, + x2 + x3 = 0.

This has the solution x2 = xg = -x1  so the eigenvectors corresponding to i = 2 are
t(-1, 1, l), where t # 0. Similarly we find the eigenvectors t(1,  - 1, 1) corresponding
to the eigenvalue: 1 = 4. The results can be summarized as follows:

Eigenvalue Eigenvectors dim E(il)

2, 2 t(-1,  1, l), t # 0 1
4 t(l, --I, l), t # 0 1

EXAMPLE 3. Another matrix with repeated eigenvalues. The matrix

has the characteristic polynomial (1  - 1)(1 - l)(A - 7). When L = 7 the system AX =
7X becomes

5x, - X‘J - x3 = 0

-2x, + 4x, - 2x, = 0

-3x, - 3x, + 3x, = 0.

This has the solution x2 = 2x,, xs = 3x,, so the eigenvectors corresponding to 1 = 7 are
t(l,2,  3),  where t # 0. For the eigenvalue il = 1, the system AX = X consists of the
equation
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Xl + x2 + x3 = 0

repeated three times. To solve this equation we may take x1 = a, xZ = b , where a and b
are arbitrary, and then take x3 = -a - b . Thus every eigenvector corresponding to il = 1
has the form

(a, b, -a - b) = a(l,O,  -1) + b(0, 1, -1),

where a # 0 or b # 0. This means that the vectors (1, 0, -1) and (0, 1, -1) form a basis
for E(1). Hence dim E(A) = 2 when il = 1. The results can be summarized as follows:

Eigenvalue Eigenvectors dim E(l)

7 t(l,2,3), t#O 1
131 a(1, 0, - 1 ) + b(0, 1, -l),  a, b not both 0 . 2

Note that in this example there are three independent eigenvectors but only two distinct
eigenvalues.

4.7 Trace of a matrix

Letf(il)  be the characteristic polynomial of an n x n matrix A. We denote the n roots of
f(4 by 4,  . . . 3 A,,  with each root written as often as its multiplicity indicates. Then we
have the factorization

f(l) = (1  - A,)  * * * (A  - I,).

We can also writef(A) in decreasing powers of I as follows,

f(A) = A” + c,-lIz”-l  + - * * + Cl2  + co.

Comparing this with the factored form we find that the constant term c,,  and thecoefficient of
An-r  are given by the formulas

Since we also have c,,  = (-1)” det A, we see that

1, * * - 1, = det A.

That is, theproduct of the roots of the characteristicpolynomialof A is equal to the determinant
ofA.

The sum of the roots off(A) is called the trace of A, denoted by tr A. Thus, by definition,

tr A = 5 Ii.
i=l

The coefficient of 1*-l  is given by c,-r = -tr A. We can also compute this coefficient
from the determinant form forf(il)  and we find that

cnel = -(all  + es*  + ad.
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(A proof of this formula is requested in Exercise 12 of Section 4.8.) The two formulas for
c,,-~ show that

tr A =iaii.

That is, the trace of A is also equal to the sum of the diagonal elements of A.
Since the sum of the diagonal elements is easy to compute it can be used as a numerical

check in calculations of eigenvalues. Further properties of the trace are described in the
next set of exerci;ses.

4.8 Exercises

Determine the eigenvalues and eigenvectors of each of the matrices in Exercises 1 through 3.
Also, for eaclh eigenvalue A compute the dimension of the eigenspace E(1).

1 a

2*  b 1[ I , a >  0, b > 0.

4.ThematricesP,=[T i], Pz=[p  -i-J,  P,=[:: -T]occurinthequantum

mechanical theory of electron spin and are called Pauli  spin matrices, in honor of the physicist
Wolfgang Pauli  (1900-1958). Verify that they all have eigenvalues 1 and - 1 . Then determine
all 2 x 2 matrices with complex entries having the two eigenvalues 1 and -1 .

5. Determine all 2 x 2 matrices with real entries whose eigenvalues are (a) real and distinct, (b)
real and equal, (c) complex conjugates.

6. Determine a, b, c, d, e, f, given that the vectors (1, 1, l), (1, 0, - l), and (1, - 1 , 0) are eigen-
vectors of the matrix

7. Calculate the eigenvalues and eigenvectors of each of the following matrices, Also, compute
the dimension (of  the eigenspaceE(A)  for each eigenvalue L 1

5 - 6 - 6

- 1 4 2

3 - 6 - 4I
8. Calculate the eligenvalues of each of the five matrices

(4 9 (b)
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These are called Dirnc matrices in honor of Paul A. M. Dirac (1902- ), the English
physicist. They occur in the solution of the relativistic wave equation in quantum mechanics.

9. If A and B are n x n matrices, with B a diagonal matrix, prove (by induction) that the deter-
minant f(n) = det (AB - A) is a polynomial in 1 with f(0) = (-1)” det A, and with the
coefficient of I” equal to the product of the diagonal entries of B.

10. Prove that a square matrix A and its transpose At  have the same characteristic polynomial.
11. If A and B are n x n matrices, with A nonsingular, prove that AB and BA have the same set

of eigenvalues. Note: It can be shown that AB and BA have the same characteristic poly-
nomial, even if A is singular, but you are not required to prove this.

12. Let A be an n x n matrix with characteristic polynomialf(l). Prove (by induction) that the
coefficient of An-l  inf(A) is -tr A.

13. Let A and B be II x n matrices with det A = det B and tr A = tr B. Prove that A and B have
the same characteristic polynomial if n = 2 but that this need not be the case if n > 2.

14. Prove each of the following statements about the trace.

( a ) t r ( A + B ) = t r A + t r B .
(b) tr (CA)  = c tr A.
(c) tr (AB) = tr (BA).
(d) tr At  = tr A.

4.9 Matrices representing the same linear transformation. Similar matrices

In this section we prove that two different matrix representations of a linear trans-
formation have the same characteristic polynomial. To do this we investigate more closely
the relation between matrices which represent the same transformation.

Let us recall how matrix representations are defined. Suppose T: V-t  W is a linear
mapping of an n-dimensional space V into an m-dimensional space W. Let (e,, . . . , e,)
and(w,,..., w,) be ordered bases for V and W respectively. The matrix representation
of T relative to this choice of bases is the m x n matrix whose columns consist of the com-
ponents of T(e,),  . . . ,T(e,) relative to the basis (wl, . . . , w,). Different matrix represen-
tations arise from different choices of the bases.

We consider now the case in which V = W, and we assume that the same ordered basis
h,..., e,) is used for both V and W. Let A = (a+)  be the matrix of T relative to this
basis. This means that we have

(4.8) T(e,)  = %tl aikei for k=l,2  ,...,  n.

Now choose another ordered basis (q  , . . . , u,) for both V and Wand let B = (bkj)  be the
matrix of T relative to this new basis. Then we have
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(4.9) T(ui)  = 5 bkju, for j=l,2 ,...,  n.
k=l

Since each ui is in the space spanned by e,, . . . , e, we can write

(4.10) uj =$2jek for j = 1,2,  . . , n,

for some set of scalars cki . The n x n matrix C = (ckJ determined by these scalars is non-
singular because it represents a linear transformation which maps a basis of V onto another
basis of V. ,4pplying  T to both members of (4.10) we also have the equations

(4.11) T(uj) = i ckiT(ek) for j=l,2 ,...,  n.
k=l

The systems of equations in (4.8) through (4.11) can be written more simply in matrix
form by introducing matrices with vector entries. Let

E =  [e,,...,e,] and u = [u, , * . . ) u,]

be 1 x n row matrices whose entries are the basis elements in question. Then the set of
equations in (4.10) can be written as a single matrix equation,

(4.12) U=EC.

Similarly, if we introduce

E’ q = [T(e,),  . . . , T(e,)] and U’ = [T(q), . . . , T(u,)]  ,

Equations (4.8), (4.9), and (4.11) become, respectively,

(4.13) E’=EA, U’=  UB, U’ = E’C.

From (4.12) we also have

E = UC-‘.

To find the relation between A and B we express U’  in two ways in terms of U. From
(4.13) we have

U’  = UB

and

U’ = E’C = EAC = UC-IAC,

Therefore UB = ZJCYAC.  But each entry in this matrix equation is a linear combination
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of the basis vectors ul, . . . , u,,  . Since the ui are independent we must have

B = C-‘AC.

Thus, we have proved the following theorem.

THEOREM 4.6. If two n x n matrices A and B represent the same linear transformation T,
then there is a nonsingular matrix C such that

B = C-lAC.

Moreover, if A is the matrix of T relative to a basis E = [el  , . , . , e,] and if  B is the matrix
of T relative to a basis U  = [ul, . . . , u,],  then for C we can take the nonsingular matrix
relating the two bases according to the matrix equation U  = EC.

The converse of Theorem 4.6 is also true.

THEOREM 4.7. Let A and B be two n x n matrices related by an equation of the form
B = C-IAC,  where C is a nonsingular n x n matrix. Then A and B represent the same
linear transformation.

Proof. Choose a basis E = [e,, . . . , e,] for an n-dimensional space V. Let u,, . . . , u,
be the vectors determined by the equations

(4.14)
n

U j  =  xckjek for j=l,2  ,...,  n,
+l

where the scalars c,,  are the entries of C. Since C is nonsingular it represents an invertible
linear transformation, so U = [uI,  . . . , u,,]  is also a basis for V,  and we have U = EC.

Let Tbe the linear transformation having the matrix representation A relative to the basis
E, and let S be the transformation having the matrix representation B relative to the basis U.
Then we have

(4.15) T(ek)  = fi aike{ for k = 1,2, . . . , n
f=l

and

(4.16) s(U,)  = 5 b,,u, for j = 1,2, . . . , n.
k = = l

We shall prove that S = T by showing that T(u,)  = S(u,)  for eachj.
Equations (4.15) and (4.16) can be written more simply in matrix form as follows,
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[TM . . . , %Jl  = E-4, [SW, - * . , S(u,)]  = UB.

Applying 7’to  (4.14) we also obtain the relation T(z+)  = 2 cJ(e,),  or

[T(q), . . . , T(u,)]  = EAC.

But we have

UB = ECB = EC(C-lAC)  = EAC,

which shows tha.t  T(uJ  = S(q)  for each j. Therefore T(X)  = S(x) for each x in V, so T =
S. In other words, the matrices A and B represent the same linear transformation.

DEFINITION. ‘Two n x n matrices A and B are called similar tf there is a nonsingular
matrix C such that B = C-IAC.

Theorems 4.6 and 4.7 can be combined to give us

THEOREM ,4.8. Two n x n matrices are similar tfand only tf they represent the same Iinear
transformation.

Similar matrices share many properties. For example, they have the same determinant
since

det (CYAC)  = det (C-l)(det A)(det C) = det A.

This property gives us the following theorem.

THEOREM 4.9. Similar matrices have the same characteristic polynomial and therefore the
same eigenvalues.

Proof. If A and B are similar there is a nonsingular matrix C such that B = C-lAC.
Therefore we have

ill  .- B = LI  - C-IAC = ilC-=IC  - C-lAC := C-l(ilZ  - A)C.

This shows that .ill  - B and AZ - A are similar, so det (Al- B) = det (AZ - A).

Theorems 4.8 and 4.9 together show that all matrix representations of a given linear
transformation T have the same characteristic polynomial. This polynomial is also called
the characteristic polynomial of T.

The next theorem is a combination of Theorems 4.5, 4.2, and 4.6. In Theorem 4.10, F
denotes either the real field R or the complex field C.
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THEOREM 4.10. Let T: V + V be a linear transformation, where V has scalars in F, and
dim V  = n. Assume that the characteristic polynomial of T has n distinct roots I,, . . . , 1, in
F. Then we have:

(a) The corresponding eigenvectors ul, . . . , u, form a basis for  V.
(b) The matrix of T relative to the ordered basis U = [ul, . . . , u,] is the diagonal matrix

A having the eigenvalues as diagonal entries:

A=diag(il,,...,il,).

(c) If A is the matrix of T relative to another basis E = [e,,  . . . , e,], then

A = C-lAC,

where C is the nonsingular matrix relating the two bases by the equation

U=EC.

Proof. By Theorem 4.5 each root Ai is an eigenvalue. Since there are n distinct roots,
Theorem 4.2 tells us that the corresponding eigenvectors ul, . . . , u, are independent.
Hence they form a basis for V. This proves (a). Since T(uJ  = &ui the matrix of T relative
to U is the diagonal matrix A, which proves (b). To prove (c) we use Theorem 4.6.

Note: The nonsingular matrix C in Theorem 4.10 is called a diagonalizing matrix. If
h,..., e,) is the basis of unit coordinate vectors (I,, . . . , I,), then the equation U =
EC in Theorem 4.10 shows that the kth column of C consists of the components of the
eigenvector ule relative to (Z1,  . . . , I,).

If the eigenvalues of A are distinct then A is similar to a diagonal matrix. If the eigen-
values are not distinct then A still might be similar to a diagonal matrix. This will happen
if and only if there are k independent eigenvectors corresponding to each eigenvalue of
multiplicity k. Examples occur in the next set of exercises.

4.10 Exercises

Prove that the matrices [i :] and [IO T] have the same eigenvalues but are not similar.

In each case find a nonsingular matrix C such that C-IAC is a diagonal matrix or explain why
no such C exists.

Three bases in the plane are given. With respect to these bases a point has components (x,, x,),
(yl,yzh  and (q,  Z-A  respectively. Suppose  that  [yl,  yzl = [xl,  x&,  h 4 = [xl,  x,lB,  and
[z,, z2] = [yl, y,]C,  where A, B, C are 2 x 2 matrices. Express C in terms of A and B.
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4.

5.

6.

7.

8.

In each case, slhow that the eigenvalues of A are not distinct but that A has three independent
eigenvectors. Find a nonsingular matrix C such that C-‘AC  is a diagonal matrix.

Show that none of the following matrices is similar to a diagonal matrix, but that each is similar
A 0

to a triangular matrix of the form
[ I1 I’

where A is an eigenvalue.

0 -1 0

Determine the eigenvalues and eigenvectors of the matrix ! I0 0 1 and thereby show
that it is not similar to a diagonal matrix. -. 1 -3 3

(a) Prove that a. square matrix A is nonsingular if and only if 0 is not an eigenvalue of A.
(b) If A is nonsingular, prove that the eigenvalues of A-l  are the reciprocals of the eigenvalues
ofA.

Given an n x n matrix A with real entries such that A2  = -I.  Prove the following statements
about A.
(a) A is nonsingular.
(b) n is even.
(c) A has no real eigenvalues.
(d) det A q = 1.



5
EIGENVALUES OF OPERATORS ACTING ON

EUCLIDEAN SPACES

5.1 Eigenvalues and inner products

This chapter describes some properties of eigenvalues and eigenvectors of linear trans-
formations that operate on Euclidean spaces, that is, on linear spaces having an inner
product. We recall the fundamental properties of inner products.

In a real  Euclidean space an inner product (x, u) of two elements x andy is a real number
satisfying the following properties :

(1) (X>Y)  = 09  4 (symmetry)

(2)  6 + z, Y> = (XT  Y> + (z9 r> (linearity)

(3) (WY) = C(XPY> (homogeneity)

(4) (x, 4 > 0 i f  x#O (positivity).
In a complex Euclidean space the inner product is a complex number satisfying the same

properties, with the exception that symmetry is replaced by Hermitian symmetry,

(1’) (x3 JJ> = (y, 4,

where the bar denotes the complex conjugate. In (3) the scalar c is complex. From (1’)
and (3) we obtain

(3’) (X,  Cy) = f(& J,)  3

which tells us that scalars are conjugated when taken out of the second factor. Taking
x = y in (1’) we see that (x, x) is real so property (4) is meaningful if the space is complex.

When we use the term Euclidean space without further designation it is to be understood
that the space can be real or complex. Although most of our applications will be to finite-
dimensional spaces, we do not require this restriction at the outset.

The first theorem shows that eigenvalues (if they exist) can be expressed in terms of the
inner product.

THEOREM 5.1. Let E be a Euclidean space, let V be a subspace  of E, and let T: V--t E be a
linear transformation having an eigenvalue  31 with a corresponding eigenvector x. Then we have

(5.1)
11A
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Proof. Since T(x) = iix we have

(T(x), x) = (Ax,  x) = 1(x, x).

Since x # 0 we can divide by (x, x) to get (5.1).

Several properties of eigenvalues are easily deduced from Equation (5.1). For example,
from the Hermitian symmetry of the inner product we have the companion formula

(5.2)
2 = (x2 T(x))

(x9 x>

for the complex conjugate of A. From (5.1) and (5.2) we see that il is real (1  = 1)  if and
only if (T(x), x) is real, that is, if and only if

(T(x),  4 = (x,  T(x)) for the eigenvector x .

(This condition is trivially satisfied in a real Euclidean space.) Also, ;i is pure imaginary
(A = -2) if and only if (T(x , x 1s) ) ’ pure imaginary, that is, if and only if

(T(x),  4 = -6~ T(x)) for the eigenvector x.

5.2 Hermitian and skew-Hermitian transformations

In this section we introduce two important types of linear operators which act on Euclid-
ean spaces. These operators have two categories of names, depending on whether the
underlying Euclidean space has a real or complex inner product. In the real case the trans-
formations are called symmetric and skew-symmetric. In the complex case they are called
Hermitian and skew-Hermitian. These transformations occur in many different applications.
For example, Hermitian operators on infinite-dimensional spaces play an important role in
quantum mechanics. We shall discuss primarily the complex case since it presents no added
difficulties.

DEFINITION. Let E be a Euclidean space and let V be a sub..l;aace of E. A linear trans-
formation T: V--f E is called Hermitian on V if

(T(x), y) = (x, T(y)) .for  all x and y in V.

Operator T is called skew-Hermitian on V if

(T(X),  y) = - (x,  T(y)> .for  all  x and y in V.

In other words, a Hermitian operator Tcan  be shifted from one factor of an inner product
to the other without changing the value of the product. Shifting a skew-Hermitian operator
changes the sign of the product.

Note: As already mentioned, if Eis a reaLEuclidean  space, H’ermitian transformations
are also called symmetric; skew-Hermitian transformations are called skew-symmetric.
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EXAMPLE 1. Symmetry and skew-symmetry in the space C(a, b). Let C(a, b) denote the
space of all real functions continuous on a closed interval [a, b], with the real inner product

U-Y s> = jabf(Os(t)  dt.
Let Vbe  a subspace  of C(a, b). If T:  V -+ C(a, b) is a linear transformation then cf,  T(g)) =
ji f(t)Tg(t) dt , where we have written Q(t) for T(g)(t). Therefore the conditions for sym-
metry and skew-symmetry become

(5.3)

and

(5.4)

s,” {f(t)Tg(t)  - g(t)Tf(t)}  dt = 0 if T is symmetric,

jab  {f(t)Tg(t) + g(t)Tf(t)}  dt = 0 if T is skew-symmetric.

EXAMPLE 2. Multiplication by a$xedfunction.  In the space C(a, b) of Example 1, choose
a fixed functionp  and define T(f) = pf, the product ofp and f. For this T,  Equation (5.3)
is satisfied for all f and g in C(a, b) since the integrand is zero. Therefore, multiplication
by a fixed function is a symmetric operator.

EXAMPLE 3. The dyerentiation  operator. In the space C(a, b) of Example 1, let Y be the
subspace  consisting of all functions f which have a continuous derivative in the open interval
(a, b) and which also satisfy the boundary condition f (a) = f(b). Let D: V --+ C(a, b) be the
differentiation operator given by D(f)  = f' . It is easy to prove that D is skew-symmetric.
In this case the integrand in (5.4) is the derivative of the product fg, so the integral is equal
to

Iab  (h)‘(t)  dt  = f@k@) - f(a>g(a)  .

Since bothfand g satisfy the boundary condition, we have f (b)g(b)  - f (a)g(a) = 0. Thus,
the boundary condition implies skew-symmetry of D. The only eigenfunctions in the sub-
space V are the constant functions. They belong to the eigenvalue 0.

EXAMPLE  4. Sturm-Liouville operators. This example is important in the theory of linear
second-order differential equations. We use the space C(a, b) of Example I once more and
let V be the subspace  consisting of all f which have a continuous second derivative in [a, b]
and which also satisfy the two boundary conditions

(5.5) p(4f  (4 = 0 p p(blf(b)  = 0,

wherep is a fixed function in C(a, b) with a continuous derivative on [a, b]. Let q be another
fixed function in C(a, b) and let T: V ---f  C(a,  b) be the operator defined by the equation

T(f) = Cpf 7' + qf.
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This is called a Sturm-Liouville  operator. To test for symmetry we note that j?(g) -

gT(f) = f(pg’)’ - dpf’)  ’ Using this in (5.3) and integrating both ji f * (pg’)’ dt and
J,” g * (pf’)’  dt by parts, we find

jab  if%)  - gT(f)) dt = fm’  I;- Iab  pg’f’  dt - gpf’  [I+ 1,” pf’g’  dt = 0,

since bothfand g satisfy the boundary conditions (5.5). Hence T is symmetric on V. The
eigenfunctions of Tare those nonzero  f  which satisfy, for some real 1, a differential equation
of the form

Q?fY’  + qf  = v

on [a, b], and also satisfy the boundary conditions (5.5).

5.3 Eigenvalues and eigenvectors of Hermitian and skew-Hermitian operators

Regarding eigenvalues we have the following theorem;

THEOREM  5.2. Assume T has an eigenvalue il. Then we have:
(a) If T is Hermitian, 1 is real: il = 2.
(b) If T is skew-Hermitian, R is pure imaginary: .1 = -1.

Proof. Let x be an eigenvector corresponding to 1. Then we have

2 _ (T(x), x>- - and - ___-j _ (x9  T(x))

(x, x> (x,x> *

If Tis Hermitian we have (T(x), x) = (x, T(x)) so A = 1. If Tis skew-Hermitian we have

G‘W, 4 = -(x,  T(x)) so il = -2.

Note: If T is symmetric, Theorem 5.2 tells us nothing new about the eigenvalues of T
since all the eigenvalues must be real if the inner product is real.. If T is skew-symmetric,
the eigenvalues of T must be both real and pure imaginary. Hence all the eigenvalues
of a skew-symmetric operator must be zero (if any exist).

5.4 Orthogonality of eigenvectors corresponding to distinct eigenvalues

Distinct eigenvalues of any linear transformation correspond to independent eigen-
vectors (by Theorem 4.2). For Hermitian and skew-Hermitian transformations more is
true.

THEOREM  5.3. Let T be a Hermitian or skew-Hermitian transformation, and let L and ,a
be distinct eigenvalues of T with corresponding eigenvectors x and y. Then x and y are
orthogonal; that is, (x, y) = 0.

ProoJ We write T(x) = Lx, T(y) = ,uy and compare the two inner products (T(x), y)
and (x, T(y)). We have

(T(x),  y>  = (k y> = W,  y> and (x, To)) = (x, luy>  = /Xx, y).
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If T is Hermitian this gives us 2(x, y) = ,L?(x,  y) = ,u(x,~)  since ,,v = ,ii. Therefore
(x, y) = 0 since il # p. If T is skew-Hermitian we obtain 1(x, y) = -,E(x,  y) = ,M(x,  y)
which again implies (x, J) = 0.

EXAMPLE. We apply Theorem 5.3 to those nonzero functions which satisfy a differential
equation of the form

(5.6) w-7' + qf= Af

on an interval [a, b], and which also satisfy the boundary conditionsp(a)f(a)  = p(b)f (b) =
0. The conclusion is that ;any two solutions f and g corresponding to two distinct values of
;I are orthogonal. For example, consider the differential equation of simple harmonic
motion,

f" + k2f=  0

on the interval [0, 7~1,  where k + 0. This has the form (5.6) with p = 1, q = 0, and
A = -k2. All solutions are given byf(t) = c1  cos kt + c2  sin kt . The boundary condition
f (0) = 0 implies c1  = 0. The second boundary condition, f (7r)  = 0, implies cg  sin krr = 0.
Since c2  # 0 for a nonzero  solution, we must have sin kr  = 0, which means that k is an
integer. In other words, nonzero solutions which satisfy the boundary conditions exist if
and only if k is an integer. These solutions are f(t) = sin nt , n = f 1, i-2,  . . . . The
orthogonality condition irnplied by Theorem 5.3 now becomes the familiar relation

s: sin nt sin mt dt = 0

if m2 and n2  are distinct integers.

5.5 Exercises
1. Let E be a Euclidean space, let V be a subspace, and let T: V -+  E be a given linear trans-

formation. Let ii be a scalar and x a nonzero  element of V. Prove that I is an eigenvalue of T
with x as an eigenvector if and only if

(TW,y) = %y) for every y in E.

2. Let T(x) = cx for every x in a linear space V, where c is a fixed scalar. Prove that T is sym-
metric if V is a real Euclidean space.

3. Assume T: I/ -+  V is a Hermitian transformation.
(a) Prove that T” is Hermitian for every positive integer n, and that T-l is Hermitian if T is
invertible.
(b) What can you conclude about Tn  and T-l if T is skew-Hermitian?

4. Let T,: V -+  E and T,: V -+  E be two Hermitian transformations.
(a) Prove that aT, + bT, is Hermitian for all real scalars a and b.
(b) Prove that the product (composition) TIT, is Hermitian if TI and T, commute, that is, if
TIT, = T,T,.

5. Let V = Vs(R)  with the usual dot product as inner product. Let T be a reflection in the xy-
plane; that is, let T(!)  = i, T(i)  = j, and T(k) = -k. Prove that T is symmetric.
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6. Let C(0,  1) be the real linear space of all real functions continuous on [0, l] with inner product
(f,g) = ]A f(t)g(t) dt.  Let V be the subspace of all f such that ]: f(t) dt = 0. Let T: V --f
C(0,  1) be the integration operator defined by Tf (x) = fi f(t) dt  . Prove that T is skew-sym-
metric.

7. Let V be the real Euclidean space of all real polynomials with the inner product (f,g)  =
]‘r f (t)g(t)  dt  . Determine which of the following transformations T: V + V is symmetric or
skew-symmetric:
(a) TfW =f(-4. cc> rf(x =f(x) +f(-4.
(b) Tf(4 =f(x)f(-4. Cd) ?fCf(x)  =f(x) -f(-4.

8. Refer to Example 4 of Section 5.2. Modify the inner product as follows:

(f,g>  = j: f(W)W dt,

where w is a fixed positive function in C(a, b). Modify the Sturm-Liouville operator T by
writing

T(f) - cpf ‘)’ +- qf.
W

Prove that the modified operator is symmetric on the subspace V.
9. Let V be a subspace of a complex Euclidean space E. Let T: V + E be a linear transformation

and define a scalar-valued function Q on V as follows :

Q(x)  = (T(x),  4 for all x in V.

(a) If T is Hermitian on I’, prove that Q(x) is real for all x.
(b) If T is skew-Hermitian, prove that Q(x) is pure imaginary for all x.
(c) Prove that Q(tx) = tie(x)  for every scalar 1.
(d) Prove that Q(x  + y) = Q(x) + Q(r) + (T(x). ,v) + (T(y), x), and find a corresponding
formula for Q(x  + tr).
(e) If Q(x) = 0 for all x prove that T(x) = 0 for all x.
(f) If Q(x) is real for all x prove that T is Hermitian. [Hint: Use the fact that Q(x  + ty)
equals its conjugate for every scalar t.]

10. This exercise shows that the Legendre polynomials (introduced in Section 1.14) are eigen-
functions of a Sturm-Liouville operator. The Legendre polynomials are defined by the equation

pn(d = &,/y(1), where f,(t) = (t2 - 1)“.

(a) Verify that (t2  - 1)  f',(t) = 2ntf,(t).
(b) Differentiate the equation in (a) n + 1 times, using Leibniz’s formula (see p. 222 of Volume
I) to obtain

(t2 - 1)f :+2)(t)  + 2t(n + 1)f p+qt>  + n(n + 1)f y(t)  = 2ntf  k+qt)  + 2n(n  + 1)f 2’(r).

(c) Show that the equation  in (b) can be rewritten in the form

w2 - l)Ph(f)]’  = n(n + l)P&).

This shows that P,(t) is an eigenfunction of the Sturm-Liouville operator T given on the
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interval [ -1 , l] by r(f) = (pf’)‘,  wherep(t)  = t2 - 1 . The eigenfunction P,(t)  belongs to
the eigenvalue A = n(n -b  1). In this example the boundary conditions for symmetry are
automatically satisfied since p(l) = p(  - 1) = 0.

5.6  Existence of an orthonormal set of eigenvectors for Hermitian and skew-Hermitian
operators acting on finite-dimensional spaces

Both Theorems 5.2 and 5.3 are based on the assumption that T has an eigenvalue. As
we know, eigenvalues need not exist. However, if T acts on ajnite-dimensional  complex
space, then eigenvalues always exist since they are the roots of the characteristic polynomial.
If T is Hermitian, all the eigenvalues are real. If T is skew-Hermitian, all the eigenvalues
are pure imaginary.

We also know that two distinct eigenvalues belong to orthogonal eigenvectors if T is
Hermitian or skew-Hermitian. Using this property we can prove that T has an orthonormal
set of eigenvectors which spans the whole space. (We recall that an orthogonal set is called
orthonorm.al  if each of its (elements has norm 1.)

THEOREM 5.4. Assume dim V = n and let T: V ---f  V be Hermitian or skew-Hermitian.
Then there exist n eigenvectors ul, . . . , u, of T which form an orthonormal basis for V.
Hence the matrix of T relative to this basis is the diagonal matrix A = diag (1,)  . . . , 1,))
where lk is the eigenvalue belonging to ule.

Proof. We use inductian on the dimension n. If n = 1, then T has exactly one eigen-
value. Any eigenvector u1 of norm 1 is an orthonormal basis for V.

Now assume the theorem is true for every Euclidean space of dimension n - 1 . To
prove it is also true for V we choose an eigenvalue 1, for T and a corresponding eigenvector
u1 of norm 1. Then T(u,)  = &u, and (IuJ  = 1 . Let S be the subspace  spanned by ul.
We shall apply the induction hypothesis to the subspace  Sl  consisting of all elements in Y
which are orthogonal to u:~,

P = {x ) x E v, (x,  241)  = O}.

To do this we need to know that dim Sl  = n - 1 and that T maps Sl  into itself.
From Theorem 1.7(a) we know that u1 is part of a basis for V, say the basis

(%,VZ,..., vJ.  We can assume, without loss in generality, that this is an orthonormal
basis. (If not, we apply the Gram-Schmidt process to convert it into an orthonormal
basis, keeping u1 as the first basis element.) Now take any x in S1 and write

Then x1 = (x, uJ = 0 since the basis is orthonormal, so x is in the space spanned by
v2,  * . . ) v,. Hence dim SI  = n - 1.

Next we show that T maps Sl  into itself. Assume T is Hermitian. If x E Sl  we have

(T(x),  4 = 6, W4)  = (x,  hu,>  = Mx.,  uJ = 0,
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so T(x) E SL  . Since T is Hermitian on SL we can apply the induction hypothesis to find
that T has n - 1 eigenvectors u2,  . . . , U,  which form an orthonormal basis for Sl.
Therefore the orthogonal set ur,  . . : , U,  is an orthonormal basis for V. This proves the
theorem if T is Hermitian. A similar argument works if T is skew-Hermitian.

5.7 Matrix representations for Hermitian and skew-Hermitian operators

In this section we assume that V is a finite-dimensional Euclidean space. A Hermitian
or skew-Hermitian transformation can be characterized in terms of its action on the
elements of any basis.

THEOREM 5.5. Let (f?,,  . . . , e,) be a basis for V and let T: V -+ V be a linear transfor-
mation. Then we have:

(a) T is Hermitian if and on4  if (T(e)),  ei)  = (ej, T(ei)) for all i andj.
(b) T is skew-Hermitian if and onfy  if (T(e,),  ei)  = - (ej, T(ei))for  all i and j.

Proof. Take any two elements x and y in V and express each in terms of the basis
elements, say x = 1 xjej  and y = 2 yiei. Then we have

Similarly we find

(x, T(Y))  = i 2 qiii(q,  T(4).+I i=l

Statements (a) and (b) following immediately from these equations.

Now we characterize these concepts in terms of a matrix representation of T.

THEOREM 5.6. Let (e, , . . . , e,) be an orthonormal basis for V, and let A = (aij)  be the
matrix representation of a linear transformation T: V-+ V relative to this basis. Then we
have:

( a ) T is Hermitian if and only if aij  = riji for all i andj.
(b) T is skew-Hermitian if and only ifaij  = -Cji  for all i andj.

Proof. Since A is the matrix of T we have T(eJ = z;==,  akjek  . Taking the inner product
of T(eJ with ei and using the linearity of the inner product we obtain

But (ek , ei) = 0 unless k = i, so the last sum simplifies to aij(ei, ei)  = aij  since (ei  , ei) = 1 .
Hence we have

aij = (Wj),  4 for all i, j.
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Interchanging i and j, taking conjugates, and using the Hermitian symmetry of the inner
product, ‘we  find

aji = (ej,  T(4) for all i, j.

Now we apply Theorem 5.5 to complete the proof.

5.8 Hermitian and skew-Hermitian matrices. The adjoint of a matrix

The following definition is suggested by Theorem 5.6.

DEFINITION. A square matrix A = (adj)  is called Hermitian if aij  = cji  for all i and j.
Matrix A is called skew-hrermitian  if aij  = -cjji  for all  i and j.

Theorem 5.6 states that a transformation T on a finite-dimensional space V is Hermitian
or skew-Hermitian according as its matrix relative to an orthonormal basis is Hermitian
or skew-Hermitian.

These matrices can be described in another way. Let 2 denote the matrix obtained by
replacing each entry of A by its complex conjugate. Matrix A is called the conjugate of A.
Matrix A is Hermitian if and only if it is equal to the transpose of its conjugate, A = At.
It is skew-Hermitian if A = -Jt.

The transpose of the conjugate is given a special name.

DEFINITION OF THE ADJOI‘NT OF A MATRIX. For any matrix A, the transpose of the conjugate,
xt, is also called the adjoint  of A and is denoted by A*.

Thus, a square matrix A is Hermitian if A = A*, and skew-Hermitian if A = -A*.
A Hermitian matrix is also called self-adjoint.

Note: Much of the older matrix literature uses the term adjoint  for the transpose of the
cofactor matrix, an entirely different object. The definition given here conforms to the
current nomenclature in the theory of linear operators.

5.9 Diagonalization of a Hermitian or skew-Hermitian matrix

THEOREM 5.7. Every n x n Hermitian or skew-Hermitian matrix A is similar to the
diagonal matrix A = diag (2,)  . . . , I,) of its eigenvalues. Moreover, we have

A = C-IAC,

where C is a nonsingular matrix whose inverse is its adjoint,  C-l  = C* .

Proof. Let V be the space of n-tuples of complex numbers, and let (e,,  . . . , e,) be the
orthonormal basis of unit coordinate vectors. If x = 2 xiei  and y = zyyiei let the inner
product be given by (x, y) = 2 XJi . For the given matrix A, let T be the transformation
represented by A relative to the chosen basis. Then Theorem 5.4 tells us that V has an
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orthonormal basis of eigenvectors (ul, . . . , u,), relative to which T has the diagonal
matrix representation A = diag (1r,  . . . , A,),  where 1, is the eigenvalue belonging to u,.
Since both A! and A represent T they are similar, so we have A = CFAC,  where C = (cu)
is the nonsingular matrix relating the two bases:

[#I 3 * * * 9 u,] = [el , . . . , e,]C.

This equation shows that thejth column of C consists of the components of uj relative to
(el, . . . , e,). Therefore cij is the ith component of ui. The inner product of uj and Ui  is
given by

Since {ur , . . . , u,} is an orthonormal set, this shows that CC* = I, so C-l  = C* .

Note: The proof of Theorem 5.7 also tells us how to determine the diagonalizing
matrix C. We find an orthonormal set of eigenvectors ul, . . . , u, and then use the
components of uj (relative to the basis of unit coordinate vectors) as the entries of thejth
column of C.

2 2
EXAMPLE 1, The real Hermitian matrix A = [ 12 5

has eigenvalues il, = 1 and 1, = 6.

The eigenvectors belonging to 1 are t(2, -l), t # 0. Those belonging to 6 are t(l, 2),

t # 0. The two eigenvectors u1 = t(2, -1) and u2 = t(l, 2) with t = l/J5 form an
orthonormal set. Therefore the matrix

2 1

C=ljT -1 2[ 1
is a diagonalizing matrix for A. In this case C* = Ct since C is real. It is easily verified

1 0
that PAC  = [ 10 6’

EXAMPLE 2. If A is already a diagonal matrix, then the diagonalizing matrix C of Theorem
5.7 either leaves A unchanged or m&ely  rearranges the diagonal entries.

5.10 Unitary matrices. Orthogonal matrices

DEFINITION. A square matrix A is called unitary if AA* = I. It is called orthogonal if
AAt = I.

Note: Every real unitary matrix is orthogonal since A* = At.

Theorem 5.7 tells us that a Hermitian or skew-Hermitian matrix can always be diago-
nalized by a unitary matrix. A real Hermitian matrix has real eigenvalues and the corre-
sponding eigenvectors can be taken real. Therefore a real Hermitian matrix can be
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diagonalized by a real orthogonal matrix. This is not true for real skew-Hermitian matrices.
(See Exercise 11 in Section 5.11.)

We also have the following related concepts.

DEFINITION. A square matrix A with real or complex entries is called symmetric if A =
At ; it is called skew-symmetric if A = -At.

EXAMPLE 3. If A is real, its adjoint is equal to its transpose, A* = At.  Thus, every real
Hermitian matrix is symmetric, but a symmetric matrix need not be Hermitian.

1 -I-  i 2,
EXAMPLE: 4. If A =

[ I3 -- i 4i ’
thenA=[i+:  -ti], At=[Izi  3il]

andA*=[lii 3_+4:].

EXAMPLE: 5. Both matrices [:

metric, the second is not.

:] and [2  y i 2 : i] are Hermitian. The first is sym-

EXAMPLE 6. Both matrices [i -3  and L ,2] are skew-Hermitian. The first is

skew-symmetric, the second is not.

EXAMPLE 7. All the diagonal elements of a Hermitian matrix are real. All the diagonal
elements of a skew-Hermitian matrix are pure imaginary. All the diagonal elements of a
skew-symmetric matrix are zero.

EXAMPLE 8. For any square matrix A, the matrix B = &(A + A*) is Hermitian, and the
matrix C = $(A - A*) is skew-Hermitian. Their sum is A. Thus, every square matrix
A can be expressed as a sum A = B + C, where B is Hermitian and C is skew-Hermitian.
It is an easy exercise to verify that this decomposition is unique. Also every square matrix
A can be expressed uniquely as the sum of a symmetric matrix, &4 + At), and a skew-
symmetric matrix, $(A - At).

EXAMPLE 9. If A is orthogonal we have 1 = det (AAt) = (det A)(det At)  = (det A)2, so
detA=  f l .

5.11 Exercises

1. Determine which of the following matrices are symmetric, skew-symmetric, Hermitian, skew-
Hermitian.
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2. (a) Verify that the 2 x 2 matrix A = is an orthogonal matrix.

(b) Let T be the linear transformation with the above matrix A relative to the usual basis
{i,i}.  Prove that T maps each point in the plane with polar coordinates (r, a) onto the point
with polar coordinates (r, w + 0).  Thus, T is a rotation of the plane about the origin, 0 being
the angle of rotation.

3. Let V be real 3-space with the usual basis vectors i, j, k. Prove that each of the following
matrices is orthogonal and represents the transformation indicated.

1 0 0

(a) 0 1 0[ 1 (reflection in the xy-plane).

0 0 -1

(reflection through the x-axis).

-1 0 0

Cc)

[ I

o-1 0 (reflection through the origin).

0 0 -1

( d )  1: co:0 -s.o] (rotation about the x-axis).

10 sin 0 cos 8 1

- 1 0 0

(4 10 cos 19 -sin 19 (rotation about x-axis followed by reflection in the yz-plane).

1 0 sin 8 cos e 1
4. A real orthogonal matrix A is called proper if det A = 1 , and improper if det A = -1 .

(a) If A is a proper 2 x 2 matrix, prove that A =
a rotation through an angle 8.

for some 0.  This represents

(b) Prove that [A 01] and [ -10  (I)]  are improper matrices. The first matrix represents a

reflection of the xy-plane through the x-axis; the second represents a reflection through the
y-axis. Find all improper 2 x 2 matrices.

In each of Exercises 5 through 8, find (a) an orthogonal set of eigenvectors for A, and (b)
a unitary matrix C such that C-lAC  is a diagonal matrix.

9 12
5. A =

[ I

0 -2

12 16 *
6. A =

[ I2 0’

1 3 4

%A= [ 34 10. 10 1
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9. Determine which of the following matrices are unitary, and which are orthogonal (a, b, 0 real).

10. The special theory of relativity makes use of the equations

x’ = a(x -- ut), y’= y, z’= z, t’ = a(t - vx/c2),

Here u is the velocity o’f a moving object, c the speed of light, and a = c/m. The
linear transformation which maps (x, y, z, t) onto (x’, y’, z’, t’) is called a Lorentz transformation.
(a> Let  63,  ~2, x3, xq) q = (x, y, z, ict) and (xi, xi, xi, xi) = (x’, y’, z’, ict’). Show that the
four equations can be written as one matrix equation,

a 0 0 -iav/c

0 1 0 0

b;,x;;,x;, x;1 = [Xl, x2,x,, xql i 0 0 1 0 1 *

liavjc  0 0 a J

(b) Prove that the 4 x 4 matrix in (a) is orthogonal but not unitary.
0 a

11.  Let a be a nonzero  real number and let A be the skew-symmetric matrix A = [ I.--a 0
(a) Find an orthonormal set of eigenvectors for A.
(b) Find a unitary matrix C such that @AC  is a diagonal matrix.
(c) Prove that there is no real orthogonal matrix C such that CplAC is a diagonal matrix.

12. If the eigenvalues of a Hermitian or skew-Hermitian matrix A are all equal to c, prove that
A  = c l .

13. If A is a real skew-symmetric matrix, prove that both Z - A and Z + A are nonsingular and
that (I - A)(Z + A)-1 is orthogonal.

14. For each of the following statements about n x n matrices, give a proof or exhibit a counter
example.
(a) If A and B are unitary, then A + B is unitary.
(b) If A and B are unitary, then AB is unitary.
(c) If A and AB are unitary, then B is unitary.
(d) If A and B are unitary, then A + B is not unitary.

5.12 Quadratic forms

Let V be a real Euclidea:n  space and let T: V+ V be a symmetric operator. This means
that T can be shifted from one factor of an inner product to the other,

V(x),  y)  = (x,  T(y)) f o r a l l x a n d y i n  V.

Given T, we define a real-valued function Q on V by the equation

Q(x) = UW 4.
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The function Q is called the quadratic form associated with T. The term “quadratic” is
suggested by the following theorem which shows that in the finite-dimensional case Q(x)
is a quadratic polynomial in the components of x.

THEOREM 5.8. Let  (e,,  . . . , e,) be an orthonormal basis for a real Euclidean space V.
Let T: V + V be a symmetric transformation, and let A = (aii) be the matrix of T relative
to this basis. Then the quadratic form Q(x) = (T(x), x) is related to A as follows:

(5.7) Q(X) =i~~~i+ixi !f x =i2xieie

Proof. By linearity we have T(x) = 2 xiT(eJ  . Therefore

This proves (5.7) since aij = aji  = (T(ei),  ej).

The sum appearing in (5.7) is meaningful even if the matrix A is not symmetric.

DEFINITION. Let V be any real Euclidean space with an orthonormal basis (e, , . . . , e,), and
let A = (aij)  by any n x n matrix of scalars. The scalar-valued function Q defined at each
element x = 2 xiei of V by the double sum

(5.8) Q(X) = iz $FilXiXi

is called the quadratic form associated with A.

If A is a diagonal matrix, then aij = 0 if i # j so the sum in (5.8) contains only squared
terms and can be written more simply as

Q(x) = i$l w,2  .

In this case the quadratic form is called a diagonalform.
The double sum appearing in (5.8) can also be expressed as a product of three matrices.

THEOREM 5.9. Let x = [Xl,.. . , x,] be a 1 x n row matrix, and let A = (a,J  be an
n x n matrix. Then XAXt  is a 1 x 1 matrix with entry

(5.9)

Proof. Th.e product XA  is a 1 x II matrix, XA  = [yl, . . . , y,] , where entry yj is the dot
product of X with thejth column of A,

yi = i xiaij.
i=l
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Therefore the product XLF is a 1 x 1 matrix whose single entry is the dot product

Note: It is customary to identify the 1 x 1 matrix XAXt with the sum in (5.9) and to
call the product XAXt a. quadratic form. Equation (5.8) is written more simply as follows:

Q(x) = XAXt  .

1 - 1
EXAMPLE 1. Let z'i  = [ 1 X = [x1, x2]. Then we have

.- 3 5’

1 - 1
XA = I’X,)  x2] [ 1 =  [Xl - 3x,, -x1 +  5x,1,

- 3 5
and hence

XAXt  = [Xl -- 3x,, -x1 + 5x,] = x; - 3x,x, - XlX‘J + 5x;.

EXAMPLE 2. LetB  = X = [x1, x2]. Then we have

XBXt  = [xl,,x2][-; -3[::1 = x; -2x,x, -2x,x, + 5x2,.

In both Examples 1 and 2 the two mixed product terms add up to -4x1x,  so XAF =
X&V. These examples show that different matrices can lead to the same quadratic form.
Note that one of these matrices is symmetric. This illustrates the next theorem.

THEOREM 5.10. For any n x n matrix A and any 1 x n row matrix X we have XAXt  =
XBXt  where B is the symmetric matrix B = +(A  + At).

Proof. Since XAXt  is a 1 x 1 matrix it is equal to its transpose, XAXt  = (XAXt)t.
But the transpose of a product is the product of transposes in reversed order, so we have
(XAXt)t  = XAtXt  . Therefore XAXt  = &XAXt  + *XAtXt  = XBXt  .

5.13 Reduction of a real quadratic form to a diagonal form

A real symmetric matrix A is Hermitian. Therefore, by Theorem 5.7 it is similar to the
diagonal matrix A = diag (jll, . . . , A,) of its eigenvalues. Moreover, we have A = CtAC,
where C is an orthogonal matrix. Now we show that C can be used to convert the quadratic
form XAXt  to a diagonal form.
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THEOREM 5.11. Let XAF  be the quadratic form associated with a real symmetric matrix
A, and let C be an orthogonal matrix that converts A to a diagonal matrix A = FAC.
Then we have

XAXt  = YAYt = i&y;,
i=l

where Y = [;vI,  . ,I . , y,] is the row matrix Y = XC, and AI,  . . . ,I,, are the eigenvalues  of A.

Proof. Since C is orthogonal we have C-l  = Ct.  Therefore the equation Y = XC
implies X = YCt  , and we obtain

XAXt  = ( YCt)A(  YCt)t  = Y(CtAC) Yf  = YA  Yt .

Note: Theorem 5.11 is described by saying that the linear transformation Y = XC
reduces the quadratic form X,4X1  to a diagonal form YA  Yt.

EXAMPLE 1.  The quadratic form belonging to the identity matrix is

XI&v  =tglxf  = I(Xl12,

the square of the length of the vector X = (x1,  . , . , x,) . A linear transformation Y = XC,
where C is an orthogonal matrix, gives a new quadratic form YAYt with A = CZCt  =
CC?  = I. Since XZXt  = YZYt  we have I(X(12  = I(  Y112,  so Y has the same length as X. A
linear transformation which preserves the length of each vector is called an isometry.
These transformations are discussed in more detail in Section 5.19.

EXAMPLE 2.. Determine an orthogonal matrix C which reduces the quadratic form Q(x) =
2x,2  + 4x,x,  + 5x-i  to a diagonal form.

2 2
Solution. We write Q(x) = XAXt, where A = [ 12 5.

This symmetric matrix was

diagonalized in Example 1 following Theorem 5.7. It has the eigenvalues 1, = 1, AZ = 6,
and an orthonormal set of eigenvectors ul, u2, where u1 = t(2, -l), u2 = t(l,2), t =

l/J?. An orthogonal diagonalizing matrix is C = t
2 1[ 1 The corresponding

diagonal form is -1 2 .

YAYt = il,y; + I,y;  = y; + 6-y;.

The result of Example 2 has a simple geometric interpretation, illustrated in Figure 5.1.
The linear transformation Y =: XC can be regarded as a rotation which maps the basis i,
j onto the new basis ul, u2. A point with coordinates (x1,  xJ relative to the first basis has
new coordinates (yl, yJ relative to the second basis. Since XAF  = YAYt , the set of
points (x1,  x2)  satisfying the equation XAXt  = c for some c is identical with the set of
points (yl, y2) satisfying YA  Yt  = c . The second equation, written as y: + 6~:  = c, is
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to

to

basis i,j

basis u,,

FIGURE 5.1 Rotation of axes by an orthogonal matrix. The ellipse has Cartesian equation
XAXt  = 9 in the jc,x,-system, and equation YA  Yt = 9 in the y&-system.

the Cartesian equation of an ellipse if c > 0. Therefore the equation XL%?  = c, written
as 2x: + 4x,x,  + 5x: = c, represents the same ellipse in the original coordinate system.
Figure 5.1 shows the ellipse corresponding to c = 9.

5.14 Applications to analytic geometry

The reduction of a quadratic form to a diagonal form can be used to identify the set of
all points (x, v) in the pla.ne which satisfy a Cartesian equation of the form

(5.10) ax2 + bxy  + cy2  + dx + ey +f= 0.

We shall find that this set is always a conic section, that is, an ellipse, hyperbola, parabola,
or one of the degenerate cases (the empty set, a single point, or one or two straight lines).
The type of conic is governed by the second-degree terms, that is, by the quadratic form
ax2 + bxy  + cy2. To conform with the notation used earlier, we write x1 for X, x2 for y,
and express this quadratic form as a matrix product,

XAXt  = ax,2 + bx,x2  + cxi,

where X = [x1, x2]  and 11  = By a rotation Y = XC we reduce this form to

a diagonal form L,y,2 + 3c2yi,  where 1,) A2 are the eigenvalues of A. An orthonormal set
of eigenvectors ul, u2 determines a new set of coordinate axes, relative to which the Cartesian
equation (5.10) becomes

(5.11) 4Yf  + i&  + d’y,  + e'y,  + f = 0,

with new coefficients d’ and e’ in the linear terms. In this equation there is no mixed product
term yly2, so the type of conic is easily identified by examining the eigenvalues 1, and il, .
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If the conic is not degenerate, Equation (5.11) represents an ellipse if 1,)  1, have the same
sign, a hyperbola if &, 1, have opposite signs, and a parabola if either 31,  or ;1,  is zero.. The
three cases correspond to ;Z,;i.,  > 0, I,& < 0, and J,J,  = 0. We illustrate with some
specific examples.

EXAMPLE 1. 2x” + 4xy  + 5y2 + 4x + 13y  - a = 0. We rewrite this as

(5.12) 2~,2+4x~x~+5x~+4x~+13x~-~=O.

The quadratic form 2x; -l- 4x,.x,  + 5x: is the one treated in Example 2 of the foregoing
section. Its matrix has eigenvalues 1, = 1 , 1, = 6, and an orthonormal set of eigenvectors

u1 = t(2, - I), u2 = t(l,2),  where t = l/45. An orthogonal diagonalizing matrix is
2 1

C=t
[ I-1 2 *

This reduces the quadratic part of (5.12) to the form yf + 6~:.  To

determine the effect on the linear part we write the equation of rotation Y = XC in the
form X = YCt  and obtain

2[Xl? x21 = 1
- 1

J5 Lh ? Y21 [ I1 2 9 x1= -@1+ Y2), x2 = +1 + 2Y2).

Therefore th.e linear part 4x, + 13x,  is transformed to

$(2'.' + Y2) + $(-,I + 2~2)  = -$y, + 643~~~.

The transformed Cartesian equation becomes

By completing the squares in y1 and y, we rewrite this as follows:

(yl - bh2 + 6(y2 + $&)2 = 9.

This is the (equation of an ellipse with its center at the point (f&, -&) in the y1y2-
system. The positive directions of the yr and y2 axes are determined by the eigenvectors ur
and u2,  as indicated in Figure 5.2.

We can simplify the equation further by writing

I1==y1-&5,  z2=y2+4J5.

Geometrically, this is the same as introducing a new system of coordinate axes parallel to
the yly2 axes but with the new origin at the center of the ellipse. In the z,=,-system  the
equation of the ellipse is simply

2:: + 6z”, = 9, or

The ellipse and all three coordinate systems are shown in Figure 5.2.
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F IGURE  5.2 Rotation and translation of coordinate axes. The rotation Y = XC

is followed by the translation z1 = y1 - 2lJS,z,  =y2  +tJi.

EXAMPLE 2. 2x2 - 4xy .- y2 - 4x + 1Oy  - 13 = 0. We rewrite this as

2x:! - 4x,x, - x; -44x,+10x,-13=0.

2 -2
The quadratic part is XAF,  where A = [ 1-2 -1 .

This matrix has the eigenvalues

1, = 3, il, = -2.  An orthonormal set of eigenvectors  is q = t(2,  -l), q, = t(l,  2),

where t = l/ JS. An orthogonal diagonalizing matrix is C = t
of rotation X = YCt  gves us

The equation

Xl = -L (2YI  + Y2>,
J5

Xz=+y,+2y,).
J5

Therefore the transformed equation becomes

3Y,2 - 2Yz” -~~(2Y~+Y2)+$(-YI+2y~)-13=0,

or

3Y; - 2y;  - 18 y,  + 16 y,

J5 Js  --‘=O’

By completing the squares in y1 and yz we obtain the equation

3C.h  - SJS)2  - 2(y2  - +Js>2  = 12,
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(a) Hyperbola: 3~: - 2~; = 12 (b) Parabola: y: + y,  = 0

FIGURE 5.3 The curves in Examples 2 and 3.

which represents a hyperbola with its center at ($JS,  +J5)  in theyly2-system.  The trans-
lation z 1 = y1 - a&, z2  = yz - +& simplifies this equation further to

2 2
3z,2 - 22; = 12, or 2 - 2 = 1.

4 6

The hyperbola is shown in Figure 5.3(a). The eigenvectors u1  and u2  determine the direc-
tions of the positive y1 and y2  axes.

EXAMPLE 3. 9x2  + 24xy  + 16y2 - 20x  + 15~  = 0. We rewrite this as

9x,”  + 24x,x,  + 16x; - 20x, + 15X,  = 0.

9 12
The symmetric matrix for the quadratic part is A = [ 112 16 *

Its eigenvalues are 1, = 25,

il2 = 0. An orthonormal set of eigenvectors is u 1 = $(3,4),  u2  = +(-4,3).  An orthog-
3 - 4

onal  diagonalizing matrix is C = $, [ 14 3’
The equation of rotation X = YCt  gives us

x1  = Wyl  - 4y2), x2  = %(4yl  + 3y2)  I

Therefore the transformed Cartesian equation becomes

25~;  - a:(3y,  - 4y,)  + ‘:(4Y, + 3Y2)  = O.

This simplifies toy;  + y2 = 0, the equation of a parabola with its vertex at the origin. The
parabola is shown in Figure 5.3(b).
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EXAMPLE 4. Degenerate cases. A knowledge of the eigenvalues alone does not reveal
whether the Cartesian equation represents a degenerate conic section. For example, the
three equations x2 + 2y2 = 1, x2 + 2y2 = 0, and x2 + 2y2 = - 1 all have the same
eigenvalues; the first represents a nondegenerate ellipse, the second is satisfied only by
(x, y) = (0, 0)) and the third represents the empty set. The last two can be regarded as
degenerate cases of the ellipse.

The graph of the equationy2 = 0 is the x-axis. The equation y2 - 1 = 0 represents the
two parallel lines y = 1 a.nd y = - 1 . These can be regarded as degenerate cases of the
parabola. The equation x2 - 4y2 = 0 represents two intersecting lines since it is satisfied
if either x - 2y = 0 or x + 2~  = 0. This can be regarded as a degenerate case of the
hyperbola.

However, if the Cartesian equation ax2 + bxy  + cy2 + dx + ey + f = 0 represents
a nondegenerate conic section, then the type of conic can be determined quite easily. The
characteristic polynomial of the matrix of the quadratic form ax2 + bxy + cy2  is

d e t  [16/l  yz]= A2 - (a + c)/l + (ac - abz)  = (I - A,)(1  - A,).

Therefore the product of .the eigenvalues is

AlA  = ac - $b2  = )(4ac  - b2).

Since the type of conic is determined by the algebraic sign of the product A,il, , we see that
the conic is an ellipse, hyperbola, or parabola, according as 4ac - b2  is positive, negative, or
zero. The number 4ac - b2  is called the discriminant of the quadratic form ax2 + bxy +
cy2  . In E,xamples  1, 2 and 3 the discriminant has the values 34, -24, and 0, respectively.

5.15 Exercises

In each of Exercises 1 through 7, find (a) a symmetric matrix A for the quadratic form; (b) the
eigenvalues of A; (c) an orthonormal set of eigenvectors; (d) an orthogonal diagonalizing matrix C.

1.  4X; +4X,X, +X,“. 5. Xi  +X1X2  +X1X3 + X3X3.
2. x1x2. 6. 2x; + 4x,x, + x; - x;.
3. x; + 2x,x, - xi. 7. 3x; + 4x,x, + 8x,x,  + 4x,x, + 3x;.
4. 34x; - 24x,x,  + 41x;.

In each of Exercises 8 through 18, identify and make a sketch of the conic section represented by
the Cartesian equation.

8. y2 - 2xy+2x2-5=0. 14. 5x2  +6xy  +5y2  -2 =O.
9. y2-2xy+5x=o. 15.x2+2xy+y2-2x+2y+3=0.

10. y2-2xy+x2-5x=0. 16. 2x2  + 4xy + 5y2 - 2x - y - 4 = 0.
11.5x2-4xy+2y2-6=:0. 17. x2 + 4xy - 2y2 - 12 = 0.
12. 19x2  + 4x.y  + 16y2 - 212x + 104~  = 356.
13. 9x2  + 24xy + 16y2 - 5:2x + 14y = 6. 18. xy +y -2x -2 =O.

19. For what value (or values) of c will the graph of the Cartesian equation 2xy - 4x + 7y + c =
0 be a pair of lines ?

20. If the equation ax2  + buy + cy2 = 1 represents an ellipse, prove that the area of the region it___.
bounds is 2~144ac  - 6:“. This gives a geometric meaning to the discriminant 4ac  - b2.
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k 5.16t Eigenvalues of a symmetric transformation obtained as values of its quadratic form

Now we drop the requirement that V be finite-dimensional and we find a relation between
the eigenvalues of a symmetric operator and its quadratic form.

Suppose x is an eigenvector with norm 1 belonging to an eigenvalue A.  Then T(x)  = Ax
so we have

(5.13) Q(x) = (T(x), x) = (Ax, x) = A(x, x) = 2,

since (x, x) =I 1. The set of all x in V satisfying (x, x) = 1 is called the unit sphere in V.
Equation (5.13) proves the following theorem.

THEOREM 5.12. Let T: V + V be a symmetric transformation on a real Euclidean space V,
and let Q(x) q = (T(x), x) . Then the eigenvalues of T (ifany exist) are to be found among the
values that Q takes on the unit sphere in V.

EXAMPLE. L,et  V = V,(R) with the usual basis (i,j) and the usual dot product as inner
4 0

product. Let T be the symmetric transformation with matrix A = [ 1 Then the
quadratic form of T is given by 0 8’

Q(X) = i iaijxixj  =  4x,2  +  8x:.
i=l j=l

The eigenvalues of,T are il, = 4, 1, = 8. It is easy to see that these eigenvalues are,
respectively, the minimum and maximum values which Q takes on the unit circle xf +
xi = 1 . In fact, on this circle we have

Q(x) = 4(x; + x;) + 4x; = 4 + 4x;, where - 1  IX,&.

This has its smallest value, 4, when x2 = 0 and its largest value, 8, when x2 = f 1  .
Figure 5.4 shows the unit circle and two ellipses. The inner ellipse has the Cartesian

equation 4~; -+  8x: = 4. It consists of all points x = (x1,  x,) in the plane satisfying
Q(x) = 4. The outer ellipse has Cartesian equation 4x,2  + 8x: = 8 and consists of all
points satisfying Q(x) = 8. The points (* I, 0) where the inner ellipse touches the unit
circle are eigenvectors belonging to the eigenvalue 4. The points (0, fl) on the outer
ellipse are eigenvectors belonging to the eigenvalue 8.

The foregoing example illustrates extremal properties of eigenvalues which hold more
generally. In the next section we will prove that the smallest and largest eigenvalues (if
they exist) are always the minimum and maximum values which Q takes on the unit sphere.
Our discussion of these extremal properties will make use of the following theorem on
quadratic forms. It should be noted that this theorem does not require that V be finite
dimensional.

t Starred sections can be omitted or postponed without loss in continuity.
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FIG~JRE 5.4 Geometric relation between the eigenvalues of T and the values of Q
on the unit sphere, illustrated with a two-dimensional example.

THEORE:M  5.13. Let T: V + V be a symmetric transformation on a real Euclidean space V
with quadratic form Q(x) = (T(x), x) . Assume that Q does not change sign on V. Then if
Q(x) = 0 for some x in V we also have T(x) = 0. In other words, ifQ does not change sign,
then Q vanishes only on the null space of T.

Proof. Assume Q(x) = 0 for some x in V and let y be any element in V. Choose any
real t and consider Q(x + ty). Using linearity of T, linearity of the inner product, and
symmetry of T, we have

Q<x  + 9’)  = G-(x  + ty), x + ty)  = (T(x)  + tUy),  x + ty)

= (T(x),  4 + V(x),  y) + G-(y),  4 + t”(TCy),  y)

= Q(x) + 2t(T(x),  y) + f2Q(y>  = at + bt2,

where a = 2(T(x),  y) and b = Q(y). If Q is nonnegative on V we have the inequality

at + bt2 > 0 for all real t .

In other words, the quadratic polynomial p(t) = at + bt2 has its minimum at t = 0.
Hence p’(0) = 0. But p’(0) = a = 2(T(x),  y), so (T(x), y) = 0. Since y was arbitrary,
we can in particular take y = T(x), getting (T(x), T(x)) = 0. This proves that T(x) = 0.

If Q is nonpositive on V we get p(t) = at + bt2 < 0 for all t, sop has its maximum at
t = 0, and hencep’(0)  =:  0 as before.

* 5.17 Extremal properties of eigenvalues of a symmetric transformation

Now we shall prove that the extreme values of a quadratic form on the unit sphere are
eigenvalues’.

THEOREM 5.14. Let T: V--f V be a symmetric linear transformation on a real Euclidean
space V, and let Q(x) = (T(x), x) . Among all values that Q takes on the unit sphere, assume
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there is an exlremumt (maximum or minimum) at apoint  u with (u, u) = 1 . Then uisaneigen-
vector for T; the corresponding eigenvalue is Q(u), the extreme value of Q on the unit sphere.

Proof. Assume Q has a minimum at u. Then we have

(5.14) Q(x) 2 Q(u) for all x with (x, x) = 1.

Let jz  = Q(u). If (x, x) = 1 we have Q(u) = 1(x, x) = (lx, x) so inequality (5.14) can be
written as

(5.15) (T(x),  xk 2 @x, 4

provided (x, ,x) = 1. Now we prove that (5.15) is valid for all  x in V. Suppose llxll  = a.
Then x = ay  , where llyll = 1. Hence

(T(x),  x> = (T@yh  a.v> = a2(TCy),y) and (k 4 = a”<+, y>.

But (TCy),  y> 2 (iiy,  y) since  (y, y> = 1. Multiplying both members of this inequality by
a2  we get (5.15) for x = ay  .

Since (T(x), x) - (Ax, x) = (T(x) - 1x, x , we can rewrite inequality (5.15) in the form)
(T(x) - lx,  x) 2 0, or

(5.16) (S(x),  4 2 0, where S = T - 2.

When x = u ‘we  have equality in (5.14) and hence also in (5.16). The linear transformation
S is symmetric. Inequality (5.16) states that the quadratic form Q1 given by Q,(x) =
(S(x), x) is nonnegative on V. When x = u we have Q,(u) = 0. Therefore, by Theorem
5.13 we must have S(U)  = 0. In other words, T(u) = iiu,  so u is an eigenvector for T, and
1 = Q(u) is the corresponding eigenvalue. This completes the proof if Q has a minimum
at u.

If there is a maximum at u all the inequalities in the foregoing proof are reversed and we
apply Theorem 5.13 to the nonpositive quadratic form Q, .

t 5.18 The finitedimensional case

Suppose now that dim V = n . Then T has n real eigenvalues which can be arranged in
increasing order, say

n,<?b,<***<I,.

According to Theorem 5.14, the smallest eigenvalue L,  is the minimum of Q on the unit
sphere, and the  largest eigenvalue is the maximum of Q on the unit sphere. Now we shall
show that thle  intermediate eigenvalues also occur as extreme values of Q, restricted to
certain subset.s  of the unit sphere.

t If Vis infinite-dimensional, the quadratic form Q need not have an extremum on the unit sphere. This will
be the case when T has no eigenvalues. In the finite-dimensional case, Q always has a maximum and a
minimum somewhere on the unit sphere. This follows as a consequence of a more general theorem on
extreme values of continuous functions. For a special case of this theorem see Section 9.16.
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Let u1 be an eigenvector on the unit sphere which minimizes Q. Then 1, = Q(uJ . If il
is an eigenvalue different from 1, any eigenvector belonging to 1 must be orthogonal to ul.
Therefore it is natural to search for such an eigenvector on the orthogonal complement of
the subspace  spanned by ul.

Let S be the subspace  spanned by ul. The orthogonal complement S’-  consists of all
elements in V orthogonal to ul. In particular, S’-  contains all eigenvectors belonging to
eigenvalues il # 1,. It is easily verified that dim SI  = n - 1 and that T maps Sl  into
itself.? Let Snwl  denote the unit sphere in the (n - l)-dimensional subspace  S’.  (The
unit sphere S,-,  is a subset of the unit sphere in V.)  Applying Theorem 5.14 to the subspace
Sl  we find that 1, = Q(uJ , where u2 is a point which minimizes Q on S,-l.

The next eigenvector il, can be obtained in a similar way as the minimum value of Q on
the unit sphere S,-Z in the (n - 2)-dimensiontil  space consisting of those elements orthog-
onal to both u1 and u2. Continuing in this manner we find that each eigenvalue & is the
minimum value which Q takes on a unit sphere Sn--k+l in a subspace  of dimension n - k + 1.
The largest of these minima, A,, is also the maximum value which Q takes on each of the
spheres Sn--k+l. The corresponding set of eigenvectors ul, . . . , u, form an orthonormal
basis for V.

5.19 Unitary transformations

We conclude this chapter with a brief discussion of another important class of trans-
formations known as unitary transformations. In the finite-dimensional case they are
represented by unitary matrices.

DEFINITION. Let E be a Euclidean space and V a subspace  of E. A linear transformation
T: V + E is called unitary on V if we have

(5.17) (T(x), T(y)) = (x, y) for all x and y in V.

When E is a real Euclidean space a unitary transformation is also called an orthogonal
transformation.

Equation (5.17) is described by saying that T preserves inner products. Therefore it is
natural to expect that T also preserves orthogonality and norms, since these are derived
from the inner product.

THEOREM 5.15. IfT:  V + E is a unitary transformation on V, then for all x and y in V we
have:

(a) (x, y) = 0 implies (T(x), T(y)) = 0 (Tpreserves orthogonality).

@I IIW)ll  = llxll (Tpreserves norms).
Cc> IIT(x)  - T(y)/I  = llx - yll (Tpreserves distances). .
(d) T is invertible, and T-l is unitary on T(V).

t This was done in the proof of Theorem 5.4, Section 5.6.
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Proof. Part (a) follows at once from Equation (5.17). Part (b) follows by taking x = y
in (5.17). Part (c) follows from (b) because T(x)  - T(y) = T(x - y).

To prove (d) we use (b) which shows that T(x) = 0 implies x = 0, so T is invertible.
If x E  T(V) and y E: T(V) we can write x = T(u), y = T(v), so we have

(T-W>  Wy>>  = (u, u) = (T(u), T(v)) = (x,y).

Therefore T-l is unitary on T(V).

Regarding eigenvalues and eigenvectors we have the following theorem.

THEOREM 5.116. Let T: V -+ E’  be a unitary transformation on V.
(a) Zf T has an eigenvalue I, then 11) = 1 .
(b) Zf x and y are eigenvectors belonging to distinct eigenvalues 1 and ~1,  then x and y are

orthogonal.
(c) Zf V = E and dim V = n, and if V is a complex space, then there exist eigenvectors

Ul,...  , u, cLf  T which form an orthonormal basis for V. The matrix of T relative to
this basis is the diagonal matrix A = diag (Al, . . . , A,),  u>here  1, is the eigenvalue
belonging to uk .

Proof. To prove (a), let x be an eigenvector belonging to il. Then x # 0 and T(x) = 31x.
Taking y = x in Equation (5.17) we get

(lx, Ax)  = (x, x) or nqx, x) = (x, x).

Since (x, x) > 0 and Ai = 1112,  this implies 111  = 1.
To prove (b), write T(x) = Lx, T(y) = ,uy and compute the inner product (T(x), T(y))

in two ways. We have

(T(x),  T(Y))  = CGY)
since T is unitary. We also have

( WA  T(y)>  = Gk  py)  = 44x,  y)

since x and y are eigenvectors. Therefore 1,6(x,  y) = (x, y) , so (x, y) = 0 unless l/i  = 1 .

But AX = 1 by (a), so if we had A/i = 1 we would also have 21  = Ap ,x = p , A = ,u, which
contradicts the assumption that A and ,U are distinct. Therefore Ap # 1 and (x, y) = 0.

Part (c) is proved by induction on n in much the same way that we proved Theorem 5.4,
the corresponding result for Hermitian operators. The only change required is in that part
of the proof which shows that T maps SL  into itself, where

P-={xIxEV,  (x,u1)=0}.

Here u1 is an eigenvector of T with eigenvalue &. From the equation T(u,)  = i,u,  we find

Ul  = a;T(u,)  = XIT(ul)
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since A,&  = 11,12  = 1 . Now choose any x in SL  and note that

Hence T(x)  E  SL  if x E  SL, so T maps S’  into itself. The rest of the proof is identical with
that of Theorem 5.4, so we shall not repeat the details.

The next two theorems describe properties of unitary transformations on a finite-
dimensional space. We give only a brief outline of the proofs.

THEOKEM  5.17. Assume dim V = n and let E = (e,, . . . , e,) be a jixed basis for V.
Then a linear transformation T: V + V is unitary if and only if

(5.18) (T(eJ,  T(e,))  = (ei , ej) for all i and j .

In particular, ifE  is orthonormal then T is unitary ifand  only ifT maps E onto an orthonormal
basis.

Sketch of proof. Write x = 2 xiei  , y = c yjej  . Then we have

Now compare (x, y) with (T(x), T(y)).

THEOREM 5.18. Assume dim V = n and let (e, , . . . , e,) be an orthonormal basis for V.
Let A = (aij)  be the matrix representation of a linear transformation T: V + V relative to
this basis. Then T is unitary if and only ifA  is unitary, that is, if and only if

(5.19) A*A = I.

Sketch of proof. Since (ei, eJ is the g-entry  of the identity matrix, Equation (5.19)
implies

(5.20)

Since A is the matrix of T we have T(eJ  = x;=,  a,,e,,  T(eJ  = cFzt=,  a,+e,,  so

Now compare this with (5.20) and use Theorem 5.17.
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THEOREM 5.19. Every unitary matrix A has the following properties:
(a) A is nonsingular and A-l = A*.
(b) Each of At,  /i, and A* is a unitary matrix.
(c) The eigenvalues of A are complex numbers of absolute value 1.
(d) ldet  Al  ==  1; if A is real, then det A = f 1 .

The proof oif Theorem 5.19 is left as an exercise for the reader.

5.20 Exercises

1. (a) Let T: I’ --t  I’ be the transformation given by T(x) = cx, where c is a fixed scalar. Prove
that T is unitary if and only if ICI  = 1 .
(b) If V is one-dimensional, prove that the only unitary transformations on V are those des-
cribed in (a). In particular, if I/is a real one-dimensional space, there are only two orthogonal
transformanons,  T(x) = x and T(x) = --x.

2. Prove each of the following statements about a real orthogonal n x n matrix A.
(a) If 1 is a real eigenvalue of A, then 1 = 1 or 1 = - 1 .
(b) If I is a complex eigenvalue of A, then the complex conjugate 1 is also an eigenvalue of A.
In other words, the nonreal  eigenvalues of A occur in conjugate pairs.
(c) If n is odd, then A has at least one real eigenvalue.

3. Let V be a real Euclidean space of dimension n. An orthogonal transformation T: V + V
with determinant 1 is called a rotation. If n is odd, prove that 1 is an eigenvalue for T.  This
shows that every rotation of an odd-dimensional space has a fixed axis. [Hint:  Use Exercise 2.1

4. Given a real orthogonal matrix A with -1 as an eigenvalue of multiplicity k. Prove that det A  =
(-1)“.

5. If T is linear and norm-preserving, prove that T is unitary.
6. If T: V - V is both unitary and Hermitian, prove that T2  = I.
7. Let (e,, . . . , e,) and (u,,  . . . , u,)  be two orthonormal bases for a Euclidean space V.  Prove

that there is a unitary transformation T which maps one of these bases onto the other.
8. Find a real (I such that the following matrix is unitary:

9. If A is a skew-Hermitian matrix, prove that both Z - A and Z + A are nonsingular and that
(Z - A)(Z + A)-l  is unitary.

10. If A is a unitary matrix and if Z + A is nonsingular, prove that (I - A)(Z + A)-l  is skew-
Hermitian.

11. If A is Hermitian, prove that A - iZ is nonsingular and that (A - iZ)-l(A  + U) is unitary.
12. Prove that any unitary matrix can be diagonalized by a unitary matrix.
13. A square ma.trix is called normal if AA* = A*A . Determine which of the following types of

matrices are normal.
(a) Hermitian matrices. (d) Skew-symmetric matrices.
(b) Skew-Hermitian matrices. (e) Unitary matrices.
(c) Symmetric matrices. (f) Orthogonal matrices.

14. If A is a normal matrix (AA* = A*A) and if Cr  is a unitary matrix, prove that U*AU  is normal.
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LINEAR DIFFERENTIAL EQUATIONS

6.1 Historical introduction

The history of differential equations began in the 17th century when Newton, Leibniz, and
the Bernoullis solved some simple differential equations of the first and second order arising
from problems in geometry and mechanics. These early discoveries, beginning about 1690,
seemed to suggest that the solutions of all differential equations based on geometric and
physical problems could be expressed in terms of the familiar elementary functions of
calculus. Therefore, much of the early work was aimed at developing ingenious techniques
for solving differential equations by elementary means, that is to say, by addition, sub-
traction, multiplication, division, composition, and integration, applied only a finite
number of times to the familiar functions of calculus.

Special methods such as separation of variables and the use of integrating factors were
devised more or less haphazardly before the end of the 17th century. During the 18th
century, more systematic procedures were developed, primarily by Euler, Lagrange, and
Laplace. It soon became apparent that relatively few differential equations could be solved
by elementary means. Little by little, mathematicians began to realize that it was hopeless
to try to discover methods for solving all differential equations. Instead, they found it more
fruitful to ask whether or not a given differential equation has any solution at all and,
when it has, to try to deduce properties of the solution from the differential equation itself.
Within this framework, mathematicians began to think of differential equations as new
sources of functions.

An important phase in the theory developed early in the 19th century, paralleling the
general trend toward a more rigorous approach to the calculus. In the 1820’s,  Cauchy
obtained the first “existence theorem” for differential equations. He proved that every
first-order equation of the form

Y’ = fc? .v)

has a solution whenever the right member, S(x,r), satisfies certain general conditions.
One important example is the Ricatti equation

y’  = P(x>y”  + QWy  + W-4,

where P,  Q, and R are given functions. Cauchy’s work implies the existence of a solution
of the Ricatti equation in any open interval (-r,  r) about the origin, provided P, Q, and

1 4 2
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R have power-series expansions in (-r, r). In 1841 Joseph Liouville (1809-1882) showed
that in some cases this solution cannot be obtained by elementary means.

Experience has shown that it is difficult to obtain results of much generality about
solutions of differential equations, except for a few types. Among these are the so-called
linear differential equations which occur in a great variety of scientific problems. Some
simple types were discussed in Volume I-linear equations of first order and linear equations
of second order with constant coefficients. The next section gives a review of the principal
results concerning these equations.

6.2 Review of results concerning linear equations of first and second orders

A linear differential equation of first order is one of the form

(6.1) Y’ + P(x>Y  = Q(x) 7

where P and Q are given functions. In Volume I we proved an existence-uniqueness
theorem for this equation (Theorem 8.3) which we restate here.

THEOREM 6.1. Assume P and Q are continuous on an open interval J. Choose any point a
in J and let b be any real number. Then there is one and on4 one function y = f (x) which
satisfies the difSere)rltiaI  equation (6.1) and the initial condition f(a) = b . This function is
given by the explicit formula

(6.2) f(x) = be-A(“)  + e-dd
saz Q(t)tict’  dt ,

where A(x) = jz  P(t) dt .

Linear equations of second order are those of the form

P,,(x)y”  + P&)y’  + P,(x)y = R(x).

If the coefficients PO,  PI,  P, and the right-hand member R are continuous on some interval
J, and if P,, is never zero on J, an existence theorem (discussed in Section 6.5) guarantees
that solutions always exist over the interval J. Nevertheless, there is no general formula
analogous to (6.2) for expressing these solutions in terms of PO,  P, , P,, and R. Thus, even
in this relatively simple generalization of (6.1), the theory is far from complete, except in
special cases. If the coefficients are constants and if R is zero, all the solutions can be
determined explicitly in terms of polynomials, exponential and trigonometric functions by
the following theorem which was proved in Volume I (Theorem 8.7).

THEOREM 6.2. Consider the dyerential  equation

(6.3) y”+ay’+by=O,
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where a and b are given real constants. Let d = a2  - 4b. Then every solution of (6.3) on the
interval (- co,  + 00) has the form

(6.4) y = e-~r’2[c1u1(x)  + c2u2(x)l,

where c1 and c2 are constants, and the functions u1  and u2  are determined according to the
algebraic sign of d as follows:

(a) If d = 0, then ul(x) = 1 and u2(x)  = x .

(b) If d > 0, then ul(x) = elcr and u2(x)  = eWkx, where k = &6. _

(c) If d < 0, then ul(x) = cos kx and u2(x)  = sin kx, where k = &f-d.

The number d = a2  - 4b is the discriminant of the quadratic equation

(6.5) r2+ar+b=0.

This is called the characteristic equation of the differential equation (6.3). Its roots are given

bY
- a  +  Jd - a  - Jcl

rl = 2 , r2=  2 .

The algebraic sign of d determines the nature of these roots. If d > 0 both roots are real
and the solution in (6.4) can be expressed in the form

y = cleT1” + c2erzx.

If d < 0, the roots rl and r2 are conjugate complex numbers. Each of the complex
exponential functions fi(x) = er12 and fJ,x) = e7zz  is a complex solution of the differential
equation (6.3). We obtain real solutions by examining the real and imaginary parts offi
and f2. Writing rl = -ia + ik , r2  = -&a - ik, where k = &J-d,  we have

fi(x)  =: erlx  = e-ax12eikz  = e-azI2cos  kx + ie-arl’sin  kx

and
f2(x)  = e’?zx  = e--nzfze--iks  = e-a”‘2cos kx _ ie-a”‘“sin  kx.

The general solution appearing in Equation (6.4) is a linear combination of the real and
imaginary parts of fi(x)  and f2(x).

6.3 Exercises

These exercises have been selected from Chapter 8 in Volume I and are intended as a review of
the introductory material on linear differential equations of first and second orders.

Linear equations offirst  order. In Exercises 1,2,3,  solve the initial-value problem on the specified
interval.

1.y’-3y=e2Zon(-C0, +co),withy  =Owhenx =O.
2.xy’-2y=x50n(0,+oo),withy=1whenx=1.
3.y’+ytanx=sin2xon(-6r,$a),withy=2whenx=O.
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4. If a strain of bacteria grows at a rate proportional to the amount present and if the population
doubles in one hour, by how much will it increase at the end of two hours?

5. A curve with Cartesian equation y =f(x) passes through the origin. Lines drawn parallel to
the coordinate axes through an arbitary point of the curve form a rectangle with two sides on
the axes. The curve divides every such rectangle into two regions A and B, one of which has an
area equal to n times the other. Find the functionf.

6. (a) Let u be a nonzero  solution of the second-order equation y” + P(x)/ + Q(x)y = 0.
Show that the substitution y = uv converts the equation

y”  + P(x),’  + Q(x,y  = R(x)

into a first-order linear equation for v’ .
(b) Obtain a nonzero  solution of the equation y’ - 4y’ + x2(y’  - 4y) = 0 by inspection and
use the method of part (a) to find a solution of

yfl - 4y’ + x2 (y’ - 4y) = 2xe-x3/3

suchthaty=Oandy’=4whenx=O.

Linear equations ofsecond  order with constant coeflcients. In each of Exercises 7 through 10, find
all solutions on ( - lm, + m).

7. yn - 4 y  = o . 9. yn -2y’+sy  =o.
8. y” + 4y = 0. 10. y” +2y’+y=o.

11. Find all values of the constant k such that the differential equation y” + ky = 0 has a nontrivial
solution y =f&) for which&(O) =fk(l) = 0. For each permissible value of k, determine the
corresponding solution y =fk(x) . Consider both positive and negative values of k.

12. If (a, b) is a given point in the plane and if m is a given real number, prove that the differential
equation y” + k”y = 0 has exactly one solution whose graph passes through (a, b) and has
slope m there. Discuss separately the case k = 0.

13. In each case, find a linear differential equation of second order satisfied by ur and u2.
(a>  ul(x)  = e” , u2(x) = e-“.
(b) ul(x)  = e2x, u2(x) = xe2z.
(c) ul(x)  = eP’2 cos x, u2(x)  = eh2 sin x.
(d) z+(x)  = sin (2x + l), u2(x) = sin (2x + 2).
(e) ul(x)  = cash x, u2w = sinh x .

14. A particle undergoes simple harmonic motion. Initially its displacement is 1, its velocity is 1
and its acceleration is - 12. Compute its displacement and acceleration when the velocity is 4s.

6.4 Linear differential equations of order n

A linear differential equation of order n is one of the form

(6.6) P,(x)y’n)  + P1(x)y’“-1’  + 9 * * + P,(x)y = R(x) *

The functions P,,  , P, , . . . , P,  multiplying the various derivatives of the unknown function
y are called the coeficients  of the equation. In our general discussion of  the linear equation
we shall assume that all the coefficients are continuous on some interval J. The word
“interval” will refer either to a bounded or to an unbounded interval.
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In the differential equation (6.6) the leading coefficient P, plays a special role, since it
determines the order of the equation. Points at which P,(x) = 0 are called singular points
of the equation. The presence of singular points sometimes introduces complications that
require special investigation. To avoid these difficulties we assume that the function P,
is never zero on J. Then we can divide both sides of Equation (6.6) by PO and rewrite the
differential equation in a form with leading coefficient 1. Therefore, in our general dis-
cussion we shall assume that the differential equation has the form

(6.7) y@) + P,(x)y-l)  + * * * + P,(x)y  = R(x).

The discussion of linear equations can be simplified by the use of operator notation. Let
V(J) denote the linear space consisting of all real-valued functions continuous on an interval
J. Let F”(J)  denote the subspace  consisting of all functions f whose first n derivatives
j-‘,f”,  . I. ,ftn) exist and are continuous on J. Let P,, . . . , P,  be n given functions in
%?(J) and consider the operator L: V”(J)  -+ V(J) given by

L(f) = f (n)  + PJ’“-1’  + * * * + PJ.

The operator L itself is sometimes written as

where Dk denotes the kth derivative operator. In operator notation the differential equation
in (6.7) is written simply as

1

(6.8) L(y) = R.

A solution of this equation is any function y in V’“(J) which satisfies (6.8) on the interval J.
It is easy to verify that L(yl + yz) = L(yl) + L(y&, and that L(cy) = CL(~)  for every

constant c. Therefore L is a linear operator. This is why the equation L(y) = R is referred
to as a linear equation. The operator L is called a linear d$erential  operator of order n.

With each linear equation L(y) = R we may associate the equation

L(y) = 0,

in which the right-hand side has been replaced by zero. This is called the homogeneous
equation corresponding to L(y) = R. When R is not identically zero, the equation L(y) = R
is called a nonhomogeneous equation. We shall find that we can always solve the non-
homogeneous equation whenever we can solve the corresponding homogeneous equation.
Therefore, we begin our study with the homogeneous case.

The set of solutions of the homogeneous equation is the null space N(L) of the operator
L. This is also called the solution space of the equation. The solution space is a subspace
of V:“(J).  Although GF?(.~)  .is infinite-dimensional, it turns out that the solution space N(L)
is always finite-dimensional. In fact, we shall prove that

(6.9) dim N(L) = n,
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where n is the order of the operator L. Equation (6.9) is called the dimensionality theorem
for linear differential operators. The dimensionality theorem will be deduced as a conse-
quence of an existence-uniqueness theorem which we discuss next.

6.5 The existence-uniqueness theorem

THEOREM 6.3. EXISTENCE-UNIQUENESS  THEOREM  FOR LINEAR  EQUATIONS OF ORDER n. Let
Pl,P,,  * * . , P,  be continuous functions on an open interval J, alzd  let L be the linear d@er-
ential  operator

L=Dn+PIDn-l+...+P,.

IfxOEJandifk,,k,,..., knpl  are n given real numbers, then there exists one and only one
function y = f(x) which satisfies the homogeneous dlrerential equation L(y) = 0 on J and
which also satisfies the initial conditions

f(x,) = k, ,f’(x,) = kl,  . . . ,f +l)(x,,) = k,-,  .

Note: The vector in n-space given by (f(x,),f’(x,),  . . . ,f(n-l)(~O))  is called the
initial-value vector off at x0, Theorem 6.3 tells us that if we choose a point x0 in J and
choose a vector in n-space, then the homogeneous equation L(y)  = 0 has exactly one
solution y = f (x) on J with this vector as initial-value vector at x0. For example, when
n = 2 there is exactly one solution with prescribed value f(xo)  and prescribed derivative
f’(xo)  at a prescribed point x0.

The proof of the existence-uniqueness theorem will be obtained as a corollary of more
general existence-uniqueness theorems discussed in Chapter 7. An alternate proof for the
case of equations with constant coefficients is given in Section 7.9.

6.6 The dimension of the solution space of a homogeneous linear equation

THEOREM 6.4. DIMENSIONALITY THEOREM. Let L: F(J)  + 9?(J) be a linear d@erential
operator of order n given by

(6.10) L = D” +PIDn-’ + *.*  +P,.

Then the solution space of the equation L(y) = 0 has dimension n.

Proof. Let V, denote the n-dimensional linear space of n-tuples of scalars. Let T be the
linear transformation that maps each function f in the solution space N(L) onto the initial-
value vector off at x0,

T(f)  = (f(x,,>>f ‘Cd,  . . . J-‘“-l’(~,>)  3

where x,,  is a fixed point in J. The uniqueness theorem tells us that T(f) = 0 implies f = 0.
Therefore, by Theorem 2.10, T is one-to-one on N(L). Hence T-l  is also one-to-one and
maps V, onto N(L)!. and Theorem 2.11 shows that dim N(L) = dim V, = n .
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Now that we know that the solution space has dimension n, any set of n independent
solutions will serve as a ibasis. Therefore, as a corollary of the dimensionality theorem we
have :

THEOREM 6.5. Let L: ‘g”(J) -+ V(J) be a linear dtyerential  operator of order n. If ul, . . . ,
u, are n independent solutions of the homogeneous differential equation L(y) = 0 on J, then
every solution y = f (x) on J can be expressed in the form

(6.11)

where cl, . . . , c, are constants.

Note: Since all solutions of the differential equation L(y) = 0 are contained in formula
(6.1 I), the linear combination on the right, with arbitrary constants cl, . . . , c,, is
sometimes called the general solution of the differential equation.

The dimensionality theorem tells us that the solution space of a homogeneous linear
differential equation of order n always has a basis of n solutions, but it does not tell us how
to determine such a basis. In fact, no simple method is known for determining a basis of
solutions for every linear equation. However, special methods have been devised for
special equations. Among these are differential equations with constant coefficients to
which we turn now.

6.7 The algebra of constant-coefficient operators

A constant-coefficient operator A is a linear operator of the form

(6.12) .4 = a,,Dn  + aIDn-l  + * * * + a,-,D + a,,

where D is the derivative operator and a,, a,, . . . , a, are real constants. If a, # 0 the
operator is said to have order n. The operator A can be applied to any function y with n
derivatives on some interval, the result being a function A(y) given by

A(y) = a,,y(“) + aIy(+l)  + * * * + a,-,y’  + any.

In this section, we restrict our attention to functions having derivatives of every order on
(- co, + co). The set of all such functions will be denoted by 59”  and will be referred to as
the class of injnitely  di#erentiable  functions. If y E  ?Zrn  then A(y) is also in Ym.

The usual algebraic operations on linear transformations (addition, ,multiplication  by
scalars, and composition or multiplication) can be applied, in particular, to constant-
coefficient operators. Let A and B be two constant-coefficient operators (not necessarily
of the same order). Since the sum A + B and all scalar ,multiples  IA are also constant-
coefficient operators, the set of all constant-coefficient operators is a linear space. The
product of A and B (in either order) is also a constant-coefficient operator. Therefore,
sums, products, and scalar multiples of constant-coefficient operators satisfy the usual
commutative, associative, and distributive laws satisfied by all linear transformations.
Also, since we have DrDs = DSDT  for all positive integers r and s, any two constant-
coefficient operators commute; AB = BA .
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With each constant-coefficient operator A we associate a polynomial pA4  called the
characteristic polynomial of A. If A is given by (6.12),p,  is that polynomial which has the
same coefficients as A. That is, for every real r we have

PA(r) = a/ + aIF + * * * + a,.

Conversely, given any real polynomial p, there is a corresponding operator A whose
coefficients are the same as those ofp. The next theorem shows that this association
between operators and polynomials is a one-to-one correspondence. Moreover, this
correspondence associates with sums, products, and scalar multiples of operators the
respective sums, products, and scalar multiples of their characteristic polynomials.

THEOREM 6.6. Let A and B denote constant-coeficient  operators with  characteristic
polynomials pA and pB , respectively, and let 1 be a real number. Then ~‘e  have:

(C)  PAB~~~:BY

(4 PAA  ' *

Proof. We consider part (a) first. AssumepA  = pB . We wish to prove that A(J) = B(y)
for every y in v”. Since pA = pB,  both polynomials have the same degree and the same
coefficients. Therefore A and B have the same order and the same coefficients, so A(y) =
B(y) for every y in V”.

Next we prove that A = B impliesp,  = pB . The relation A = B means that A(y) = B(y)
for every y in %?a. Take y = er”, where r is a constant. Since y(l;) = rkerr  for every k 2 0,
we have

4.~9  = pA(de’” and B(y) = pB(r)e”.

The equation A(y) = B(j)  implies pA4(r)  = pB(r). S ince r is arbitrary we must have
pA = pB . This completes the proof of part (a).

Parts (b), (c), and (d) follow at once from the definition of the characteristic polynomial.

From Theorem 6.6 it follows that every algebraic relation involving sums, products, and
scalar multiples of polynomials pA4 and pB  also holds for the operators A and B. In
particular, if the characteristic polynomial pAI  can be factored as a product of two or more
polynomials, each factor must be the characteristic polynomial of some constant-coefficient
operator, so, by Theorem 6.6, there is a corresponding factorization of the operator A.
For example, ifp,(r)  = pB(r)pc(r), then A = BC. Ifpe4(r) can be factored as a product of
n linear factors, say

(6.13) h(r) = a&  - rl)@ - r2) - * * (r - IT,),

the corresponding factorization of A takes the form

A = a,(D  - r,)(L)  - r2) * * * (D  - rJ.
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The fundamental theorem of algebra tells us that every polynomial PA(r)  of degree
n 2 1 has a factorization of the form (6.13), where rl, r2,  . . . , rn  are the roots of the equa-
tion,

PAr) = 0,

called the characteristic equation of A. Each root is written as often as its multiplicity
indicates. The roots may be real or complex. SincepA  has real coefficients, the complex
roots occur in conjugate pairs, tl + i/3,  u  - i/I,  if fl Z 0. The two linear factors
corresponding to each such pair can be combined to give one quadratic factor r2  - 2ur +
cc2 + ,P whose coefficients are real. Therefore, every polynomial p,(r)  can be factored as
a product of linear and quadratic polynomials with real coejicients.  This gives a corre-
sponding factorization of the operator A as a product of first-order and second-order
constant-coefficient operators with real coefficients.

EXAMPLE I. Let A = D2 - 5D  + 6. Since the characteristic polynomial pa(r)  has the
factorization r2 - 5r  + 6 = (r - 2)(r - 3), the operator A has the factorization

D2  - 5D + 6 = (D - 2)(D - 3).

EXAMPLE 2. Let A = D4 - 2D3 + 2D2 - 20  + 1.  The characteristic polynomial PA(r)
has the factorization

r4  - 2r3  + 2r2  - 2r + 1 = (r - l)(r - l)(r2  + I),

so A has the factorizatia’n  A = (D - l)(D - 1)(D2 + 1).

6.8 Determination of a basis of solutions for linear equations with constant coefficients
by factorization of operators

The next theorem shows how factorization of constant-coefficient operators helps us to
solve linear differential equations with constant coefficients.

THEOREM 6.1. Let L be a constant-coejicient  operator which can be factored as a product
of constant-coefJicient  operators, say

L =  A,A2*.*A,.

Then the solution space qf  the linear difSerentia1  equation L(y) = 0 contains the solution space
of each dtyerential  equation Ai = 0. In other words,

(6.14) N(AJc  N(L) foreachi= 1,2  ,...,  k.

Proof. If u is in the null space of the last factor A, we have A,(u) = 0 so

L(u)  = &A, * * * A,)(u) = (A, . * * A&A,(u)  = (A, * * * AkJ(0)  = 0.
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Therefore the null space of L contains the null space of the last factor A,. But since
constant-coefficient operators commute, we can rearrange the factors so that any one of
them is the last factor. This proves (6.14).

If L(u) = 0, the operator L is said to annihilate U. Theorem 6.7 tells us that if a factor Ai
of L annihilates u:, then L also annihilates U.

We illustrate how the theorem can be used to solve homogeneous differential equations
with constant coefficients. We have chosen examples to illustrate different features,
depending on the nature of the roots of the characteristic equation.

CASE I. Real distinct roots.

EXAMPLE 1. Find a basis of solutions for the differential equation

(6.15) (D3  - 70+6)y=O.

Solution. This lhas the form L(y) = 0 with

L =D3-7D+6=(D-l)(D-2)(0+3).

The null space of 11  - 1 contains ur(x) = t?, that of D - 2 contains uZ(x) = ezZ, and that
of D + 3 contains u3(x) = e-3x. In Chapter 1 (p. 10)  we proved that u1 , u2, us are inde-
pendent. Since three independent solutions of a third order equation form a basis for the
solution space, the general solution of (6.15) is given by

Y = cleZ + c2e2”  + c3ew3’.

The method used to solve Example 1 enables us to find a basis for the solution space of
any constant-coefficient operator that can be factored into distinct linear factors.

THEOREM 6.8. Let L be a constant coeflcient operator whose characteristic equation
pL(r)  = 0 has n distinct real roots rI  , r2, . . . , r, . Then the general solution of the difSerentia1
equation L(y) = 0 on the interval (- co,  + KI)  is given by the formula

(6.16) y = j$ ckerk”  .
k=l

Proof. We have the factorization

L = a,(D - rI)(D - r2). * * (D - r,).

Since the null space of (D - rJ contains uk(x) = erkr, the null space of L contains the n
functions

(6.17) U1(x) = f?, uz(X)  = er@,  . . . , u,(x) = eTnr,
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In Chapter 1 (p. 10) we proved that these functions are independent. Therefore they form
a basis for the solution space of the equation L(y) = 0, so the general solution is given by
(6.16).

CASE II. Real roots, some of which are repeated.
If all the roots are real but not distinct, the functions in (6.17) are not independent and

therefore do not form a basis for the solution space. If a root r occurs with multiplicity m,
then (D - r)“’ is a factor of L. The next theorem shows how to obtain m independent
solutions in the null space of this factor.

THEOREM 6.9. The m jimctions

ul(x) = e’“, u2(x) = xerr,  . . . , u,(x) = xm-%?*

are m independent elements annihilated by the operator (D - r)” .

Proof. The independence of these functions follows from the independence of the
polynomials 1, x, x2,  . . . , x+-l.  To prove that ur, u2, . . . , u, are annihilated by (D - r)”
we use induction on m.

If m = 1 there is only one function, ul(x) = eF2, which is clearly annihilated by (D - r) .
Suppose, then, that the theorem is true for m - 1. This means that the functions ul, . . , ,
u,-~  are annihilated by (D - r)m-l. Since

(D - r)” = (D - r)(D - r)+’

the functions u1 , . . . , u,,-~ are also annihilated by (D - r)” . To complete the proof we
must show that (D - r)m  annihilates u, . Therefore we consider

We have
(D - r)%, = (D - r)m-l(D - r)(xm-1e’3c).

(D - r)(x”-le’“) = D(x”-lp)  - rxm-leTz

= (m - 1)xm--2p  + xm-lr@x - rx~-lp

= (m - 1)xm-2erz  = (m - l)u,-,(x).

When we apply (D - r:Y’-’ to both members of this last equation we get 0 on the right
since (D - r)m-l  annihilates u,-r  . Hence (D - r)%, = 0 so u, is annihilated by
(D - r)“. This completes the proof.

EXAMPLE 2. Find the general solution of the differential equation L(y) = 0, where
L=D3-D2-8D+12.

Solution. The operator L has the factorization

L = (D - 2)2(D + 3).
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By Theorem 6.9, the two functions
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q(x) = e2*  ) z&(x) = xe2=

are in the null space of (D - 2)2.  The function us(x)  = e+ is in the null space of (D + 3).
Since ul, u2, ua are independent (see Exercise 17 of Section 6.9) they form a basis for the
null space of L, so the general solution of the differential equation is

y = cle2s  + c2xe2x  + c3ee3S.

Theorem 6.9 tells us how to find a basis of solutions for any nth order linear equation
with constant coefficients whose characteristic equation has only real roots, some of which
are repeated. If the distinct roots are rl, r2,  .  .  . , r, and if they occur with respective
multiplicities m,  , m2,  . . . , mk, that part of the basis corresponding to rs is given by the m,
functions

u,,,(x)  = x*-leQr, where q= I,2 ,...,  mM,.

Asptakesthevalues1,2,...,kwegetm,+*** + mk functions altogether. In Exercise
17 of Section 6.9 we outline a proof showing that all these functions are independent. Since
the sum of the multiplicities m,  + * * * + m,  is equal to n, the order of the equation, the
functions uB,Q  form a basis for the solution space of the equation.

EXAMPLE 3. Solve the equation (D6  + 2D5  - 2D3  - D2)y = 0.

Solution. We have D6 + 2D5  - 2D3  - D2 = D2(D - l)(D + I)“. The part of the
basis corresponding to the factor D2 is ul(x) = 1, u2(x) = x ; the part corresponding to
the factor (D - 1) is u3(x) = e” ; and the part corresponding to the factor (D + 1)” is
u4(x) = e-“, us(x)  = xe-” , Us = x2ePr. The six functions ul, . . . , us are independent
so the general solution of the equation is

y = cl  + c2x  + c3e5  + (c4 + c,x  + c6x2)emz.

CASE III. Complex roots.
If complex exponentials are used, there is no need to distinguish between real and complex

roots of the characteristic equation of the differential equation L(y) = 0. If real-valued
solutions are desired, we factor the operator L into linear and quadratic factors with real
coefficients. Each pair of conjugate complex roots u + i,!?, u - i/3 corresponds to a
quadratic factor,

(6.18) D2-2uD+cc2+/12.

The null space of this second-order operator contains the two independent functions
U(X) = eaz cos px and v(x) = ear sin px. If the pair of roots dc  f i/3 occurs with multi-
plicity m, the quadratic factor occurs to the mth power. The null space of the operator

[D2  - 2uD  + u2 + p21rn
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contains 2m independent functions,

u,(x)  = X*-lezz  cos  px  ) u*(x) = x*--lea2  sin /3x, q=l,2  ,..., m.

These facts can be easily proved by induction on m. (Proofs are outlined in Exercise 20
of Section 6.9.) The following examples illustrate some of the possibilities.

EXAMPLE 4. y”I - 4y” + l3y’ = 0. The characteristic equation, r3 - 49 + 13r = 0 ,

has the roots 0, 2 f 3i; the general solution is

y = cl + ezx(c2 cos 3x + c3 sin 3x).

EXAMPLE 5. y”I - 2~”  + 4;~’  - 8y  = 0 . The characteristic equation is

r3  - 2r2 + 4r - 8 = (r - 2)(r2  + 4) = 0 ;

its roots are 2, 2i,  -2i,  so the general solution of the differential equation is

y = c1e2” + c2 cos 2x + c3  sin 2x.

EXAMPLE 6. y (5) - gyt41 $. 34y”  _ 66~” + 65~’  - 25~  = 0. The characteristic equation
can be written as

(r - l)(r2  - 4r + 5)2 = 0 ;

its roots are 1, 2 f i,  2 f I;, so the general solution of the differential equation is

y  =  c,e” + e2z[(c2  + c3x)  cos x + (c4  + c5x) sin x] .

6.9 Exercises

Find the general solution of each of the differential equations in Exercises 1 through 12.

1 . y”’ -2y” -3y’=o. 7 . yt4’ + 16y  = 0.
2 . y”’ -y’ =o. 8. y”’ - y = o .
3. y#’  + 4y” + 4y’ = 0.

-3yN+3y’-y=o.
9. yc4)  + 4y” + 8~”  + 8y’ + 4y = 0.

4 . y”’
5. yt4’ + 4 ~ “ ’ + 6~” + 4y’ -t- y = 0.

10. y(4) + 2y” + y = 0.
11. y(6) + 4y(4) + 4y” = 0.

6. Y t4) - 16y = 0. 12. y@) + 8yt4) + 16~” = 0.

13. If m is a positive constant, find that particular solution y =f(x) of the differential equation

y"'  - my"  + m2y'  - &y  = 0

which satisfies the conditionf(0) =f’(O)  = O,f”(O) = 1 .
14. A linear differential equation with constant coefficients has characteristic equationf(r) = 0.

If all the roots of the characteristic equation are negative, prove that every solution of the differ-
ential equation approaches zero as x + + to. What can you conclude about the behavior of all
solutions on the interval [0, + co)  if all the roots of the characteristic equation are nonpositive?
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1.5. In each case, find a linear differential equation with constant coefficients satisfied by all the
given functions.
(4 ~~(4  = e5, uz(x) = .e-, u,(x)  = e2z, u4(x)  = eC2x.

16.

17.

18.

(b) ur(x) = e-2x, u2(x) = xe-2z, u&x) = x2eC2”.
(cl Ul(X) = 1 3 u2(4  = x, z+(x)  = e5, u4(x)  = xex.

(d) ur(x) = zc, u2(x) = e”, u2(x)  = xe”  .
(e) ul(x)  = x2, u2(x)  = e”, u2(x)  = xe5.
(f) ur(x) = e-as  cos 3x, u2(x)  = e-2r  sin 3x, u2(x)  = e-2x, q(x) = xe-&.
(g) ul(x)  = cash x, u2(x)  = sinh x, u2(x)  = x cash x, u4(x)  = x sinh x .
(h) ur(x) = cash x sin x, u2(x) = sinh x cos x, us(x) = x.
Letr,,..., rn be n distinct real numbers, and let Q,  , . . . , Q, be n polynomials, none of which
is the zero polynomial. Prove that the n functions

ul(x) = Ql(x)e’15,  . . . , u,(x) = Qn(x)er@

are independent.
Outline of pro06  Use induction on n. For n = 1 and n = 2 the result is easily verified.

Assume the :statement is true for n =p  and let cr, . . . , cD.+r be p + 1 real scalars such that

Multiply both sides by e-‘p+l” and differentiate the resulting equation. Then use the induction
hypothesis to show that all the scalars ck  are 0. An alternate proof can be given based on order
of magnitude as x -+  + CC, as was done in Example 7 of Section 1.7 (p. 10).
Letm,,m,,,.., mk be k positive integers, let rl,  r2, . . . , rk be k distinct real numbers, and
letn =m, t,... +m,. For each pair of integersp, q satisfying 1 < p < k, 1 5 q 5 mz,,  let

U,,,(x) = x*-V+.

For example, when p = 1 the corresponding functions are

u~,~(x)  = erlz, uz,l(x)  = xerlz,  . . . , u,l,,(x)  = x”l-‘e’lz.

Prove that the n functions u*,~  so defined are independent. [Hint: Use Exercise 16.1
Let L be a constant-coefficient linear differential operator of order n with characteristic poly-
nomialp(r).  Let L’  be the constant-coefficient operator whose characteristic polynomial is the
derivative p’(r). For example, if L = 20 2 - 30  + 1 then L’  = 40 - 3. More generally,
define the mth derivative L(?“) to be the operator whose characteristic polynomial is the mth
derivative p c’n)(r). (The operator L (nl) should not be confused with the mth power Lm.)
(a) If u has ,n derivatives, prove that

k=O

(b) If u has n - m derivatives, prove that

n--m p+“‘(())
L(m)(u)  = 2 7 u (8) for m=0,1,2,:..,n,

k=O

where L(O)  == L.
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19. Refer to the notation of E.xercise  18. If u and u have n derivatives, prove that

k=O

[Hint: Use Exercise 18 along with Leibniz’s formula for the kth derivative of a product:

(m)(k) =r~o(:,u(k-w~)  .]

20. (a) I&p(t) = q(t)?(t), where q and r are polynomials and m is a positive integer. Prove that
p’(t) = q(t)“-is(t),  where s is a polynomial.
(b) Let 1,  be a constant-coefficient operator which annihilates u, where u is a given function of
x .  LetM=Lm,the mth power of L, where m > 1. Prove that each of the derivatives M’,
M”, . . . ) M(“-l)  also annihilates u.
(c) Use part (b) and Exercise 19 to prove that M annihilates each of the functions u, xu, . . . ,
xm-Ill.
(d) Use part (c) to show that the operator (D2 - 2ctD + a2  + p2)”  annihilates each of the
functions xQe”z  sin px and x*eaz cos px for q = 1, 2, . . . , m - 1 .

21. Let L be a constant-coefficient operator of order n with characteristic polynomial p(r). If c(
is constant and if u has n derivatives, prove that

L(e”%(x))  = eaz
c .

n p?  U(k)(X).

k=O

6.10 The relation between the homogeneous and nonhomogeneous equations

We return now to the general linear differential equation of order n with coefficients that
are not necessarily constant. The next theorem describes the relation between solutions of
a homogeneous equation L(;v)  = 0 and those of a nonhomogeneous equation L(y) = R(x).

THEOREM 6.10. Let L 9*(J)  * V(J) be a linear difSerentia1  operator of order n. Let ul,  . . . ,
u, be n independent solutions of the homogeneous equation L(y) = 0, and let yl be a particular
solution of the nonhomogeneous equation L(y) = R, where R E V(J). Then every solution
y = f (x) of the nonhomogeneous equation has the form

(6.19) .I-@>  = Yl(X>  +~ykw

where cl, . . . , c, are constants.

Proof. By linearity we have L(f - yr) = L(f) - L(yr)  = R - R = 0. Therefore

f - y1 is in the solution space of the homogeneous equation L(y) = 0, so f - y1 is a linear
combination of ul, . . . , u, , sayf - y, = clul + . . - + c,u, . This proves (6.19).

Since all solutions of L(y)  = R are found in (6.19), the sum on the right of (6.19) (with
arbitrary constants cl, c2,  . . . , c,) is called the general solution of the nonhomogeneous
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equation. Theorem 6.10 states that the general solution of the nonhomogeneous equation
is obtained by adding toy, the general solution of the homogeneous equation.

Note: Theorem 6.10 has a simple geometric analogy which helps give an insight into
its meaning. To determine all points on a plane we find a particular point on the plane
and add to it all points on the parallel plane through the origin. To find all solutions of
L(y) = R we find a particular solution and add to it all solutions of the homogeneous
equation L(y) = 0. The set of solutions of the nonhomogeneous equation is analogous
to a plane through a particular point. The solution space of the homogeneous equation
is analogous to a parallel plane through the origin.

To use Theorem 6.10 in practice we must solve two problems: (1) Find the general
solution of the homogeneous equation L(y) = 0, and (2) find a particular solution of the
nonhomogeneous equation L(y) = R. In the next section we show that we can always
solve problem (2) if we can solve problem (1).

6.11 Determination of a particular solution of the nonhomogeneous equation. The method
of variation of parameters

We turn now to the problem of determining one particular solution yr of the nonhomo-
geneous equation L(y) = R . We shall describe a method known as variation ofparameters
which tells us how to determine y1 if we know n independent solutions ul, . . . , u, of the
homogeneous equation L(y) = 0. The method provides a particular solution of the form

(6.20) y1=  VI%+  --- + v,u,,

wherev,, . . . , v, are functions that can be calculated in terms of u1 , . . . , u, and the right-
hand member R. The method leads to a system of n linear algebraic equations satisfied by
the derivatives vi, . . . , v:. This system can always be solved because it has a nonsingular
coefficient matrix. Integration of the derivatives then gives the required functions vi, . . . ,
v, . The method was first used by Johann Bernoulli to solve linear equations of first order,
and then by Lagrange in 1774 to solve linear equations of second order.

For the nth order case the details can be simplified by using vector and matrix notation.
The right-hand member of (6.20) can be written as an inner product,

(6.21) Yl = (0,  4,

where v and u are n-dimensional vector functions given by

v = (Vl,  - * * 9 %I, u = (Ul,. . . ) UJ.

We try to choose v so that the inner product defining y1 will satisfy the nonhomogeneous
equation L(y) = R, given that L(u) = 0, where L(u) = (L(u,), . . . , L(u,)).

We begin by calculating the first derivative of yr . We find

(6.22) y; = (0,  u’) + (u’,  u).
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We have n functions vl, . . . , v, to determine, so we should be able to put n conditions on
them. If we impose the condition that the second term on the right of (6.22) should vanish,
the formula for yi simplifies to

y; =:  (v, U’)) provided that (v’, u) = 0.

Differentiating the relation for y; we find

yf = (v, 24”)  + (v’, u’) .

If we can choose v so that (Iv’,  u’) = 0 then the formula for yy also simplifies and we get

y; = (v, u”)) provided that also (v’, u’) = 0.

If we continue in this manner for the first n - 1 derivatives of y1 we find

,:,-1)  = (v, &L-l))) provided that also (v’, u(+‘)) = 0.

So far we have put n - 1 conditions on v. Differentiating once more we get

y:“’ = (v, ZP) + (v’, ZP-1)).

This time we impose the condition (v’, u @-l)) = R(x), and the last equation becomes

y:“’ = (v, P) + R(X)) provided that also (v’, u(~-‘)) = R(x).

Suppose, for the moment, that we can satisfy the n conditions imposed on v. Let L =
D” + P,(x)D”-l  + * . . + P,(x). When we apply L to y1 we find

I&) = y:“’ + P,(x)Jpl’  + . . . + P,(X>Yl

= {(u, U(n:’ ) + R(x)} + Pl(X)(U, LP-l))  + . . . + P,(x)(u, u)

= (v, L(u)) + R(x) = (v, 0) + R(x) = R(x).

Thus L(yJ  = R(x), so y1 is a solution of the nonhomogeous equation.
The method will succeed if we can satisfy the n conditions we have imposed on v. These

conditions state that (v’, u(“‘) = 0 for k = 0, 1, . . . , n - 2, and that (v’, zJn-l))  = R(x).
We can write these n equations as a single matrix equation,

- -

(6.23) W(x)v’(x)  = R(x)

0

'i '

II1
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where v’(x) is regarded as an n x 1 column matrix, and where W is the n x n matrix
function whose rows consist of the components of u and its successive derivatives:

w=

% l.lz ..* un
4 4 ... 11;

. .

(n-1)
-Ul

(n-1)
uz

. . .
.I
U(n-l)
n

The matrix W is called the Wronskian matrix of ul, . . . , u,, after J. M. H. Wronski
(1778-1853).

In the next section we shall prove that the Wronskian matrix is nonsingular. Therefore
we can multiply both sides of (6.23) by W(x)-l  to obtain

0u’(x) = R(x)W(x)-l  0 .II1
Choose two points c and x in the interval J under consideration and integrate this vector
equation over the interval from c to x to obtain

u(x)  = u(c)  +

where

The formula y1 = (u, v) for the particular solution now becomes

y1 = (4 v) = (%0(C) + 2) = (t&u(c))  + (u,z).

The first term (u, v(c)) satisfies the homogeneous equation since it is a linear combination of
241,.  . . ) u,. Therefore we can omit this term and use the second term (u, z) as a particular
solution of the nonhomogeneous equation. In other words, a particular solution of
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L(y) = R is given by the inner product

0

(u(x), z(x)>  = (u(x),lZR(t)W(t)-’  ; dt)  .

;I
1

Note that it is not necessary that the function R be continuous on the interval J. All that is
required is that R be integrable on [c, x].

We can summarize the results of this section by the following theorem.

THEOREM 6.11. Let Ml,...  , u, be n independent solutions of the homogeneous nth order
linear dtxerential  equation L,(y) = 0 on an interval J. Then a particular solution y1  of the
nonhomogeneous equation L(y) = R is given by the formula

where vl, . . . , v, are the entries in the n x 1 column matrix v determined-by the equation

(6.24)

In this formula, W is the Wronskian matrix of ul, . . . , u,, and c is any point in J.

Note: The definite integral in (6.24) can be replaced by any indefinite integral

0sR(x)W(x)-’  ; dx.Ij1
EXAMPLE 1. Find the general solution of the differential equation

))”  - y = 2
1 + e”

on the interval (- co,  + co).

Solution. The homogeneous equation, (D2  - 1)y  = 0 has the two independent solutions
ul(x) = eZ, uZ(x) = e-”  . The Wronskian matrix of u1 and u2 is

ez  e-zW(x) = [ 1e” -e-” *
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Since det W(x) = -2, the matrix is nonsingular and its inverse is given by

Therefore

and we have

0

R(x)W(x)-' [1 1 21
= - i 1+ [

-eP

1 =e"
e --z

1 1.

1 + er

-e”
Ll + eZ1

Integrating each component of the vector on the right we find

s -22q(x) = AL- dx =
1  +  e” f (

e-” - 1 + ?ff--
1 + e”

dx = -ee-”  - x + log(1  + ez)

and ~z(X) = sL dx = -log (1 + eZ).
1 + e”

Therefore the general solution of the differential equation is

y = Cl%(X)  + wzc4  + s(x)4W  + %(X>&)
= cleX + c,e-”  - 1 - xez + (ez  - e-2) log (1 + e”)  .

6.12 Nonsingularity of the Wronskian matrix uf n independent solutions of a homogeneous
linear equation

In this section we prove that the Wronsklan matrix W of n independent solutions
4,. . . 7 u, of a homogeneous equation L(y) = 0 is nonsingular. We do this by proving
that the determinant of W is an exponential function which is never zero on the interval J
under consideration.

Let w(x) = det W(x) for each x in J, and assume that the differential equation satisfied
byu,,..., u, has the form

(6.25) y(n)  + P1(x)y(-‘) + * * * + P,(x)y = 0.

Then we have:

THEOREM 6.12. The Wronskian determinant satisfies the @St-order deferential  equation

(6.26) w’ + Pl(X)W  = 0
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on J. Therefore, if c E J we have

(6.27) w(x) = w(c) exp [ -6 PI(t)  dt]

Moreover, w(x)  # 0 for all  x in J.

(Abel’sformula).

Proof. Let u be the row-vector u = (ul, . . . , UJ . Since each component of u satisfies
the differential equation (6.25) the same is true of u. The rows of the Wronskian matrix W
are the vectors u, u’, . . . , utn-l)  . Hence we can write

w = det W = det (u, u’, . . . , ~(~-l)),

The derivative of w is the determinant of the matrix obtained by differentiating the last row
of W (see Exercise 8 of Section 3.17). That is

w’ .= det (u, u’, . . . , I&~-~),  ucn)).

Multiplying the last row of w by PI(x) we also have

P,(x:)w  = det (u, u’, . . . , z&“-~),  P~(x)u(“-~)).

Adding these last two equations we find

w’ + Pl(x)w = det (u, u’, . . . , u(+~),  U(~)  + Pl(x)u’“-‘9.

But the rows of this last determinant are dependent since u satisfies the differential equation
(6.25). Therefore the determinant is zero, which means that w satisfies (6.26). Solving
(6.26) we obtain Abel’s formula (6.27).

Next we prove that w(c) # 0 for some c in J. We do this by a contradiction argument.
Suppose that w(t) = 0 for all t in J. Choose a fixed t in J, say t = t,, and consider the
linear system of algebraic equations

w(t,)x =  0 ,

where X is a column vector. Since det W(t,) = 0, the matrix W(t,) is singular so this
system has a nonzero  solution, say X = (cl, . . . , c,) Z (0, . . . , 0) . Using the components
of this nonzero  vector, let f be the linear combination

f(t) = c,u,(t)  + * * * + c&&(t).

The function f so defined satisfies L(f) = 0 on J since it is a linear combination of
Ul,...,U,. The matrix equation W(t,)X = 0 implies that

f(t,)  = f ‘(t,) = * * * = f (n-l)(tJ  = 0.

Therefore f has the initial-value vector 0 at t = t, so, by the uniqueness theorem, f is the
zero solution. This means c1  = * * * = c, = 0, which is a contradiction. Therefore
w(t) # 0 for some t in J. Taking c to be this t in Abel’s formula we see that w(x) # 0 for
all x in J. This completes the proof of Theorem 6.12.



The annihilator method for determining a particular solution 163

6.13 Special methods for determining a particular solution of the nonhomogeneous equation.
Reduction to a system of first-order linear equations

Although variation of parameters provides a general method for determining a particular
solution of ,5,(y)  = R, special methods are available that are often easier to apply when the
equation has certain special forms. For example, if the equation has constant coefficients
we can reduce the problem to that of solving a succession of linear equations of first order.
The general method is best illustrated with a simple example.

EXAMPLE 1. Find a particular solution of the equation

(6.28) (D - l)(D - 2)~ = xe”+“’ .

Solution. Let u = (D - 2)~. Then the equation becomes

(D - 1)~  = xez+“’ .

This is a first-order linear equation in u which can be solved using Theorem 6.1. A particular
solution is

u = $es+x2

Substituting this in the equation u = (D - 2)~  we obtain

a first-order linear equation for y. Solving this by Theorem 6.1 we find that a particular
solution (withy,(O) = 0) is given by

yl(x) = frezr  ,” et’-’ dt .I

Although the integral cannot be evaluated in terms of elementary functions we consider
the equation as having been solved, since the solution is expressed in terms of integrals of
familiar functions. The general solution of (6.28) is

y = cle2 + c2ezx  + +ezx  * et2-tdt.i0

6.14 The annihilator method for determining a particular solution of the nonhomogeneous
equation

We describe next a method which can be used if the equation L(y) = R has constant
coefficients and if the right-hand member R is itself annihilated by a constant-coefficient
operator, say A(R) = 0. In principle, the method is very simple. We apply the operator
A to both members of the differential equation L(y) = R and obtain a new equation
AL(y) = 0 which must be satisfied by all solutions of the original equation. Since AL is
another constant-coefficient operator we can determine its null space by calculating the
roots of the characteristic equation of AL. Then the problem remains of choosing from
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this null space a particular function y1 that satisfies L(yl)  = R. The following examples
illustrate the process.

EXAMPLE 1. Find a particular solution of the equation

(~4- 16)y=x4+x+  1.

Solution. The right-hand member, a polynomial of degree 4, is annihilated by the
operator D5. Therefore any solution of the given equation is also a solution of the equation

(6.29) D5(D4  - 16)~  = 0.

The roots of the characteristic equation are 0, 0, 0, 0, 0,2,  -2,2i,  -2i,  so all the solutions
of (6.29) are to be found in the linear combiuation

y = c1 + c2x + c3x2 + c4x3 + c5x4 + cgezs + c7cz2  + G3COS2x  + cg sin2x*

We want to choose the ci so that L(y) = x4 + x + 1, where L = D4  - 16. Since the last
four terms are annihilated by L, we can take cs = c, = c8  = cg  = 0 and try to find
Cl,. * * 9 c5  so that

L(c, + c2x + c3x3 + c,x3 + c5x4) = x4 + x + 1.

In other words, we seek a particular solution y1 which is a polynomial of degree 4 satisfying
L(yl)  = x4 + x + 1 . To simplify the algebra we write

16y,=ax4+bx3+cx2+dx+e.

This gives us 16#  = 24a, so yy’ = 3a/2. Substituting in the differential equation
L(yJ  = x4 + x + 1, we must determine a, b, c, d, e to satisfy

$a - ax4 - bx3 - cx2 - dx - e = x4 + X + 1.

Equating coefficients of like powers of x we obtain

a = - 1 , b=c=O, d=  - 1 , e= -Q,

so the particular solution y,, is given by

EXAMPLE 2. Solve the differential equation y” - 5~’  + 6~  = xe”.

Solution. The differential equation has the form

(6.30) Uy)  = R,



The annihilator method for determining a particular solution 165

where R(x) = xe’ and L = D2  - 5D + 6. The corresponding homogeneous equation
can be written as

(D - 2)(D - 3)y  = 0;

it has the independent solutions ul(x) = e2’, u2(x) = e3Z. Now we seek a particular
solution y1 of the nonhomogeneous equation. We recognize the function R(x) = xe3E
as a solution of the homogeneous equation

(D - 1)2y  = 0 .

Therefore, if we operate on both sides of (6.30) with the operator (D - 1)2  we find that any
function which satisfies (6.30) must also satisfy the equation

(D - 1)2(D  - 2)(D - 3)y  = 0.

This differential equation has the characteristic roots 1, 1, 2, 3, so all its solutions are to be
found in the linear combination

y = sex + bxe”  + ce2’ + de3”,

where a, b, c, d are constants. We want to choose a, b, c, d so that the resulting solution
yl satisfies L(yl)  = xe” . Since L(ce2”  + de3”)  = 0 for every choice of c and d, we need only
choose a and b so that L(ae”  + bxe”) = xe” and take c = d = 0. If we put

we have
y1  = ae” + bxe”,

D&) = (a + b)e”  + bxe”, D2(y1)  = (a + 2b)e”  + bxe”,

so the equation ( D2 - 5 D + 6)yl  = xe” becomes

(2a - 3b)e”  + 2bxe”  = xe”.

Canceling ex  and equating coefficients of like powers of x we find a = $, b = 4. Therefore
y1  = $eZ + 4x8 and the general solution of L(y) = R is given by the formula

y = cle2x  + c2e3’  + ze’ + *X8.

The method used in the foregoing examples is called the annihilator method. It will
always work if we can find a constant coefficient operator A that annihilates R. From our
knowledge of homogeneous linear differential equations with constant coefficients, we know
that the only real-valued functions annihilated by constant-coefficient operators are linear
combinations of terms of the form

x ,TS-leaX X *-lea' COs /lx, xm-leax  sin /TX,

where m is a positive integer and u and /-I are real constants. The function y = xm--lezr
is a solution of a differential equation with a characteristic root M.  having multiplicity m.
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Therefore, this function has the annihilator (D - M)~.  Each of the functions y =
xm-leax cos ,6x and y = x “--lerrx  sin ,8x is a solution of a differential equation with complex
characteristic roots tc  f i/3 :, each occurring with multiplicity m, so they are annihilated by
the operator [P - 2crD  +- (E”  + p2)]“. For ease of reference, we list these annihilators
in Table 6.1, along with some of their special cases.

TABLE 6.1

Function Annihilator

Y = P--l
y = eax

Y  =  x”--le”lZ
y  =  cos~x or y = sin /3x
y = x”--l cos /3x or y = xm-l  sin Bx

Y= eax  cos jx or y = eaz sin /?x
y = x”--lea” cos /lx or y = x”-leas sin Bx

D ” .

(;  I :,m

D2 + ji3”
CD2  + B2P

D2  - 2crD + (cc”  + p2)

[D2  - 2uD  + (cc2  + p2)]”

Although the annihilator method is very efficient when applicable, it is limited to
equations whose right members R have a constant-coefficient annihilator. If R(x) has the
form ex2, log x, or tan x, the method will not work; we must then use variation of
parameters or some other method to find a particular solution.

6.15 Exercises

In each of Exercises 1 through 10, find the general solution on the interval (- to, + co).

1. y” -y’ =x2. 6. y”’ - y' = e".
2. y” - 4y = e2x. 7. y”’ -y' =e” +e-“.
3. y” + 2-v’  = 3xe”. 8. y”’ + 3y”  + 3y’ + y = xecz.
4. y” + 4y = sin x. 9. y” + y = xe”  sin 2x.
5. y” - 2y’ + y = ex  + e2%. 10. yt4) - y = x2eP .

11. If a constant-coefficient operator A annihilates f and if a constant-coefficient operator B
annihilates g, show that the product AB annihilates f + g .

12. Let A be a constant-coefficient operator with characteristic polynomial pA  .
(a) Use the annihilator method to prove that the differential equation ,4(y) = em% has a
particular solution of the form

eax
Yl = -

P-4  (a)

if CC  is not a zero of the polynomial pA  .
(b) If a is a simple zero of pA4  (multiplicity l), prove that the equation A(y) = eaz has the
particular solution

xezx
y1 = p>(u)  *

(c) Generalize the results of (a) and (b) when a is a zero of pA with multiplicity m.
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13. Given two constant-coefficient operators A and B whose characteristic polynomials have no
zeros in common. Let C = AB.
(a) Prove that every solution of the differential equation C(y) = 0 has the form y = y1 + ys,
where A(yJ  = 0 and B(yJ  = 0.
(b) Prove that the functions yr and ye in part (a) are uniquely determined. That is, for a
given y satisfying C(y) = 0 there is only one pair y1 , yz with the properties in part (a).

14. If L(y)  = y” + uy’ + by, where u and b are constants, let f be that particular solution of
L(y) = 0 satisfying the conditions f(0) = 0 and f’(0) = 1 . Show that a particular solution
of L(y)  = R is given by the formula

for any choice of c. In particular, if the roots of the characteristic equation are equal, say rl =
r2  = m , show that the formula for y,(x) becomes

yl(x)  = ema - t)epmtR(t)  dt.

15. Let Q be the operator “multiplication by x.” That is, Q(y)(x) = x . y(x) for each y in class %”
and each real x. Let Z denote the identity operator, defined by Z(y) = y for each y in %?“.
(a) Prove that DQ - QZ) = I.
(b) Show’that D2Q - QDz  is a constant-coefficient operator of first order, and determine this
operator explicitly as a linear polynomial in D.
(c) Show that D3Q - QD3 is a constant-coefficient operator of second order, and determine
this operator explicitly as a quadratic polynomial in D.
(d) Guess the generalization suggested for the operator D”Q - QDn,  and prove your result
by induction.

In each of Exercises 16 through 20, find the general solution of the differential equation in the
given interval.

16. y” -y  = l/x, (0,  +a).

17. y” + 4y = set 2x, ( - $ , a 1 .

18. y” -y = sec3x -
7-r 77

secx, ( -Tj,j 1 *

19. y” - 2y’ + y = ee”(ez - 1)2, (-co,  +a).
20. y” - 7y” + 14y’ - sy = log x, (0,  +a).

6.16 Miscellaneous exercises on linear differential equations

1. An integral curvey  = U(X)  of the differential equation yfl - 3~1'  - 4y  = 0 intersects an integral
curve y = v(x) of the differential equation y”+ 4y’ - 5y = 0 at the origin. Determine the
functions u and v if the two curves have equal slopes at the origin and if

[a414  5
;y&j-  =6.

2. An integral curve y = u(x) of the differential equation y” - 4y’ + 29y  = 0 intersects an integral
curve y = v(x) of the differential equation y” + 4y’ + 13y = 0 at the origin. The two curves
have equal slopes at the origin. Determine u and v if u’(rr/2)  = 1 .
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3. Given that the differential equation y” + 4xy’ + Q(x)y = 0 has two solutions of the form
‘0; ; u(x)  and y2  = 4x>, where u(0)  = 1 . Determine both u(x) and Q(x) explicitly in terms

4. Let L(y)  = y’ + Ply’  + P,y  . To solve the nonhomogeneous equation L(y) = R by variation
of parameters, we need to know two linearly independent solutions of the homogeneous
equation. This exercise shows that if one solution aI of L(y) = 0 is known, and if aI is never
zero on an interval J, a second solution u2 of the homogeneous equation is given by the formula

s ’ Q(t)  dt
u2(4  = 4(x)  c [Ul(t)12 9

where Q(x) = ~~r’l(~)~~,  and c is any point in J. These two solutions are independent on J.
(a) Prove that the function u2 does, indeed, satisfy L(y) = 0.
(b) Prove that a1  and u2 are independent on J.

5. Find the general solution of the equation

xy ” - 2(x + 1)~’  + (X + 2)y  = x3e2~

for x > 0, given that the homogeneous equation has a solution of the form y = emr .
6. Obtain one nonzero  solution by inspection and then find the general solution of the differential

equation
(y” - 4y’) + x2(y’ - 4y) = 0.

7. Find the general solution of the differential equation

4x2y”  +4xy’-y  =o,

given that there is a particular solution of the form y = x” for x > 0.
8. Find a solution of the homogeneous equation by trial, and then find the general solution of the

equation
x(1 - xI)y” - (1 - 2x)y’ + (x2  - 3x + 1)y = (1 - x)3.

9. Find the general solution of the equation

(2x - 3x3)y”  + 4y’ + 6xy = 0,

given that it has a solution that is a polynomial in x.
10. Find the general solution of the equation

x2(  1 - x)y"  + 2x(2 - x)y’ + 2(1 + x)y = x2 )

given that the homogeneous equation has a solution of the form y = XC.
11. Let g(x) = JT et/t  dt if x > 0. (Do not attempt to evaluate this integral.) Find all values of

the constant a such that the function f defined by

f(x) = ieag(z)
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satisfies the linear differential equation

x2yn + (3x - x2)/ + (1 - x - e2,c)y  = 0.

Use this information to determine the general solution of the Iequation  on the interval (0, + to).

6.17 Linear equations of second order with analytic coeflicients

A functionfis said to be analytic on an interval (x0 - r, x0 + r) iffhas a power-series
expansion in this interval,

convergent for Ix - x0] < r. If the coefficients of a homogeneous linear differential
equation

y@) + P1(x)y(-)  + - * * + P,(x)y = 0

are analytic in an interval (x,, - r, x,,  + r), then it can be shown that there exist n inde-
pendent solutions ul, . . . , u,, each of which is analytic o.n the same interval. We shall
prove this theorem for equations of second order and then discuss an important example
that occurs in many applications.

THEOREM 6.13. Let P,  and P, be analytic on an open interval (x, - r, x0 + r), say

P,($ =n~oUx  - XOY 3 P2(x)  = i c;,(x  - XJ  .
12=0

Then the deferential  equation

(6.31) y” + P,(x)y’ + P2<4y  = 0

has two independent solutions u1  and u2  which are analytic on the same interval.

Proof. We try to find a power-series solution of the form

(6.32) y = 2 a& - xo)lz,
?I=0

convergent in the given interval. To do this, we substitute the given series for P, and P, in
the differential equation and then determine relations which the coefficients a,, must satisfy
so that the function y given by (6.32) will satisfy the equation.

The derivatives y’ and y” can be obtained by differentiating the power series for y term
by term (see Theorem 11.9 in Volume I). This gives us

y’ =$;a& - xoY--l  =zJn  + l)a,+lb - -WY

y”  =z;(n - l)a,(x - x0)+’  =gJn + 2)(n  -I- l)a,+,(x  - xoY.



170 Linear d@erential  equations

The products P,(x)y’ and Pz(x)v  are given by the power series?

and

When these series are substituted in the differential equation (6.31) we find

n + 2)(n + l)a,+, + i Kk + 1) Uk+lbn-k  + a,&-,] (x - &J)~  = 0.
k=O I

Therefore the differential equation will be satisfied if we choose the coefficients a, so that
they satisfy the recursion formula

(6.33) (n +  2)(n  +  lb,,, = -$Jck  + l)uk+lbn-k  -k  akcn-kl

for n=0,1,2 ,.... This formula expresses an+2 in terms of the earlier coefficients

ao,~l,...,~,+l and the coefficients of the given functions P, and P2. We choose arbitrary
values of the first two coefficients a, and a, and use the recursion formula to define the
remaining coefficients a2, u3, . . . , in terms of a, and a,. This guarantees that the power
series in (6.32) will satisfy the differential equation (6.31). The next step in the proof is to
show that the series so defined actually converges for every x in the interval (x0 - r, x0 + r).
This is done by dominating the series in (6.32) by another power series known to converge.
Finally, we show that we can choose a, and a, to obtain two independent solutions.

We prove now that the series (6.32) whose coefficients are defined by (6.33) converges in
the required interval.

Choose a fixed point x1 # x0 in the interval (x0 - r, x0 + r) and let t = Ix1  - x01.
Since the series for P, and P, converge absolutely for x = x1 the terms of these series are
bounded, say

@ki  tk  5  Ml and icki  tk  5  M,~

for some MI > 0, Mz  > 0. Let A4 be the larger of M, and tM, . Then we have

The recursion formula implies the inequality

(n + 2)(n  + 1) la n+sl $&  +  1)  bk+ll  Fk +  bkl  5)

k=O

n
M=-

t
n+l

lx

(k  +  1)  bk+ll  tk+‘+  &,I/ t”+’  +  boi  - b,+,l tn+l

k=O k=O 1

I  j$ -&+ 2) Ia k+ll tk+’ + luol
k=O I

= -$ T@ + 1) l&l  tk.
k=O

t Those readers not familiar with multiplication of power series may consult Exercise 7 of Section 6.21.
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Now let A, = laOI,  A, = (all,  and define A,, A,, . . . successively by the recursion
formula

(6.34) (n + 2)(n  + lM,+,  = zl $$k + lM,tk
t

k=O

for it > 0. Then Ia,\ 5 A, for all n 2 0, so the series 2 a,(x - x~)~  is dominated by the
series 1 A, Ix - xOln. Now we use the ratio test to show that x A, Ix - xOln converges if
lx - x01  < t.

Replacing n by 12  - 1 in (6.34) and subtracting t-l times the resulting equation from (6.34)
we find that (n  + 2)(n + l)A,+,  - t-‘(n + l)nA,+,  = M(n  + 2)A.+,  . Therefore

A - An+1
(n + l>n  + (n + m4t

n+2  -
(n + un + 1>t  - ’

and we find

An+2  lx - ~ol~+~ = (n +  l)n +  (n +  2)Mt lx - XOI
An+1  Ix  - xor+l (n + 2)(n  + l>t

Ix  - x0/ --+ ~
t

as n --f  co. This limit is less than 1 if Ix  - x01  < t . Hence 1 a,(x - x~)~  converges if
Ix-x,l<t. Butsincet=Ix,- x01  and since x1 was an arbitrary point in the interval

(x0 - r , x0 + r), the series x a,(x - x~)~  converges for all x in (x0 - r , x0 + r).
The first two coefficients a, and a, represent the initial values ofy and its derivative at the

point x0. If we let ui be the power-series solution with a, = 1 and a1  = 0, so that

%(X0)  = 1 and tqx,) = 0,

and let u2 be the solution with a, = 0 and a, = 1, so that

u2bo)  = 0 and Ii; = 1 )

then the solutions u1 and u2 will be independent. This completes the proof.

6.18 The Legendre equation

In this section we find power-series solutions for the Legendre equation,

(6.35) (1 - x2)y” - 2xy’ + cr(a  + 1)y  =:  0,

where c( is any real constant. This equation occurs in problems of attraction and in heat-
flow problems with spherical symmetry. When CI  is a positive integer we shall find that the
equation has polynomial solutions called Legendre polynomials. These are the same
polynomials we encountered earlier in connection with the Gram-Schmidt process (Chapter
1, page 26).

The Legendre equation can be written as

which has the form
[(x” - 1)y’l’ = M(cX  + 1)y  ,

T(Y)=+,



172 Linear d@erential  equations

where T is a Sturm-Liouville operator, T(f) = (pf’)‘,  with p(x) = x2 - 1 and il =
cr(a  + 1). Therefore the nonzero  solutions of the Legendre equation are eigenfunctions of
T belonging to the eigenvalue CC(M  + 1). Sincep(x) satisfies the boundary conditions

P(l) =p(-1)  = 0,

the operator T is symmetric with respect to the inner product

The general theory of symmetric operators tells us that eigenfunctions belonging to distinct
eigenvalues are orthogonal (Theorem 5.3).

In the differential equation treated in Theorem 6.13 the coefficient of y” is 1. The
Legendre equation can be put in this form if we divide through by 1 - x2. From (6.35) we
obtain

yn + P1(x)y'  + P2W.Y  = 0,

where
2x

Pi(X)  = - - and P2(4  =
x(x + 1)

1 - x2 l-x2 ’

if x2 # 1 . Since l/(1 - x2)  = zzEO x2”  for 1x1 < 1, both PI  and P2  have power-series
expansions in the open interval (- I, 1) so Theorem 6.13 is applicable. To find the recursion
formula for the coefficients it is simpler to leave the equation in the form (6.35) and try to
find a power-series solution of the form

y =ganxn
Tl=O

valid in the open interval (- 1, 1). Differentiating this series term by term we obtain

y’ = i na,x+l and y” = 2 n(n  - l)a,x+‘.
n-=1 n=2

Therefore we have

2xy’ = z 2na,x”  = $ 2na,xn,
n=l 7l=O

and

(1 - x2)y” =nx;(n  - l)a,xnP2  -n$2n(n  - l)a,xn
:.

=$+I + 2)(n  + l)anf2xn  -z;(n  - l)a#

=zoL(n  + 2)(n  + lb,,, - n(n - l>a,lx”.

If we substitute these series in the differential equation (6.35),  we see that the equation
will be satisfied if, and only if, the coefficients satisfy the relation

(n + 2)(n + l)a,+,  - n(n  - I)a,  - 2na, + LX(CC  + l)a,  =  0
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for all n 2 0. This equation is the same as

or
(n + W + l)a,+,  - (n - ct)(n  + 1 + &)a,  = 0,

(6.36) a
(E - n)(u + n + 1)

nt2  = -
(n + l)(n + 2) a’L’

This relation enables us to determine a2, a,, a,, . . . , successively in terms of a,. Similarly,
we can compute as,  as,  a,, . . . , in terms of a,. For the coefficients with even subscripts
we have

c((tc  + 1)
a2= -Tao,

a =_(a-2)(a+3)a2=(_l)2a(a-2)(a+l)(a+3)ao,
4

3.4 4!

and, in general,

a,, = (-l)n cc(a - 2, * . . (cc  - 2n + 2) * (a + l)(a + 3). . * (a + 2n - 1) a,

(2n)!

This can be proved by induction. For the coefficients with odd subscripts we find

a 2n+l  = (-1)” (a - l)Ccr  - 3, . . * (a - 2n + 1) * (CC  + 2)(cx  + 4) * * . (a + 2n) a,

(2n + l)!

Therefore the series for y can be written as

(6.37) Y =  aoul(x>  +  alu2(x>,

where

(6.38)

ul(x) = 1 +~on  4c.c  - 2) * * * (a - 2%  + 2) -:; ,‘r l)(a + 3) f * * (a + 2n - 1) X2n

?7=1 n .

and

(6.39)

u2(x) = x + O”
c

(- 11%  (a - l)(a - 3). . * (E - 2T2nf:);:pl + 2)(a + 4).  . * (a + 2n) X2n+l.

?l=l

The ratio test shows that each of these series converges for 1x1 < 1. Also, since the
relation (6.36) is satisfied separately by the even and odd coefficients, each of u1 and u2 is a
solution of the differential equation (6.35). These solutions satisfy the initial conditions

G9 = 1, u;(o)  = 0, u,(O)  = 0, u;(o)  = 1.
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Since u1 and up are independent, the general solution of the Legendre equation (6.35) over
the open interval (- 1, 1) is given by the linear combination (6.37) with arbitrary constants
a, and a,.

When t( is 0 or a positive even integer, say K = 2m, the series for uI(x) becomes a
polynomial of degree 2m containing only even powers of x. Since we have

cc(t(  - 2) . . . (cr-2n+2)=2m(2m-2)~~~(2m-2n+2)=,  2”m!
(m - n)!

and

(a + l)(or  + 3) * s . (0~  + 2n - 1) = (2m + 1)(2m + 3) . * ’ (2m + 2n - 1)

(2m + 2n)! m!
= 2”(2m)!  (m + n)!

the formula for or in this case becomes

(6.40) q(x) = 1 + @I? 2(-l)”
(2m + 2k)!

(2m 9 k=l Cm - k)! (m + k)! (2k)! ‘““*

For example, when cc = 0, 2, 4, 6 (m = 0, 1,2, 3) the corresponding polynomials are/

q(x) = 1 3 1 -’ 3x3, 1 - 10X2  + 335x*) 1 - 21x2 + 63x4  - zQL~6.

The series for uZ(x) is not a polynomial when CI  is even because the coefficient of x271+1  is
never zero.

When CC  is an odd positive integer, the roles of u1 and u2 are reversed; the series for
uZ(x) becomes a polynomial and the series for ul(x) is not a polynomial. Specifically if,
M.  = 2m + 1 we have

(6.41)
(m!)’  m

c
(2m + 2k + l)! x 2k+l

u2(X)=X+(2m+1)!X=l(-1)k(m-k)!(m+k)!(2k+1)!  ’

For example, when CI  = 1, 3, 5 (m = 0, 1,2),  the corresponding polynomials are

uz(x)  = x > x  - Bx3
3 7 x  _ L3Sx3  + +Lx5.

6.19 The Legendre polynomials

Some of the properties of the polynomial solutions of the Legendre equation can be
deduced directly from the differential equation or from the formulas in (6.40) and (6.41).
Others are more easily deduced from an alternative formula for these polynomials which
we shall now derive.

First we shall obtain a single formula which contains (aside from constant factors) both
the polynomials in (6.40) and (6.41). Let

(6.42) P,(x)  = $2rn’2’  (-1)‘(2n  - 2r)! Xn-2r
r=O  r! (n - r)! (n - 2r)! ’
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where [n/2] denotes the greatest integer 5 n/2. We will show presently that this is the
Legendrepolynomial of degree n introduced in Chapter 1. When n is even, it is a constant
multiple of the polynomial ul(x) in Equation (6.40); when n is odd, it is a constant multiple
of the polynomial uz(x)  in (6.41).?  The first seven Legendre polynomials are given by the
formulas

Po(x>  = 1 7 PI(X) = x, P2(x)  = &(3x2  - I), P3(x)  = $(5x3 - 3x),

PJ(X)  =  $(35x4  - 30x2 +  3), P5(x)  = &(63x5  - 70x3  + 15x), ,

P6(x)  = ,+(231x6 - 315x4  + 105x2  - 5).

Figure 6.1 shows the graphs of the first five of these functions over the interval [-I  , I].

Y

P2 P,  P,

- - I

FIGURE 6.1 Graphs of Legendre polynomials over the interval [ - 1 , 11.

Now we can show that, except for scalar factors, the Legendre polynomials are those
obtained by applying the Gram-Schmidt orthogonalization process to the sequence of
polynomials 1, x, x2,  . . . , with the inner product

t When n is even, say n = 2m, we may replace the index of summation k in Equation (6.40) by a new index
r, where Y = m - k ; we find that the sum in (6.40) is a constant multiple of P,(x). Similarly, when n is
odd, a change of index transforms the sum in (6.41) to a constant multiple of P,(x).
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First we note that if m # n the polynomials P,  and P,  are orthogonal because they are
eigenfunctions of a symmetric operator belonging to distinct eigenvalues. Also, since P,
has degree n and P,,  = 1, the polynomials P,(x),  PI(x),  . . . , P,(x) span the same subspace
as 1,x ,...,  x”. In Section 1.14, Example 2, we constructed another orthogonal set of
polynomials y, , y, , y,,  . . . , such that y,(x), ul(x),  . . . , yJx>  spans the same subspace  as
1,x,..., x” for each n. The orthogonalization theorem (Theorem 1.13) tells us that,
except for scalar factors, there is only one set of orthogonal functions with this property.
Hence we must have

P,(x) = w,(x)

for some scalars c, . The coefficient of xn in y,(x) is 1, so c, is the coefficient of xn in P,(x).
From (6.42) we see that

c _ On)!
n 2”(n !)2  .

6.20 Rodrigues’ formula for the Legendre polynomials

In the sum (6.42) defining P,(x) we note that

(2n-22r)!  _xn d”2r= - X2n-2P and 1 1 n=-
(n - 2r)! dx” r! (n - r)! 0n! r ’

where (;) is the binomial coefficient, and we write the sum in the form

P,(x) = & j.g (4)‘(;)x2”2’.

r=o

When [n/2] < r 5 n, the term x2n-2r has degree less than n, so its nth derivative is zero.
Therefore we do not alter the sum if we allow r to run from 0 to n. This gives us

p,(x) = 1 dn -+2”n!  dx” /+(-  1)’  “,  X2n-2r-
7=0 0

Now we recognize the sum on the right as the binomial expansion of (x2 - 1)“. Therefore
we have

This is known as Rodrigues’formula, in honor of Olinde Rodrigues (17941851),  a French
economist and reformer.

Using Rodrigues’ formula and the differential equation, we can derive a number of
important properties of the Legendre polynomials. Some of these properties are listed
below. Their proofs are outlined in the next set of exercises.

For each n 2 0 we have

P,(l) = 1.
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Moreover, P,(x) is the only polynomial which satisfies the Legendre equation

177

(1 - x2)yC - 24 + n(n  + lly = 0

and has the value 1 when x = 1.
For each n 2 0 we have

P,(-x) = (-l)“P,(x).

This shows that P,  is an even function when n is even, and an odd function when n is odd.
We have already mentioned the orthogonality relation,

s-1, P,(x)P,(x) dx = 0 i f  m#n.

When m = n we have the norm relation

lIPnIl = s l
- 1

[P,(x)]’  dx = & .

Every polynomial of degree n can be expressed as a linear combination of the Legendre
polynomials PO,  P, , . . . , P,  . In fact, iff is a polynomial of degree n we have

where

From the orthogonality relation it follows that

s1, g(x)P,(x) dx = 0
for every polynomial g of degree less than n. This property can be used to prove that the
Legendre polynomial P,  has n distinct real zeros and that they all lie in the open interval

(-1  , 1).

6.21 Exercises

1. The Legendre equation (6.35) with cc = 0 has the polynomial solution ul(x)  = 1 and  a solution
u2,  not a polynomial, given by the series in Equation (6.41).
(a) Show that the sum of the series for u2 is given by

1 +x
G4  = ; log rx for lx] X 1.

(b) Verify directly that the function u2 in part (a) is a solution of the Legendre equation when
a = o .
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2. Show that the function f defined by the equation

f(X) = 1 - ; log s

for 1x1 < 1 satisfies the Legendre equation (6.35) with G( = 1 . Express this function as a linear
combination of the solutions ur and u2 given in Equations (6.38) and (6.39).

3. The Legendre equation (6.35) can be written in the form

[(x2  - l)y’]’ - cc(c(  + 1)y = 0.

(a) If a, b, c are constants with a > b and 4c  + 1 > 0, show that a differential equation of
the type

[(x - 4(x - b)y’]’  - cy = 0

can be transformed to a Legendre equation by a change of variable of the form x = At + B,
with A > 0. Determine A and B in terms of a and b.
(b) Use the method suggested in part (a) to transform the equation

(x2  - x)f + (2x - I)/ - 2r = 0

to a Legendre equation.
4. Find two independent power-series solutions of the Hermite  equation

y” - 2xy’ f 2ary  = 0

on an interval of the form (-r , r). Show that one of these solutions is a polynomial when cc  is a
nonnegative integer.

5. Find a power-series solution of the differential equation

xy” + (3 + xyy + 3xzy = 0

valid for all x. Find a second solution of the form .y = x? 2 a,x” valid for all x # 0.
6. Find a power-series solution of the differential equation

x2/’  + x2/ - (ax + 2)y  = 0

valid on an interval of the form (-r , r) .
7. Given two functions A and B analytic on an interval (x0  - r , x0 + r) , say

A(x)  = 2 a,(x - x0)%, B(x)  = 2 b,(x  - x0)“.
71=0 n-0

It can be shown that the product C(x) = A(x)B(x)  is also analytic on (x0  - r , x0 + r).  This
exercise shows that C has the power-series expansion

C(x)  = 2 c,(x  - x0)“,
T&=0

where c, =$oaA-a.
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(a) Use Leibniz’s rule for the nth derivative of a product to show that the nth derivative of C is
given by

C(n)(x)  = 2 (;pqx)B(“-“)(.x)).
k=O

(b) Now use the fact that At”)(x,)  = k! uk and B lnpk)(xo) = (n - k)! bnwk  to obtain

@(x0) = n ! 2 ukbnvk.
k=O

Since Ctn)(xo)  = n! c, , this proves the required formula for c, .

In Exercises 8 through 14, P,(x) denotes the Legendre polynomial of degree n. These exercises
outline proofs of the properties of the Legendre polynomials described in Section 6.20.

8. (a) Use Rodrigues’ formula to show that

p,(X)  = ; (x + 1)” + (x - l)Q,,(x),

where en(x) is a polynomial.
(b) Prove that P,( 1) = 1 and that P,( - 1) = ( - 1)” .
(c) Prove that P,(x) is the only polynomial solution of Legendre’s equation (with G( = n)
having the value 1 when x = 1.

9. (a) Use the differential equations satisfied by P, and P,,,  to show that

[(I  - x2)(PnP:,  - PAPm)l' = [n(n  + 1) - m(m  + l)IP,P,.

(b) If m # n, integrate the equation in (a) from -1 to 1 to give an alternate proof of the
orthogonality relation

s
~lPn(x)Pm(x)dx = 0.

10. (a) Letf(x) = (x2  - 1)“. Use integration by parts to show that

~p(xp(x) dx = -~~lf(.+l)(x)f(.-l)(x)  d,y,

Apply this formula repeatedly to deduce that the integral on the left is equal to

2(2n)!
s
:(l - x2jndx.

(b) The substitution x = cos t transforms the integral Ji (1 - x~)~  dx to J,“12  sin2n+1t  dt. Use
the relation

s

n/2 2n(2n - 2).  .'2

0
Sin2n+1fdt = (2n  + l)(zn  _ 1)...3.  1

and Rodrigues’ formula to obtain

s~JW)12  dx  = & .
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11. (a) Show that

P,(x)  = &$ X”  + Q,(x),

where Q,(x) is a polynomial of degree less than n.
(b) Express the polynomialf(x) = x4 as a linear combination of P,, , P,  , Pz , P,  , and P4.
(c) Show that every polynomialf of degree II can be expressed as a linear combination of the
Legendre polynomials P,,,  P,, . . . , P,.

12. (a) Iffis a polynomial of degree II, write

[This is possible because of Exercise 11 (c).] For a fixed m, 0 5 m 5 n , multiply both sides of
this equation by P,(x) and integrate from - 1 to 1. Use Exercises 9(b) and 10(b)  to deduce the
relation

2m+l l
c,  = -

2 s
pxn(x) dx.

13. Use Exercises 9 and 11 to show that ~~,g(x)P,(x)  dx = 0 for every polynomial g of degree
less than IZ.

14. (a) Use Rolle’s theorem to show that P, cannot have any multiple zeros in the open interval
(-1 , 1). In other words, any zeros of P, which lie in (-1 , 1) must be simple zeros.
(b) Assume P, has m zeros in the interval (- 1 , 1). If m = 0, let QO(x)  = 1. If m 2 1, let

Q,W  = (x - x1)(x  - x2)  . . . (x  - xm),

wherex,,x,,  . . . , x,arethemzerosofP,in(-1, 1). Showthat,ateachpointxin(-1 , l),
Q,(x) has the same sign as P,(x).
(c) Use part (b), along with Exercise 13, to show that the inequality m < n leads to a con-
tradiction. This shows that P, has n distinct real zeros, all of which lie in the open interval
C-1  , 1).

15. (a) Show that the value of the integral j?, P,(x)Ph+,(x)  dx is independent of n.
(b) Evaluate the integral JL1  x P,(x)PGl(x)  dx.

6.22 The method of Frobenius

In Section 6.17 we learned how to find power-series solutions of the differential equation

(6.43) y” + P1(x>y’ + P,(x)y  = 0

in an interval about a point x,,  where the coefficients P, and P2  are analytic. If either PI  or
P2  is not analytic near x,,  , power-series solutions valid near x0 may or may not exist. For
example, suppose we try to find a power-series solution of the differential equation

(6.44) x2y” -y'-y=o

near x0 = 0. If we assume that a solution y = 2 akxk  exists and substitute this series in the
differential equation we are led to the recursion formula

n2-n-l
a n+1 =

n+l
a,.
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Although this gives us a power series y = 2 akxk  which formally satisfies (6.44),  the ratio
test shows that this power series converges only for x = 0. Thus, there is no power-series
solution of (6.44) valid in any open interval about x,,  := 0. This example does not violate
Theorem 6.13 because when we put Equation (6.44) in the form (6.43) we find that the
coefficients PI  and P, are given by

PI(X)  = - 1
x2

and P,(x) = - L .
X2

These functions do not have power-series expansions about the origin. The difficulty here
is that the coefficient of y” in (6.44) has the value 0 when x = 0 ; in other words, the
differential equation has a singular point at x = 0.

A knowledge of the theory of functions of a complex variable is needed to appreciate the
difficulties encountered in the investigation of differential equations near a singular point.
However, some important special cases of equations with singular points can be treated by
elementary methods. For example, suppose the differential equation in (6.43) is equivalent
to an equation of the form

(6.45) (x - x,)2y”  + (x - x,)P(x)y’  + ec.x>v  = 0 9

where P and Q have power-series expansions in some open interval (x,,  - r, x0 + r). In
this case we say that x0 is a regular singular point of the equation. If we divide both sides
of (6.45) by (x - x0)2  the equation becomes

Y” + -
J’(x)  y, + Q(x)

x - x 0 ( x  - x0)2  y =  O

for x # x0. If P(x,,)  # 0 or Q(xJ  # 0, or if Q(x,,)  = 0 and Q’(x,)  # 0, either the co-
efficient ofy’ or the coefficient ofy will not have a power-series expansion about the point x0,
so Theorem 6.13 will not be applicable. In 1873 the German mathematician Georg Fro-
benius (1849-1917) developed a useful method for treating such equations. We shall
describe the theorem of Frobenius but we shall not present its proof.? In the next section
we give the details of the proof for an important special case, the Bessel equation.

Frobenius’ theorem splits into two parts, depending on the nature of the roots of the
quadratic equation

(6.46) t(t - 1) + P(x&  + Q(xo>  = 0.

This quadratic equation is called the indicial equation of the given differential equation
(6.45). The coefficients P(x,J  and Q(x,)  are the constant terms in the power-series ex-
pansions of P and Q.  Let tcl  and x2 denote the roots of the indicial equation, These roots
may be real or complex, equal or distinct. The type of solution obtained by the Frobenius
method depends on whether or not these roots differ by an integer.

t For a proof see E. Hille,  Analysis, Vol. II, Blaisdell  Publishing Co., 1966, or E. A. Coddington, An
Introduction to Ordinary Dijkrential  Equations, Prentice-Hall, 1961.
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THEOREM 6.14. FIRST CASE OF FROBENIUS' THEOREM. Let u1  and u2  be the roots of the
indicial equation and assume that uI - u2  is not an integer. Then the difSerentia1  equation
(6.45) has two independent solutions u1  and u2  of the form

(6.47)

and

with a, = 1,

uz(x)  = Ix - x01+  b,(x - xoy, with b, = 1.
?L=O

Both series converge in the interval Ix - x01  < r , and the differential equation is satisfied for
O<Jx-x,J<r.

THEOREM 6.15. SECOND CASE OF FROBENIUS' THEOREM. Let ul,  u2  be the roots ofthe
indicial equation and assume that CQ  - u2  = N, a nonnegative integer. Then the d@erential
equation (6.45) has a solution u1  of the form (6.47) and another independent solution uZ of the
form

(6.49) u2(x)  = lx - xolaz~  b,(x - x~)~ + C ul(x)  log 1.x  - x01,
n=O

where b, = 1 . The constant C is nonzero  if N = 0. If N > 0, the constant C may or may
not be zero. As in Case 1, both series converge in the interval Ix - x01  < r , and the solutions
are validfor  0 < Ix - x0(  < r .

6.23 The Bessel equation

In this section we use the method suggested by Frobenius to solve the Bessel equation

x2y” + xy’ + (x2  - u”)y = 0 ,

where 0: is a nonnegative constant. This equation is used in problems concerning vibrations
of membranes, heat flow in cylinders, and propagation of electric currents in cylindrical
conductors. Some of its solutions are known as Besselfunctions. Bessel functions also arise
in certain problems in Analytic Number Theory. The equation is named after the German
astronomer F. W. Bessel (1784-1846),  although it appeared earlier in the researches of
Daniel Bernoulli (1732) and Euler (1764).

The Bessel equation has the form (6.45) with x0 = 0, P(X) = 1, and Q(X)  = x2 - u2,
so the point x0 is a regular singular point. Since P and Q are analytic on the entire real line,
we try to find solutions of the form

(6.50) y = Ixltza,xn,
71=0

with a, # 0, valid for all real x with the possible exception of x = 0.
First we keep x > 0, so that lxlt = xt . Differentiation of (6.50) gives us

y’ = txt-1 5 a,xn  + xt  2 na,xn-’  = xt--l
?l=O TL=O

ZJn + W$.
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Similarly, we obtain

y” = xt-2n$o(n + t)(n + t - l)a,x”.

If L(y) = x2$’  + xy’ + (x2 - a2)y,  we find

L(y) = xt f$ (n + t)(n + t - l)a,xn  + x’z (n + t)a,x”
n==O n=O

+ x1$ anxni2  - x’f a2a,xR  = x’z [(n + t)” - cc2]anxn  + x15 anxn+2.
VI=0 ?I=0 ?I=0 VI=0

Now we put L(y)  = 0, cancel 9,  and try to determine the a,, so that the coefficient of each
power of x will vanish. For the constant term we need (t2 - a2)ao  = 0. Since we seek a
solution with a, # 0, this requires that

(6.51) t2 - u2 = 0.

This is the indicial  equation. Its roots a and -a are the only possible values of t that can
give us a solution of the desired type.

Consider first the choice t = u, For this t the remaining equations for determining the
coefficients become

(6.52) [(l  + m)”  - a2]al  = 0 and [(n + a)”  - a2]a,  + a,,  = 0

for n 2 2. Since CL 2 0, the first of these implies that a, = 0. The second formula can
be written as

(6.53) a, = - (n  +‘;s2-  tc2 = an-2
-n(n+)’

so a3 = a5 = a, = * * * = 0. For the coefficients with even subscripts we have

--a0
a2 = 2(2  + 2a) =

--a0 -a2 (- 112a0

271  + a) ’ a4 = 4(4 + 2a) = 242!(1+a)(2+a)’

and, in general,

-a4
a6 = 6(6  + 2cr)  =

(- U3a0

263!  (1 + a)(2 + a)(3 + a) ’

a - (- lYa0

2n - 22nn  ! (1 + a)(2 + a) * * . (n ,+T)  ’

Therefore the choice t = u gives us the solution

m

y = aox’  1 +
( 2

(-1),x2,

1n=,22nn!(1+cr)(2+a).*~(n+a)  ’

The ratio test shows that the power series appearing in this formula converges for all real x.
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In this discussion we assumed that x > 0. If x < 0 we can repeat the discussion with
xt replaced by (-x)” . We again find that t must satisfy the equation t2 - c?  = 0. Taking
t = u we then obtain the same solution, except that the outside factor xa is replaced by
(-x)“. Therefore the functionf,  given by the equation

(6.54) fAx) = ao IxIa

is a solution of the Bessel equation valid for all real x # 0. For those values of cc  for which
f:(O) andfl(O)  exist the solution is also valid for x = 0.

Now consider the root t = -LX  of the indicial equation. We obtain, in place of (6.52),  the
equations

[(l - cc)”  - c?]al  = 0 and Kn  - 4” - cr2]a,  + an-2  = 0,

which become

(1 - 20()a,  = 0 and 0 - 2a)a,  + ane2  = 0.

If 2u is not an integer these equations give us a, = 0 and

a, = - anm2
n(n  - 2cc)

for n 2 2. Since this recursion formula is the same as (6.53),  with CI  replaced by -CI, we
are led to the solution

(6.55) f-Ax)  = ao W” l + 2& 22nn(  (1  _ &y;.  . . (n _ u)

valid for all real x # 0.
The solution f-, was obtained under the hypothesis that 2cr  is not a positive integer.

However, the series forf_,  is meaningful even if 2u is a positive integer, so long as CC  is
not a positive integer. It can be verified thatf-,  satisfies the Bessel equation for such CC.
Therefore, for each M 2 0 we have the series solution f,,  given by Equation (6.54); and
if cI  is not a nonnegative integer we have found another solutionf-,  given by Equation (6.55).
The two solutions f,  and f-, are independent, since one of them --to3  as x + 0, and the
other does not. Next we shall simplify the form of the solutions. To do this we need some
properties of Euler’s gamma function, and we digress briefly to recall these properties.

For each real s > 0 we define I’(s)  by the improper integral

l?(s)  = lo: ts-le-t  dt .



The Bessel equation 185

This integral converges if s > 0 and diverges if s 5 0. Integration by parts leads to the
functional equation

(6.56) lT(s  + 1) = s I?(s).

This implies that

lys + 2) = (s + l)l?(s + 1) = (s + 1)s l‘(s),

r(s + 3) = ($ + 2)r(s + 2) = (s + 2) ($ + qs r(s),
and, in general,

(6.57) r(s + n) = (S + n - 1).  . . (S + 1:)~  r(#)

for every positive integer n. Since I’(1) = jr e-t dt = 1, when we put s = 1 in (6.57) we
find

r(n + 1) = n!.

Thus, the gamma function is an extension of the factorial function from integers to positive
real numbers.

The functional equation (6.56) can be used to extend the definition of l?(s) to negative
values of s that are not integers. We write (6.56) in the form

(6.58) qs) = Us + l)
s

The right-hand member is meaningful ifs + 1 > 0 and s # 0. Therefore, we can use this
equation to define  I’(s) if - 1 < s < 0. The right-hand member of (6.58) is now meaning-
ful if s + 2 > 0, s # - 1, s # 0, and we can use this equation to define l?(s) for -2 <
s < - 1 . Continuing in this manner, we can extend the definition of l?(s) by induction to
every open interval of the form -n < s < -n + 1 , where n is a positive integer. The
functional equation (6.56) and its extension in (6.57) are now valid for all real s for which
both sides are meaningful.

We return now to the discussion of the Bessel equation. The series for f, in Equation
(6.54) contains the product (1 + LX)  (2 + a) .  . * (n + x). We can express this product in
terms of the gamma function by taking s = 1 + c( in (6.57). This gives us

r(n + 1 + ~4)(1 + a)(2  + a> * * * (n + a> = ~+a) .

Therefore, if we choose a,, = 2-“/I’(1  + a) in Equation (6.54) and denote the resulting
functionf,(x) by J,(x)  when x > 0, the solution for x > 0 can be written as

(6.59) J,(x)  = ia20
(-ly ‘5 Zn*

0n=,n!Vn+  1 +a) 2
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The function J,  defined by this equation for x > 0 and M 2 0 is called the Bessel/unction
of thejrst  kind of order u. When u is a nonnegative integer, say CI  = p , the Bessel function
J,  is given by the power series

J,(x)  = z. ., :;yp,,  (5”‘” (p = 0, 1,2,  . . .).

This is also a solution of the Bessel equation for x < 0. Extensive tables of Bessel functions
have been constructed. The graphs of the two functions Jo and J1  are shown in Figure 6.2.

t
Jo

FIGURE  6.2 Graphs of the Bessel functions Jo  and J1.

We can define a new function I,  by replacing CI  by -u  in Equation (6.59), if u is such
that P(n  + 1 - u) is meaningful; that is, if cc is not a positive integer. Therefore, if x > 0
andu>O,u#  1,2,3  ,...,  wedeline

J-,(x)  = 05 -& r(;--‘;  _ .,($‘.

Taking s = 1 - u in (6.57) we obtain

r(n + 1 - LX)  = (1 - ct) (2 - U)  . . . (n - U)  I?(  1 - U)

and we see that the series for J-,(x)  is the same as that for f-,(x)  in Equation (6.55) with
a, = 2”/I’(l  - u),  x > 0. Therefore, if u is not a positive integer, J-, is a solution of
the Bessel equation for x > 0.

If u is not an integer, the two solutions J,(x) and J-,(x)  are linearly independent on the
positive real axis (since their ratio is not constant) and the general solution of the Bessel
equation for x > 0 is

y = c,J,(x)  + c,J&)  .

If u is a nonnegative integer, say cx  = p , we have found only the solution J,  and its con-
stant multiples valid for x > 0. Another solution, independent of this one, can be found
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by the method described in Exercise 4 of Section 6.16. This states that if u1 is a solution of
y” + Ply’  + P,y = 0 that never vanishes on an interval I, a second solution u2 independent
of u1 is given by the integral

where Q(x) = e-J1’l(s)dr. For the Bessel equation we have PI(x) = l/x, so Q(x) = l/x
and a second solution u2 is given by the formula

(6.60)

if c and x lie in an interval
This second solution can

may write

up(x) = J,(x) s“1 dt *
c w&v

I in which J, does not vanish.
be put in other forms. For example, from Equation (6.59) we

1
= r s,(t),

[4(01”  tzn

where g,(O) # 0. In the interval Z the function g, has a power-series expansion

s,(t)  = 2 Ant”
VI=0

which could be determined by equating coefficients in the identity g,(t)  [J,(t)]2  = Pp.  If
we assume the existence of such an expansion, the integrand in (6.60) takes the form

1 1 m

f[J,(f>]”  = t2”+1  n=Oc
Ant”.

Integrating this formula term by term from c to x we obtain a logarithmic term A,, log x
(from the power t-l) plus a series of the form xP2P  2 B,?.  Therefore Equation (6.60)
takes the form

u2(x)  = A2,J,(x) log x + Jy(x)x-2D~  B,x” .
?k=O

It can be shown that the coefficient A,, # 0. If we multiply u2(x) by l/A,,  the resulting
solution is denoted by K,(x) and has the form

K,(x)  = J,(x)  log  x + x-p2  c,,xn.
7L=O

This is the form of the solution promised by the second case of Frobenius’ theorem.
Having arrived at this formula, we can verify that a solution of this form actually exists

by substituting the right-hand member in the Bessel equation and determining the co-
efficients C,  so as to satisfy the equation. The details of this calculation are lengthy and
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will be omitted. The final result can be expressed as

where ho = 0 and h, = 1 + 4 + * * * + l/n for n 2 1. The series on the right converges
for all real x. The function K, defined for x > 0 by this formula is called the Besselfunction
of the second kind of orderp. Since K, is not a constant multiple of J, , the general solution
of the Bessel equation in this case for x > 0 is

Y = c,J,(x) + c,K&).

Further properties of the Bessel functions are discussed in the next set of exercises.

6.24 Exercises

1. (a) Let f be any solution of the Bessel equation of order a and let g(x) = x’hf  (x) for x > 0.
Show that g satisfies the differential equation

( 1 -44a2
y” +  1  +  4x2

1
y  =o .

(b) When 4a2 = 1 the differential equation in (a) becomes y” + y = 0 ; its general solution
is y = A cos x + B sin x. Use this information and the equation? I’(h) = d, to show that,
forx >O,

and

(c) Deduce the formulas in part (b) directly from the series for Jim(x) and Il,h(x).
2. Use the series representation for Bessel functions to show that

(a) 2 (x~J,W> = x~J,-~W,

(b) $ (x-=‘J,(x))  = -xP-r~+,(x)

3. Let F,(x)  = x”J,(x)  and ‘G,(x)  = xaaJ,(x)  for x > 0. Note that each positive zero of J, is a
zero of F, and is also a zero of G, . Use Rolle’s theorem and Exercise 2 to prove that the posi-
tive zeros of J, and J,+r interlace. That is, there is a zero of J, between each pair of positive
zeros of Ja+l, and a zero of J,+l between each pair of positive zeros of J,. (See Figure 6.2.)

t The change of variable I = u* gives us

r(t)  = Jo; t-'/&-t dt = 2
s

“)e-d  du = 4,.
0

(See Exercise 16 of Section 11.28 for a proof that 2 Jo”  e-u2  du = 2/G.)
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4. (a) From the relations in Exercise 2 deduce the recurrence relations

f J,(x)  + J;(x)  = Ja&(X) and f J,(x) - J;(x)  = J,+,(x)  .

I (b) Use the relations in part (a) to deduce the formulas

Ja-I(X)  + J,+,(x)  = ; J,(x) and J,-,(x)  - J,+,(x)  = 2J;(x).

5. Use Exercise 1 (b) and a suitable recurrence formula to show that

Find a similar formula for J&(x). Note: J,(x) is an elementary function for every c( which is
half an odd integer.

6. Prove that

; ;; (J,~(x)  + J,ztl(x))  = ; J;(x) - “$  J;+l(x)

and

; (xJ,WJ,+,(xN  = x(J,2(4  - J:+I(x>).

7. (a) Use the identities in Exercise 6 to show that

J;(x) + 2 2 J;(x)  = 1 and 2 (2n +  l)J,(x)J,+,(x)  =  &x.
n=l Tl=O

(b) From part (a), deduce that IJo 5 1 and jJ,(x)l 5 44% for n = 1,2,  3, . . . , and all
x 20.

8. Let g,(x) = x’~~~(ux”)  for x > 0, where a and b are nonzero  constants. Show that g, satisfies
the differential equation

2y” + (aWx2b  + 2 - aW)y  = 0

if, and only if, fa  is a solution of the Bessel equation of order a.
9. Use Exercise 8 to express the general solution of each of the following differential equations in

terms of Bessel functions for x > 0.
(a) y” +xy =O. (c) y” + x”y = 0.
(b)y” +x2y  =O. (d) x”y” + (x4  + &)y  = 0.

10. Generalize Exercise 8 when fm and g, are related by the equation g,(x) = xcf,(u9)  for x > 0.
Then find the general solution of each of the following equations in terms of Bessel functions
forx >O.
(a) xy” + 6y’ + y = 0. (c) xy” + 6y’ + x*y = 0.
(b)xy”+6y’+xy=O. (d) x2y”  - xy’ + (x + 1)y = 0.

11. A Bessel function identity exists of the form

J,(x) -Jo(x)  = aJ,“W,

where a and c are constants. Determine a and c.
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12. Find a power series solution of the differential equation xy” + y’ + y = 0 convergent for
- - t o  < x  <  +a. Show that for x > 0 it can be expressed in terms of a Bessel function.

13. Consider a linear second-order differential equation of the form

X2&)yn  + xP(x)y’  + Q(x)y  = 0,

where A(x), P(x), and Q(x) have power series expansions,

A(x) = 2 UkXk)
k=O

P(x) = ygPkXk,
k=O

with a, # 0, each convergent in an open interval (-r, r) . If the differential equation has a

series solution of the form

y = xt 2 CnXll )
?I=0

valid for 0 < x < Y, show that t satisfies a quadratic equation of the form t2  + bt + c = 0,
and determine b and c in terms of coefficients of the series for A(x), P(x), and Q(x).

14. Consider a special case of Exercise 13 in which A(x) = 1 - x, P(X) = $,  and Q(x) = -8~.
Find a series solution with t not an integer.

15. The differential equation 2x2y”  + (x2 - x)y’ + y = 0 has two independent solutions of the
form

y =Xt~C,,x”,
T&=0

valid for x > 0.  Determine these solutions.
16. The nonlinear differential equation y” + y + my 2 = 0 is only “mildly” nonlinear if c( is a small

nonzero  constant. Assume there is a solution which can be expressed as a power series in a
of the form

y = g U,(X)@ (valid in some interval 0 < CL < r)
?I=0

and that this solution satisfies the initial conditions y = 1 and y’ = 0 when x = 0. To con-
form with these initial conditions, we try to choose the coefficients U,(X)SO  that U,(O)  = 1,
u;(O)  = 0 and u,(O) = u;(O) = 0 for n 2 1 . Substitute this series in the differential equation,
equate suitable powers of c( and thereby determine uo(x)  and ut(x).



7
SYSTEMS OF DIFFERENTIAL EQUATIONS

7.1 Introduction

Although the study of differential equations began in the 17th century, it was not until
the 19th century that mathematicians realized that relatively few differential equations could
be solved by elementary means. The work of Cauchy,  Liouville, and others showed the
importance of establishing general theorems to guarantee the existence of solutions to
certain specific classes of differential equations. Chapter 6 illustrated the use of an existence-
uniqueness theorem in the study of linear differential equations. This chapter is concerned
with a proof of this theorem and related topics.

Existence theory for differential equations of higher order can be reduced to the first-
order case by the introduction of systems of equations. For example, the second-order
equation

(7.1) y” + 22~’  - y = et

can be transformed to a system of two first-order equations by introducing two unknown
functions y, and yZ , where

Yl=YY Y2 = YI.

Then we have y6 = yl = y”, so (7.1) can be written as a system of two first-order equations :

(7.2)
Y; = Y2

yJ = y, - 2ty2 + et.

We cannot solve the equations separately by the methods of Chapter 6 because each of them
involves two unknown functions.

In this chapter we consider systems consisting of n linear differential equations of first
order involving n unknown functions yI,  . . . , y, . These systems have the form

YI  = Pll(OY1  + P12COY2 + * * . + Pln(OYn  + q1(0

(7.3)

Y:, = I&JOY1  + P,2(9Y2  + * * * + Pm(9Yn  + q,(t).

191
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The functionsp, and qi which appear in (7.3) are considered as given functions defined  on
a given interval J. The functions yr,  . . . , yn are unknown functions to be determined.
Systems of this type are called$rst-order linear systems. In general, each equation in the
system involves more than one unknown function so the equations cannot be solved
separately.

A linear differential equation of order n can always be transformed to a linear system.
Suppose the given nth order equation is

(7.4) ytn) + aly@-l)  + * - * + a,y  = R(t),

where the coefficients ai are given functions. To transform this to a system we write y1 = y
and introduce a new unknown function for each of the successive derivatives of y. That is,
we put

Yl=Y, Y2 = Y;, Y3 = Yi!, . . . 3 Yn = YL,

and rewrite (7.4) as the system

YI  = Y2

Y;; = Y3

(7.5)

I

Yn-1 = Yn

y; = -any1  - a,-,y2 - * * * - alyn  + R(t).

The discussion of systems may be simplified considerably by the use of vector and matrix
notation. Consider the general system (7.3) and introduce vector-valued functions Y =

cY17.. . ,Y,),  Q = (41,.  . . ,q,J, and a matrix-valued function P = [pij],  defined by the
equations

y(t) = O1(t>,  * * * 9 y,(t)>, Q(t)  = @l(t),  . . . 9 qn(t>>, PC0 = h(t)1

for each t in J. We regard the vectors as n x 1 column matrices and write the system (7.3)
in the simpler form

(7.6) Y’ = P(t) Y + Q(t).

For example, in system (7.2) we have

Y= K;], P(t)= [; _:,I, Q(t)= [;j.
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In system (7.5) we have

Y =

r1-

Y2

.

Yn-

2 P(t) =

-0 1 0 . . . 0-

0 0 1 . . . 0

0 0 0 . . . 1

---a, -a,-, -an-2  * ** - a , -

, Q(t)  =

‘o-

0

0

.R(t)-

An initial-value problem for system (7.6) is to find a vector-valued function Y which
satisfies (7.6) and which also satisfies an initial condition of the form Y(a) = B, where
aEJandB=(b,,.. . , b,) is a given n-dimensional vector.

In the case n = 1 (the scalar case) we know from Theorem 6.1 that, if P and Q are
continuous on J, all solutions of (7.6) are given by the explicit formula

(7.7) Y(X)  = &(‘)Y(a)  + eA(‘)  ,”  e-act)Q(f)  dt,s

where A(x) = j; P(t) dt , and a is any point in J. We will show that this formula can be
suitably generalized for systems, that is, when P(t) is an n x n matrix function and Q(t)
is an n-dimensional vector function. To do this we must assign a meaning to integrals of
matrices and to exponentials of matrices. Therefore, we digress briefly to discuss the
calculus of matrix functions.

7.2 Calculus of matrix functions

The generalization of the concepts of integral and derivative for matrix functions is
straightforward. If P(t) = [pi,(t)], we define the integral jz P(t) dt by the equation

That is, the integral of matrix P(t) is the matrix obtained by integrating each entry of P(t),
assuming of course, that each entry is integrable on [a, b]. The reader can verify that the
linearity property for integrals generalizes to matrix functions.

Continuity and differentiability of matrix functions are also defined in terms of the
entries. We say that a matrix function P = [pij] is continuous at t if each entry pij is
continuous at t. The derivative P’ is defined by differentiating each entry,

whenever all derivatives pi,(t)  exist. It is easy to verify the basic differentiation rules for
sums and products. For example, if P and Q are differentiable matrix functions, we have

(P + Q)’  = P’ + Q’
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if P and Q are of the same size, and we also have

(PQ)’ = PQ’ + P’Q

if the product PQ is defined. The chain rule also holds. That is, if F(t)  = P[g(t)]  , where P
is a differentiable matrix function and g is a differentiable scalar function, then F’(t) =
g’(t)P’[g(t)]  . The zero-derivative theorem, and the first and second fundamental theorems
of calculus are also valid for matrix functions. Proofs of these properties are requested in
the next set of exercises.

The definition of the exponential of a matrix is not so simple and requires further
preparation. This is discussed in the next section.

7.3 Infinite series of matrices. Norms of matrices

Let A = [aij]  be an n x n matrix of real or complex entries. We wish to define the
exponential en in such a way that it possesses some of the fundamental properties of the
ordinary real or complex-valued exponential. In particular, we shall require the law of
exponents in the form

(7.8) for all real s and t ,

and the relation

(7.9) e”=I,

where 0 and Z are the n x n zero and identity matrices, respectively. It might seem natural
to define eA to be the matrix [e@j].  However, this is unacceptable since it satisfies neither of
properties (7.8) or (7.9). Instead, we shall define eA by means of a power series expansion,

We know that this formula holds if A is a real or complex number, and we will prove that
it implies properties (7.8) and (7.9) if A is a matrix. Before we can do this we need to
explain what is meant by a convergent series of matrices.

DEFINITION OF CONVERGENT SERIES OF MATRICES. Given an infkite  sequence of m X n
matrices {Ck}  whose entries are real or complex numbers, denote the ij-entry of C, by cl,“’ . Zf
all mn series

(7.10) $6’ (i=l,...,  m;j=l,...,  n)

are convergent, then we say the series of matrices z& C, is convergent, and its sum is deJned
to be the m x n matrix whose ij-entry is the series in (7.10).
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A simple and useful test for convergence of a series of matrices can be given in terms of the
norm of a matrix, a generalization of the absolute value of a number.

DEFINITION OF NORM OF A MATRIX. If A = [aij]  is an m x n matrix of real or complex
entries, the norm of A, denoted by l\All, is defined to be the nonnegative number given by the
formula

(7.11)

In other words, the norm of A is the sum of the absolute values of all its entries. There
are other definitions of norms that are sometimes used, but we have chosen this one because
of the ease with which we can prove the following properties.

THEOREM 7.1. FUNDAMENTAL PROPERTIES OF NORMS. For rectangular matrices A and B,
and all real or complex scalars c we have

II-4  + AI  I IIAII  + IIBII,  IWll I II4  IIBII  3 II4  = ICI  IIAII  .

Proof. We prove only the result for II  ABll , assuming that A is m x n and B is n x p .
The proofs of the others are simpler and are left as exercises.

Writing A = [aJ , B = [bkj]  , we have AB = [z;==,  ai,bkj]  , so from (7.11) we obtain

IIABII  = 2 I$ 1 ~airhj  1 I$  ~laikl~lhjl  52  ~I4  IIBII = IIAII  II4 .i=l j,l J+l i=lk=l j=l i=l k=l

Note that in the special case B = A the inequality for [lABI/  becomes llA211 5 llAl12.
By induction we also have

llA”II I II4” for k=l,2,3 ,....

These inequalities will be useful in the discussion of the exponential matrix.
The next theorem gives a useful sufficient condition for convergence of a series of matrices.

THEOREM 7.2. TEST FOR CONVERGENCE OF A MATRIX SERIES. If {c,} is a sequence Of Wl  X n
matrices such that I;=1  II  C,ll converges, then the matrix series zF-‘em=l C, also converges.

Proof. Let the q-entry  of C, be denoted by c$‘. Since lcj,k’l  5 IlC,(l  , convergence of
121  Ilckll  pl’im ies  absolute convergence of each series xTZl  cjj”‘.  Hence each series 2:-l c$’
is convergent, so the matrix series z;Cmcl  C, is convergent.

7.4 Exercises

1. Verify that the linearity property of integrals also holds for integrals of matrix functions.
2. Verify each of the following differentiation rules for matrix functions, assuming P and Q are

differentiable. In (a), P and Q must be of the same size so that P + Q is meaningful. In
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(b) and (d) they need not be of the same size provided the products are meaningful. In (c)
and (d), Q is assumed to be nonsingular.
(a) (P + Q)’ = P’ + Q’ . (c) (Q-l)’  = -Q-lQ’Q-l.
(b) (PQ)’ = PQ’ + P’Q. (d) (PQ-‘)’  = -PQ-lQ’Q-l  + P’Q-l.

3. (a) Let P be a differentiable matrix function. Prove that the derivatives of P2  and P3  are given
by the formulas

(P2)’  = PP’ + P’P, (P3)’  = P2P’  + PP’P + P’P2.

(b) Guess a general formula for the derivative of Pk and prove it by induction.
4. Let P be a differentiable matrix function and let g be a differentiable scalar function whose

range is a subset of the domain of P. Define the composite function F(t) = P[g(t)]  and prove
the chain rule, F’(t) =g’(t)P’[g(t)J  .

5. Prove the zero-derivative theorem for matrix functions: If P’(t) = 0 for every t in an open
interval (a, b), then the matrix function P is constant on (a, b).

6. State and prove generalizations of the first and second fundamental theorems of calculus for
matrix functions.

7. State and prove a formula for integration by parts in which the integrands are matrix functions.
8. Prove the following properties of matrix norms :

IM  + WI I IIA I I + IIBII  , IlcAII  = ICI IMII  .

9. If a matrix function P is integrable on an interval [a, b] prove that

10. Let D be an n x n diagonal matrix, say D = diag (Al, . . . , A,). Prove that the matrix series
z:km_s  D”/k! converges and is also a diagonal matrix,

m D”c - = diag (ear, . . . , e”n),
k!

k=O

(The term corresponding to k = 0 is understood to be the identity matrix I.)
11. Let D be an n x n diagonal matrix, D = diag (jlr , . . . , I,). If the matrix series I:=, ckDk

converges, prove that

2 CkDk  = diag 2 c&, . .
k=O k=O

* ' z.  c&)  *

12. Assume that the matrix series IF=1 ck converges, where each ck is an n x n matrix. Prove that
the matrix series I:& (AC&I)  also converges and that its sum is the matrix

Here A and B are matrices such that the products ACkB  are meaningful.
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7.5 The exponential matrix

Using Theorem 7.2 it is easy to prove that the matrix series

(7.12)
m Akckc0  72

converges for every square matrix A with real or complex entries. (The term corresponding
to k = 0 is understood to be the identity matrix Z.) The norm of each term satisfies the
inequality

Since the series 2 a”/k!  converges for every real a, Theorem 7.2 implies that the series in
(7.12) converges for every square matrix A.

DEFINITION OF THE EXPONENTIAL MATRIX. For any n x n matrix A with real or complex
entries we dejne the exponential & to be the n x n matrix given by the convergent series in
(7.12). That is,

Note that this definition implies e* = I, where 0 is the zero matrix. Further properties
of the exponential will be developed with the help of differential equations.

7.6 The differential equation satisfied by et*

Let t be a real number, let A be an n x n matrix, and let E(t)  be the n x n matrix given by

E(t) = d” .

We shall keep A fixed and study this matrix as a function oft. First we obtain a differential
equation satisfied by E.

T H E O R E M  7.3. For every real t the matrix function E defined by E(t) = etA  satisfies the
matrix diferential  equation

E’(t) = E(t)A = AE(t).

Proof. From the definition of the exponential matrix we have
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Let ci,“’ denote the ij-entry of Ak. Then the ij-entry of tkAklk!  is t”c$‘lk! . Hence, from the
definition of a matrix series, we have

(7.13)

Each entry on the right of (7.13) is a power series in t, convergent for all t. Therefore its
derivative exists for all t and is given by the differentiated series

m ktk-1c- $9 =

k=l
k! ”

This shows that the derivative E’(t)  exists and is given by the matrix series

A = lqt)A.

In the last equation we used the property Ak+l = A”A  . Since A commutes with A’ we could
also have written A”+l  = AAL  to obtain the relation E’(t)  = AE(t).  This completes the
proof.

Note: The foregoing proof also shows that A commutes with etA  .

7.7 Uniqueness theorem for the matrix differential equation F’(t) = M(t)

In this section we prove a uniqueness theorem which characterizes all solutions of the
matrix differential equation F’(t) = AF(t) . The proof makes use of the following theorem.

THEOREM 7.4. NONSINGULARlTY  OF etA. For any n x n matrix A and any scalar t we have

(7.14)

Hence etA is nonsingular, and its inverse is e-tA.

Proof. Let F be the matrix function defined for all real t by the equation

F(t) = etAeetA.

We shall prove that F(t) is the identity matrix I by showing that the derivative F’(t) is the
zero matrix. Differentiating F as a product, using the result of Theorem 7.3, we find

F’(t)  = etA(e--tA)f  +  (etA>‘e-tA  = &4(-A&A)  +  A&f+’

=  -AetAe-tA  + AetAe-tA  =  0,

since A commutes with etA. Therefore, by the zero-derivative theorem, F is a constant
matrix. But F(0) = eoAeoA = I, so F(t) = I for all t. This proves (7.14).
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THEOREM 7.5. UNIQUENESS THEOREM. Let A and B be given n x n constant matrices.
Then the only n x n matrix function F satisfying the initial-value problem

F’(t) = AF(t), F(0) = B

for - a3  < t < + 00 is

(7.15) F(t) = etaB .

Proof. First we note that etAB is a solution. Now let F be any solution and consider the
matrix function

G(t) = eWtaF(t)  .

Differentiating this product we obtain

G’(t) = ePtAF’(t) - AePtaF(t)  = ePtAAF(t)  - eTtAAF(t)  = 0.

Therefore G(t) is a constant matrix,

G(t) = G(0) = F(0) = B.

In other words, e-taF(t) = B. Multiplying by eta and using (7.14) we obtain (7.15).

Note: The same type of proof shows that F(t) = BetA is the only solution of the
initial-value problem

F(t)  = FQ)A, F(0) = B.

7.8 The law of exponents for exponential matrices

The law of exponents eAeB = eAfB is not always true for matrix exponentials. A counter
example is given in Exercise 13 of Section 7.12. However, it is not difficult to prove that
the formula is true for matrices A and B which commute.

THEOREM 7.6. Let A and B be two n x n matrices which commute, AB = BA . Then we
have

(7.16) I++~  = eAeB.

Proof. From the equation AB = BA we find that

A2B = A(BA) = (AB)A = (BA)A = BA2,

so B commutes with A2. By induction, B commutes with every power of A. By writing
etA as a power series we find that B also commutes with eta  for every real t.

Now let F be the matrix function defined by the equation

I = $(A+B)  - etAetBe
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Differentiating F(t) and using the fact that B commutes with eta we find

F’(t)  = (A + B)et’A+B’  - AetAetB  - etABetB

= (A + B)et’A+B’  - (A + B)etAetB = (A + B)F(t)  .

By the uniqueness theorem we have

F(t) = et(d+B)F(0).

But F(0) = 0, so F(t) = 0 for all t. Hence

$(A+B) = etAetB

When t = 1 we obtain (7.16).

EXAMPLE. The matrices SA and tA commute for all scalars s and t. Hence we have

@etA  = e (s+t)A .

7.9 Existence and uniqueness theorems for homogeneous linear systems with constant
coefficients

The vector differential equation Y’(t) = A Y(t), where A is an n x n constant matrix and
Y is an n-dimensional vector function (regarded as an n x 1 column matrix) is called a
homogeneous linear system with constant coeficients. We shall use the exponential matrix
to give an explicit formula for the solution of such a system.

THEOREM 7.7. Let A be a given n x n constant matrix and let B be a given n-dimensional
vector. Then the initial-value problem

(7.17) Y’(t) = AY(t), Y(0) = B,

has a unique solution on the interval - CO  < t < + CO. This solution is given by the formula

(7.18) Y(t) = etAB.

More generally, the unique solution of the initial value problem

is Y(t) = ectaJAB.
Y’(t) = A Y(t), Y(a) = B,

Proof. Differentiation of (7.18) gives us Y’(t) = AetAB  = A Y(t). Since Y(0) = B ,
this is a solution of the initial-value problem (7.17).

To prove that it is the only solution we argue as in the proof of Theorem 7.5. Let Z(t)
be another vector function satisfying Z’(t) = AZ(t) with Z(0) = B , and let G(t) = emtAZ(t).
Then we easily verify that G’(t) = 0, so G(t) = G(0) = Z(0) = B. In other words,
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etAZ(t)  = B, so Z(t) = etAB  = Y(t). The more general case with initial value Y(a) = B
is treated in exactly the same way.

7.10 The problem of calculating erA

Although Theorem 7.7 gives an explicit formula for the solution of a homogeneous
system with constant coefficients, there still remains the problem of actually computing
the exponential matrix etA. If we were to calculate etA directly from the series definition we
would have to compute all the powers AL for k = 0, 1,2, , . . , and then compute the sum
of each series z& tkc$)/k!  , where c:j”’ is the q-entry  of Ak.  In general this is a hopeless
task unless A is a matrix whose powers may be readily calculated. For example, if A is a
diagonal matrix, say

A = diag (1,)  . . . , 1,))

then every power of A is also a diagonal matrix, in fact,

A’=diag(;I:,...,iZE).

Therefore in this case etA is a diagonal matrix given by

eiA = diag = diag (et”‘,  . . . , et”“).

Another easy case to handle is when A is a matrix which can be diagonalized. For
example, if there is a nonsingular matrix C such that PAC  is a diagonal matrix, say
C-lAC  = D , then we have A = CDC-l  , from which we find

and, more generally,

A2  = (CDC-l)(CDC-l)  = CDW-l,

Ak = CD”C-I.

Therefore in this case we have

etA  = 2 $ik=  2 +; CDkC-1  = c

k=O * k=O ’

Here the difficulty lies in determining C and its inverse. Once these are known, etA is easily
calculated. Of course, not every matrix can be diagonalized so the usefulness of the
foregoing remarks is limited.

5 4
EXAMPLE 1. Calculate etA for the 2 x 2 matrix A = [ 11 2 ’

Solution. This matrix has distinct eigenvalues 1, = 6, 1, = 1 , so there is a nonsingular

matrix C = such that C-lAC  = D, where D = diag (&, 1,) = To
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determine C we can write AC = CD, or

Multiplying the matrices, we find that this equation is satisfied for any scalars a, b, c,  d with
a=4c,b=  - d .  Takingc=d=lwechoose

Therefore

etA

EXAMPLE 2. Solve the linear system

YI  = 5Yl  + 4Y,
Y;; = Yl  + 2Y,

subject to the initial conditions ~~(0)  = 2, ~~(0)  = 3.

Solution. In matrix form the system can be written as

Y’(t) = A Y(t), where A =

By Theorem 7.7 the solution is Y(t) = etA Y(0). Using the matrix etA calculated in Example
1 we find

4eet  + et 4e6t  - 4et 2I[1e6t  - et est  + 4et  3
from which we obtain

yl = 4e6t  - 2et, yz = eat  + 2et.

There are many methods known for calculating etA when A cannot be diagonalized.
Most of these methods are rather complicated and require preliminary matrix transforma-
tions, the nature of which depends on the multiplicities of the eigenvalues of A. In a later
section we shall discuss a practical and straightforward method for calculating etA which
can be used whether or not A can be diagonalized. It is valid for all  matrices A and requires
no preliminary transformations of any kind. This method was developed by E. J. Putzer
in a paper in the American Mathematical Monthly, Vol. 73 (1966),  pp. 2-7. It is based on a
famous theorem attributed to Arthur Cayley (1821-1895) and William Rowan  Hamilton
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(18051865) which states that every square matrix satisfies its characteristic equation.
First we shall prove the Cayley-Hamilton theorem and then we shall use it to obtain
Putzer’s formulas for calculating etA.

7.11 The Cayley-Hamilton theorem

THEOREM 7.8. CAYLEY-HAMILTON THEOREM. Let A be an n x n matrix and let

(7.19) f(a)  = det (az - A) = an + C,-lan--l + . e. + c,a + C,

be its characteristic polynomial. Then f (A) = 0. In other words, A satisfies the equation

(7.20) A” + c,-~A’@  + . * * + c,A  + co1  = 0.

Proof. The proof is based on Theorem 3.12 which states that for any square matrix A
we have

(7.21) A (cof A)t  = (det A)I.

We apply this formula with A replaced by ;ZI  - A . Since det (AZ - A) = f(a), Equation
(7.21) becomes

(7.22) (a1 - A)(cof  (al - ~))t =f(w.

This equation is valid for all real 1. The idea of the proof is to show that it is also valid
when ;3.  is replaced by A.

The entries of the matrix cof (AZ - A) are the cofactors of LI - A. Except for a factor
f 1 , each such cofactor is the determinant of a minor of 2I-  A of order n - 1. Therefore
each entry of cof (U - A), and hence of (cof  (U - A)}*, is a polynomial in j2 of degree
<_n - 1. Therefore

n-1

+0f  (ar - ~)y = zakBk,
k=O

where each coefficient Bk  is an n x n matrix with scalar entries. Using this in (7.22) we
obtain the relation

(7.23)
11-l

(aI - A)Z:~~B, =f(a)z
k=O

which can be rewritten in the form

(7.24)
n - 1 S-l

a”&-, + k~lak@L-l  - A&) - AB, = a”1 + 2 akckl  i-  CoI.
k=l
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At this stage we equate coefficients of like powers of 3, in (7.24) to obtain the equations

B,-, =  I

&-a - AB,-l = c,-J
.

(7.25)

B, - AB, = c,Z

-AB, = c,Z.

Equating coefficients is permissible because (7.24) is equivalent to n2  scalar equations, in
each of which we may equate coefficients of like powers of il. Now we multiply the equa-
tions in (7.25) in succession by A”, An-l,  . . . , A, I and add the results. The terms on the
left cancel and we obtain

0 = A” + c,elAn-l  + . . * + c,A + c,,I.

This proves the Cayley-Hamilton theorem.

Note: Hamilton proved the theorem in 1853 for a special class of matrices. A few
years later, Cayley announced that the theorem is true for all matrices, but gave no proof.

EXAMPLE. The matrix A = has characteristic polynomial

f(l) = (3,  - l)(L - 2)(1  - 6) = L3 - 912 + 201 - 12.

The Cayley-Hamilton theorem states that A satisfies the equation

(7.26) A3-9A2+20A-  12I=O.

This equation can be used to express A3 and all higher powers of A in terms of I, A, and
AZ.  For example, we have

A3 = 9A2  - 20A + 121,

A4  = 9A3  - 20A2  + 12A = 9(9A2  - 20A + 121)  - 20A2  + 12A

= 61A2  - 168A + 1081.

It can also be used to express A-l  as a polynomial in A. From (7.26) we write
A(A2 - 9A + 201) = 121,  and we obtain

A-1 = ,+&2 - 9A + 201).
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7.12 Exercises

In each of Exercises 1 through 4, (a) express A- l , A2 and all higher powers of A as a linear
combination of Z and A. (The Cayley-Hamilton theorem can be of help.) (b) Calculate et&.

5. (a) If A = , prove that et-4

a b
(b) Find a corresponding formula for etA  when A = [ I-b a

, a, b real.

t  t - l
6. If F(t) = [ I0 1 ’

prove that eFtt) = eF(et-l)  .

7. If A(t) is a scalar function of t, the derivative of eA(t) is eA(t)A’(t).  Compute the derivative of1 t
eAct)  when A(t) = [ I0 0

and show that the result is not equal to either of the two productseAtt)A’(t)  or A’(t)eAct)  .

In each of Exercises 8,9,  10, (a) calculate An,  and express A3 in terms of I, A, A2. (b) Calculate
etA .

Lo 0 0-l

I , express etA  as a linear combination of I, A, A2.

x2 xy y2

12.IfA= 1 2 0 ,provethateA= X2+Y2 ,wherex=coshlandy=sinhl.

0 1

2 1

0

[ 2Xy

y2 xy

2xy 1

x2

13. This example shows that the equation eA+B = A B.e  e is not always true for matrix exponentials.

Compute each of the matrices eAeB , eBeA , eA+B when A = [i IO]  andB  =  [t -i],and

note that the three results are distinct.

7.13 Putzer’s  method for calculating etA

The Cayley-Hamilton theorem shows that the nth power of any n x n matrix A can be
:xpressed  as a linear combination of the lower powers I, A, A2,  . . . , An-l. It follows that
:ach  of the higher powers A”+l,  An+2,  . . . , can also be expressed as a linear combination of
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I, A, AZ,  . . . , An-l. Therefore, in the infinite series defining etA, each term tkAk/k! with
k 2 n is a linear combination of t”I,  t”A,  tkAz,  . . . , t”A’+l.  Hence we can expect that elA
should be expressible as a polynomial in A of the form

(7.27)
n-1

etA = ;oqk(f)Ak  )

where the scalar coefficients qk(t) depend on t. Putzer developed two useful methods for
expressing etn as a polynomial in A. The next theorem describes the simpler of the two
methods.

,

THEOREM 7.9. Let A,, . . . , 1, be the eigenvalues of an n x n matrix A, and dejne a
sequence of polynomials in A as follows:

(7.28) PO(A)  = 1, P,(A)  = fi (A - LO, for k=l,2  ,...,  n.
TiL=l

Then we have

(7.29)
n-1

etA = ;dt)Pk(A)  2

where the scalar coefJicients  r,(t), . . . , r,(t) are determined recursively from the system of

linear diflerential  equations

G(t) = Q,(t)  , r,(O)  = 1 3
(7.30)

d+dt>  = Ak+lrk+l(t)  + rk(t), rk+,(o)  = o 9 (k=1,2 ,...,  n - l ) .

Note: Equation (7.29) does not express E tA directly in powers of A as indicated in
(7.271,  but as a linear combination of the polynomials P,(A),  P,(A),  . . . , I’,-l(A).  These
polynomials are easily calculated once the eigenvalues of A are determined. Also the
multipliers vi(t),  . . . , r,(t) in (7.30) are easily calculated. Although this requires solving
a system of linear differential equations, this particular system has a triangular matrix
and the solutions can be determined in succession.

Proof. Let rl(t),  .  .  . , r,(t) be the scalar functions determined by (7.30) and define a
matrix function F by the equation

(7.31)
n - l

Fl(t>  = 2 rk+l(t)Pk(A)  *
k=O

Note that F(0) = r,(O)P,(A)  = I. We will prove that F(t) = etA by showing that F
satisfies the same differential equation as etA, namely, F’(t) = AF(t) .

Differentiating (7.31) and using the recursion formulas (7.30) we obtain

w-1 n-1

F’(t)  = 2 rL+l(t)Pk(A)  = 2 irkct)  + Ak+lrk+l(t))Pk(A)  ?
k=O k=O
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where r,,(t) is defined to be 0. We rewrite this in the form

n-2 n-1

F'(t) = 2 rk+l(fPk+l(4  + 2 ~k+lrk+l(f)Pk(49
k=O k=O

then subtract &F(t) = 2;~:  ;I,r,,,(t)P,(A)  to obtain the relation

(7.32)
n-2

F’(t)  - nnF(t>  =  c rk+l(t){Pk+l(A)  +  (‘,+I - An)Pk(A)}  .
k=O

But from (7.28) we see that Pk+l(A)  = (A - &+,Z)P,(A)  , so

‘k+l@) + @k+l - ‘dPk(d  =  CA  - Ak+,z)Pk(A)  +  @k+l  - A,)Pk(&

= (A - il,Z)P,(A).

Therefore Equation (7.32) becomes

n-2

F’(t)  - &F(t)  = (A - kz>  2  rk+l(f)Pk(A)  = (A - &z){F(t)  - rn(t)Pn-l(d)
k=O

= (A - &Z)F(t)  - r,(t)P,(A).

The Cayley-Hamilton theorem implies that P,(A) = 0, so the last equation becomes

F’(t) - &F(t) = (A - il,Z)F(t)  = AF(t) - &F(t),

from which we find F’(t) = AF(t). Since F(0) = I, the uniqueness theorem (Theorem 7.7)
shows that F(t) = efA .

EXAMPLE I. Express etA as a linear combination of Zand A if A is a 2 x 2 matrix with both
its eigenvalues equal to il.

Solution. Writing A, = 2, = 1, we are to solve the system of differential equations

d(t)  = J-rAO,

GO = Ar,(t) + rdt),

rdo)  = 1,

r,(O)  = 0.

Solving these first-order equations in succession we find

rl(t)  = eat, r2(t)  = te”‘.

Since P,(A)  = Z and P,(A) = A - AZ, the required formula for etA is

(7.33) etA = eAtZ  + teAt(A  - AZ) = eAt(l  - ilt)Z  + teAtA.
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EXAMPLE 2. Solve Example 1 if the eigenvalues of A are 1 and ,D,  where 31  # ,u.

Solution. In this case the system of differential equations is

4(t)  = lr,(t>,
d(t) = vdf)  + rdt>,

r,(O)  = 1 2
r,(O) = 0.

Its solutions are given by

rl(t) = eat,
eat - eat

rz(t)  = ~
A-p  a

Since P,(A) = Z and P,(A) = A - AZ the required formula for etA is

(7.34) etA  = eatI +
eat  - ept
~(A-i~)=~~~~--p~““z+~A.

A-P P

If the eigenvalues 1, ,LJ  are complex numbers, the exponentials eLt  and ept will also be
complex numbers. But if 3,  and ,u are complex conjugates, the scalars multiplying Z and A in
(7.34) will be real. For example, suppose

l=a+@, ~=a-$, B#O.

Then 1, - ,U = 2i/I?  so Equation (7.34) becomes

etA  = e(a+iP)tz  +
e(a+il)t  _ eb-iPH

2iB
[A - (a + i/WI

e ipt  _ e-iSt
= eat eiStz +

2iB (A  - aZ  - W>
I

= eat
(
(cos /?t  + i sin Pt)Z + @f  (A - al - iaZ)J  .

The terms involving i cancel and we get

(7.35) etA = fjt  {(/I cos /It - a sin pt)Z  + sin pt A}.

7.14 Alternate methods for calculating et*  in special cases

Putzer’s method for expressing etA as a polynomial in A is completely general because it
is valid for all square matrices A. A general method is not always the simplest method to
use in certain special cases. In this section we give simpler methods for computing etA in
three special cases: (a) When all the eigenvalues of A are equal, .(b)  when all the eigenvalues
of A are distinct, and (c) when A has two distinct eigenvalues, exactly one of which has
multiplicity 1.
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THEOREM 7.10. If A is an n x n matrix with all its eigenvalues equal to 1, then we have

(7.36)

Proof. Since the matrices ;3tI and t(A - AZ)  commute we have

m t”etA  = eltlet(A-“)  = (eAtI)~o z (A - ill)“.

The Cayley-Hamilton theorem implies that (A - AZ)”  = 0 for every k 2 n , so the theorem
is proved.

THEOREM 7.11. If A is an n x n matrix with n distinct eigenvalues Al, 12, . . . , &, , then
we have

etA =$6+L,(A),

where LJA)  is a polynomial in A of degree n - 1 given by the formula

Lk(A)  = fl  $+f for k = 1,2,.  . . , n.

j+k
k 3

Note: The polynomials L,(A) are called Lagrange interpolation coeficients.

Proof. We define a matrix function F by the equation

(7.37) F(t)  = 2 etAkLk(A)
k=l

and verify that F satisfies the differential equation F’(t) = AF(t) and the initial condition
F(0) = I. From (7.37) we see that

AF(t) - F’(t) = j$ etAk(A  - A,I)L,(A)  .
k=l

By the Cayley-Hamilton theorem we have (A - l&L,(A)  = 0 for each k, so F satisfies
the differential equation F’(t) = AF(t) .

To complete the proof we need to show that F satisfies the initial condition F(0) = I,
which becomes

(7.38) k21Lkca,  =  I .

A proof of (7.38) is outlined in Exercise 16 of Section 7.15.

The next theorem treats the case when A has two distinct eigenvalues, exactly one of
which has multiplicity 1.
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THEOREM 7.12. Let A be an n x n matrix (n 2 3) with two distinct eigenvalues 3,  and ,u,
where il  has multiplicity n - 1 and p has multiplicity 1. Then we have

etA = ,U
ept eAt

n-2  k

(
(/A - V-l  - (p - T1  k=O  k!c

t (,a  - I,)” (A - IZ)n-”

Proof. As in the proof of Theorem 7.10 we begin by writing

m tk n-2
m tk

etA = ,itc ~(A-IZ)k=e”t~$(A-rll)k+e”‘~
h=O ' k=O '

F(A  -AZ)”
k=n-1  '

= ents i (A - II)”  + eLt  7z  (n Lny’;  r) , (A - 3,Z)n-1+‘.
k=O '

Now we evaluate the series over r in closed form by using the Cayley-Hamilton theorem.
Since

we find
A - ,uZ  = A - izZ  - (,a  - J)Z

(A - nZ)+l(A  - ,uZ)  = (A - IZ)n - (,u  - ;1)(A  - ;IZ)‘+l.

The left member is 0 by the Cayley-Hamilton theorem so

(A - U)”  = (,a  - ;Z)(A  - IZ)+l.

Using this relation repeatedly we find

(A - j[Z)--l+r  = (,a  - /?))‘(A  - IZ)‘+l.

Therefore the series over r becomes

cc
c

p--l+?.

7=. (n - 1 + r>!

cp  _ A)T(A  _ nz)“-1 = 1 2 _4_”  (p - I)k(A  - AZ)‘+’
(P  - r1 k=n-l  IQ!

This completes the proof.

The explicit formula in Theorem 7.12 can also be deduced by applying Putzer’s method,
but the details are more complicated.

The explicit formulas in Theorems 7.10, 7.11 and 7.12 cover all matrices of order n < 3 .
Since the 3 x 3 case often arises in practice, the formulas in this case are listed below for
easy reference.

CASE 1. If a 3 x 3 matrix A has eigenvalues 1, 1, 1,  then

etA  = eat{Z  + t(A - AZ)  + &@A - U)2}.
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CASE 2. If a 3 x 3 matrix A has distinct eigenvalues 1, ,u, v, then

eta = eat  (A - PNA - ~1)  + ept  (A - WA  - ~1)  + evt (A - WA  - ~1)
*(1 - Pu)Q  - 4 (P - m - 4 (v - WV - P)

CASE 3. If a 3 x 3 matrix A has eigenvalues A, 1, ,u, with ;Z # ~1,  then

etA = eAt{Z + t(A - AZ)) + ~ept - 8 (A - AZ)2 - te"t (A - 11)2.
(P - 9" P-1

EXAMPLE. Compute etAi  when A =

Solution. The eigenvalues of A are 1, 1, 2, so the formula of Case 3 gives us

(7.39) etA  = et{Z  + t(A - Z)} + (e2t  - et)(A  - I)”  - tet(A  - I)“.

By collecting powers of A we can also write this as follows,

(7.40) etA  = (-2tet + e2t)Z  + ((3t + 2)et - 2e2t}A - {(t + l)et  - ezt}A2.

At this stage we can calculate (A - Z)2  or A2  and perform the indicated operations in (7.39)
or (7.40) to write the result as a 3 x 3 matrix,

-2tet + ezt (3t + 2)et - 2e2t - ( t  +  l)et +  e2t

et-4  = -2(t + l)et + 2e2t (3t + 5)et - 4e2t -(t + 2)et + 2e2t .

-2(t + 2)et + 4e2t (3t + 8)et - 8e2t -(t + 4)& + 4e2t 1
7.15 Exercises

For each of the matrices in Exercises 1 through 6, express etA  as a polynomial in A.

1. A = I5 -‘1.
L4  -1-l

,A=[:  -;I.  3.A=[ % :].

]. 5.A=l  1; :].  6.A=[;  ; 3.

-6 -11 -6

7. (a) A 3 x 3 matrix A is known to have all its eigenvalues equal to 1. Prove that

eta = &eit{(A2t2  - 21t + 2)Z + (-21t2  + 2t)A + t2A2},

(b) Find a corresponding formula if A is a 4 x 4 matrix with all its eigenvalues equal to A.
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In each of Exercises 8 through 15, solve the system Y’ = A Y subject to the given initial

3

10.

A

= i 2

- 1 1

0

1 1 ,

1 - 1 2

condition.

,.A=[;  -;I,

-6 -11 -6

1 1 0 0

0 2 1 0

14. A = I 10 0 3 0’

0 o-o 4

0 0 2 0

1 0 0 2
15. A = I =

0 0 0
1

4 ’
Y(0)

0 0 1 0

16. This exercise outlines a proof of Equation (7.38) used in the proof of Theorem 7.11,
be the polynomial in A of degree n - 1 defined by the equation

.8

. I

0 .

0

‘1

0

2 *

.1 1
Let L,(I)

i#k

where 1,) . . . , I, are n distinct scalars.
(a) Prove that

(0 if li # A,,
Lk(A)  =

1 if li = A,.

(b) Letyl,..., yn be n arbitrary scalars, and let

p@)  = $ykLk@).
k=l

Prove that p(A) is the only polynomial of degree I n - 1 which satisfies the n equations

p(‘k)  = yk for k=1,2  ,..., n.

(c) Prove that zzCl  &(A)  = 1 for every 1, and deduce that for every square matrix A we have

where Z is the identity matrix.
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7.16 Nonhomogeneous linear systems with constant coefficients

We consider next the nonhomogeneous initial-value problem

(7.41) Y’(t)  = A Y(t) + Q(t), Y(a) = B,

on an interval J. Here A is an n x n constant matrix, Q is an n-dimensional vector function
(regarded as an n x I column matrix) continuous on J, and a is a given point in J. We can
obtain an explicit formula for the solution of this problem by the same process used to
treat the scalar case.

First we multiply both members of (7.41) by the exponential matrix e-tA and rewrite the
differential equation in the form

(7.42) eMtA{  Y’(t) - AY(t))  = ePtAQ(t).

The left member of (7.42) is the derivative of the product ePtAY(t).  Therefore, if we
integrate both members of (7.42) from a to x, where x E J, we obtain

e-“AY(x) - PAY(a)  = s,” eetAQ(t)  dt .

Multiplying by ezA we obtain the explicit formula (7.43) which appears in the following
theorem.

THEOREM 7.13. Let A be an n x n constant matrix and let Q be an n-dimensional vector
function continuous on an interval J. Then the initial-value problem

Y’(t)  = A Y(t) + Q(t), Y(a) = B,

has a unique solution on J given by the explicit formula

(7.43) Y(x) = eczmajAB  + esA  ,’ e&Q(t)  dt.s

As in the homogeneous case, the difficulty in applying this formula in practice lies in the
calculation of the exponential matrices.

Note that the first term, e(zpa)AL3,  is the solution of the homogeneous problem Y’(t) =
A Y(t), Y(a) = B. The second term is the solution of the nonhomogeneous problem

Y’(t) = A Y(t)  + Q(t), Y(a) = 0.

We illustrate Theorem 7.13 with an example.

EXAMPLE. Solve the initial-value problem

Y’(t)  = AY(t)  + Q(t), Y(0) = B,
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on the interval (- co  , + co), where

Solution. According to Theorem 7.13, the solution is given by

(7.44) Y(x) = exa lo’ e@Q(t)  dt = IO’ ecz-t’AQ(t)  dt .

The eigenvalues of A are 2, 2, and 4. To calculate exa we use the formula of Case 3,
Section 7.14, to obtain

e ‘A = e’“{Z + x(A - 21))  + $(e4% - e’“)(A  - 21)’  - +xe’“(A - 21)2

= e2”{Z + x(A - 21) + $(e2’  - 2x - l)(A - 21)‘).

We can replace x by x - t in this formula to obtain e cr-tln. Therefore the integrand in
(7.44) is

ecz-t’AQ(t)  = ezczpt’{Z + (x - t)(A - 2Z) + i[e2(“--t)  - 2(x - t) - l](A - 21)2}Q(t)

Integrating, we find

Y(x) = ze’“-t’“Q(t)  dt = e2x
s0

[$I  + (A - 20e2’[~~]

+ $A

+e2x -$-x-x”

- 2Z)2e2’ 0
*,23:  _ * - ix - ix2  - 4x3

Since we have

we find

The rows of this matrix are the required functions yl, y2,  y3.
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7.17 Exercises

1. Let 2 be a solution of the nonhomogeneous system

Z’(r) = AZ(r) + Q(r),

on an interval J with initial value Z(a). Prove that there is only one solution of the non-
homogeneous system

Y’(t) = AY(t)  + Q(t)

on J with initial value Y(a) and that it is given by the formula

Y(t) = Z(t)  + d-4{  Y(a) - Z(a)}.

Special methods are often available for determining a particular solution Z(t) which resembles
the given function Q(t). Exercises 2, 3, 5, and 7 indicate such methods for Q(t) = C, Q(r) =
&C,  Q(t) = tmC, and Q(r)  = (cos cct)C + (sin ar)D,  where C and D are constant vectors.
If the particular solution Z(t) so obtained does not have the required initial value, we modify
Z(t) as indicated in Exercise 1 to obtain another solution Y(r)  with the required initial
value.

2. (a) Let A be a constant n x n matrix, B  and C constant n-dimensional vectors. Prove that the
solution of the system

Y’(f) = AY(t)  + c, Y(a) = B,

on (- 00,  + to) is given by the formula

Y(x) = e(=-a)AB  + C .

(b) If A is nonsingular, show that the integral in part (a) has the value {ecz--a)A  - Z}A-l.
(c) Compute Y(x) explicitly when

A=[-: :I, C=[:],  B=[:],  a=O.

3. Let A be an n x n constant matrix, let B and C be n-dimensional constant vectors, and let a
be a given scalar.
(a) Prove that the nonhomogeneous system Z’(t) = AZ(t) + eW has a solution of the form
Z(t) = eatB if, and only if, (aZ - A)B = C.
(b) If a is not an eigenvalue of A, prove that the vector B  can always be chosen so that the
system in (a) has a solution of the form Z(t) = eztB  .
(c) If cc  is not an eigenvalue of A, prove that every solution of the system Y’(t) = ,4 Y(i) + eZtC
has the form Y(t) = elA( Y(0) - B) + eatB,  where B = (al - A)-lC.

4. Use the method suggested by Exercise 3 to find a solution of the nonhomogeneous system
Y’(t) = AY(t)  + eztC, with

A=[:  ;I, c=[-;I. Y(@=[;].
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5. Let A be an n x n constant matrix, let B and C be n-dimensional constant vectors, and let
m be a positive integer.
(a) Prove that the nonhomogeneous system Y’(t) = A Y(t) + PC, Y(0) = B, has a particular
solution of the form

Y(f) = B,  + tB,  + t2B, + ...  + PB,,

whereB,,B,,..., B,  are constant vectors, if and only if

1C  = - - Am+‘B
?72!

Determine the coefficients B,,  B,  , . . . , B,  for such a solution.
(b) If A is nonsingular, prove that the initial vector B can always be chosen so that the system
in (a) has a solution of the specified form.

6. Consider the nonhomogeneous system

y; = 3yl + yz  + t3

y;: = 2Yl + 2y,  + t3.

(a) Find a particular solution of the form Y(f) = B,  + tB,  + t2B2  + t3B3.
(b) Find a solution of the system with ~~(0)  = ~~(0)  = 1 .

7. Let A be an II x n constant matrix, let B, C, D be n-dimensional constant vectors, and let
u be a given nonzero  real number. Prove that the nonhomogeneous system

Y’(t) = A Y(t) + (cos cct)C  + (sin at)D, Y(0) = B,

has a particular solution of the form

Y(f) = (cos ut)E  + (sin ur)F,

where E and Fare constant vectors, if and only if

(A2  + a2Z)B  = -(AC + MD).

Determine E and Fin terms of A, B, C for such a solution. Note that if A2  + a21  is nonsingular,
the initial vector B can always be chosen so that the system has a solution of the specified
form.

8. (a) Find a particular solution of the nonhomogeneous system

(b) Find a solution of the system with J+(O)  = ~~(0)  = 1 .
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In each of Exercises 9 through 12, solve the nonhomogeneous system Y’(t) = A Y(t) + Q(t)
subject to the given initial condition.

7.18 The general linear system Y’(t) = P(QY(t)  + Q(t)

Theorem 7.13 gives an explicit formula for the solution of the linear system

Y’(t)  = A Y(t)  + Q(t), Y(u)  = B,

where A is a constant n x IZ matrix and Q(t), Y(t) are n x 1 column matrices. We turn
now to the more general case

(7.45) Y’(t) = W> Y(t) + Q(t) > Y(a) = B,

where the IZ x IZ matrix P(t)  is not necessarily constant.
If P and Q are continuous on an open interval J, a general existence-uniqueness theorem

which we shall prove in a later section tells us that for each a in J and each initial vector B
there is exactly one solution to the initial-value problem (7.45). In this section we use this
result to obtain a formula for the solution, generalizing Theorem 7.13.

In the scalar case (n = 1) the differential equation (7.45) can be solved as follows. We
let A(x) = J; P(t)  dt,  then multiply both members of (7.45) by e--A’t)  to rewrite the differ-
ential equation in the form

(7.46) emAct){ Y’(t) - P(t)Y(t)}  = eeAct)Q(t).

Now the left member is the derivative of the product e- ACt) Y(t). Therefore, we can integrate
both members from a to x, where a and x are points in J, to obtain

e-A(r)y(x)  - epAta)y(a)  = s cc eeA’“‘Q(t)  dt.a
Multiplying by eAfz) we obtain the explicit formula

(7.47) Y(x) = e~(de-~(dy(u) + &kd ,-;  e--B(t)Q(t) &.
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The only part of this argument that does not apply immediately to matrix functions is
the statement that the left-hand member of (7.46) is the derivative of the product e--A(tJ  Y(t).
At this stage we used the fact that the derivative of e-nctt is -P(t)e-A’l’.  In the scalar case
this is a consequence of the following formula for differentiating exponential functions :

I f E(t) = eaft), then E’(t) = Ar(t)eAc

Unfortunately, this differentiation formula is not always true when A is a matrix function.
1 t

For example, it is false for the 2 x 2 matrix function A(t) = [ 10 0 . (See Exercise 7 of

Section 7.12.) Therefore a modified argument is needed to extend Equation (7.47) to the
matrix case.

Suppose we multiply each member of (7.45) by an unspecified n x n matrix F(t).  This
gives us the relation

F(t)  Y’(t)  = F(t)P(t) Y(t)  + F(t>Q(t>  .

Now we add F’(t)Y(t)  to both members in order to transform the left member to the
derivative of the product F(t) Y(t). If we do this, the last equation gives us

{F(t)  r(t)}’ = {F’(t) + f’Ct)f’(t)} Y(t)  + FWQ(t)  .

If we can choose the matrix F(t)  so that the sum {F’(t) + F(t)P(t)} on the right is the zero
matrix, the last equation simplifies to

{F(t)  Y(t))’  = FWQ(t)  .

Integrating this from a to x we obtain

F(x)Y(x)  - F(a)Y(a)  = 1: F(t)Q(t)  dt .

If, in addition, the matrix F(x) is nonsingular, we obtain the explicit formula

(7.48) Y(x)  = F(x)-‘F(a) Y(a) + F(x)-’  J: F(t)Q(t) dt .

This is a generalization of the scalar formula (7.47). The process will work if we can find a
n x n matrix function F(t) which satisfies the matrix differential equation

and which is nonsingular.

F’(t) = -F(t)P(t)

Note that this differential equation is very much like the original differential equation
(7.45) with Q(t) = 0, except that the unknown function F(t)  is a square matrix instead of a
column matrix. Also, the unknown function is multiplied on the right by -P(t)  instead of
on the left by P(t).

We shall prove next that the differential equation for F always has a nonsingular solution.
The proof will depend on the following existence theorem for homogeneous linear systems.
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THEOREM 7.14. Assume A(t) is an n x n matrix function continuous on an open interval
J. If a E  J and if B is a given n-dimensional vector, the homogeneous linear system

Y’(t) = A(t) Y(t), Y(a) = B,

has an n-dimensional vector solution Y on J.

A proof of Theorem 7.14 appears in Section 7.21. With the help of this theorem we can
prove the following.

THEOREM 7.15. Given an n x n matrix function P, continuous on an open interval J,
and given any point a in J, there exists an n x n matrix function F which satisj?es  the matrix
difSerentia1  equation

(7.49) F’(x) = -F(x)P(x)

on J with initial value F(a) = I. Moreover, F(x) is nonsingular for each x in J.

Proof. Let Y,(x) be a vector solution of the differential equation

y;(x)  = -P(x)“Y,(x)

on J with initial vector Y,(a) = Z, , where Ik is the kth column of the n x n identity matrix I.
Here P(x)”  denotes the transpose of P(x). Let G(x) be the n x n matrix whose kth column
is Y,(x). Then G satisfies the matrix differential equation

(7.50) G’(x) = -PUG

on J with initial value G(a) = I. Now take the transpose of each member of (7.50). Since
the transpose of a product is the product of transposes in reverse order, we obtain

{G’(x)}” = -G(x)“P(x).

Also, the transpose of the derivative G’ is the derivative of the transpose Gt. Therefore the
matrix F(x) = G(x)l  satisfies the differential equation (7.49) with initial value F(a) = I.

Now we prove that F(x) is nonsingular by exhibiting its inverse. Let H be the n x n
matrix function whose kth column is the solution of the differential equation

Y’(x) = P(x) Y(x)

with initial vector Y(a)  = I,, the kth column of I. Then H satisfies the initial-value problem

H’(x) = P(x)H(x), H(a) = I,

on J. The product F(x)H(x)  has derivative

F(x)H’(x)  + k’(x)H(x)  = F(x)P(x)H(x)  - F(x)P(x)H(x)  = 0
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for each x in J. Therefore the product F(x)H(x) is constant, F(x)H(x) = F(a)H(a)  = I,
so H(x) is the inverse of F(X).  This completes the proof.

The results of this section are summarized in the following theorem.

THEOREM 7.16. Given an n x n matrix function P and an n-dimensional vector function
Q, both continuous on an open interval J, the solution of the initial-value problem

(7.51) r’(x) = P(x) Y(x) + Q(x), Y(a) = B,

on J is given by the formula

(7.52) Y(x) = F(x)-‘Y(a) + F(x)-l  i% F(t)Q(t)  dt.

The n x n matrix F(x) is the transpose of the matrix whose kth column is the solution of the
initial-value problem

(7.53) Y’(x) = -P(x)“Y(x), Y(a) = 4,

where I, is the kth column of the identity matrix I.

Although Theorem 7.16 provides an explicit formula for the solution of the general
linear system (7.51),  the formula is not always a useful one for calculating the solution
because of the difficulty involved in determining the matrix function F. The determination
of F requires the solution of n homogeneous linear systems (7.53). The next section
describes a power-series method that is sometimes used to solve homogeneous linear
systems.

We remind the reader once more that the proof of Theorem 7.16 was based on Theorem
7.14, the existence theorem for homogeneous linear systems, which we have not yet proved.

7.19 A power-series method for solving homogeneous linear systems

Consider a homogeneous linear system

(7.54) Y’(x) = A(x)  Y(x) ) Y(0) = B,

in which the given n x n matrix A(x) has a power-series expansion in x convergent in
some open interval containing the origin, say

A(x)  = A, + XL41  + X2A, + * ’ * + X’CA,  + . . . , for 1x1 < rl,
where the coefficients AO,  A,, A,, . . . are given n x n matrices. Let us try to find a
power-series solution of the form

Y(X) = B, + xB, + x2B,  + * * * + x”Bk  + * * * ,
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with vector coefficients B,,, B,, B,, . . . . Since Y(0) = B,, the initial condition will be
satisfied by taking B, = B, the prescribed initial vector. To determine the remaining
coefficients we substitute the power series for Y(x) in the differential equation and equate
coefficients of like powers of x to obtain the following system of equations:

(7.55) B, = A,B, (k + l)&+,  = i A,~,-r f o r  k=  1,2,....
7=0

These equations can be solved in succession for the vectors B,, B,, . . . . If the resulting
power series for Y(x) converges in some interval 1x1 < r2, then Y(x) will be a solution of the
initial-value problem (7.54) in the interval 1x1 < r, where r = min {rl,  r2}.

For example, if A(x) is a constant matrix A, then A, = A and A,  = 0 for k 2 1, so the
system of equations in (7.55) becomes

B,=AB, (k + l)B,+,  = AB, f o r  k>l.

Solving these equations in succession we find

B, = -&  AkB f o r  k>l.

Therefore the series solution in this case becomes

ycx) = B +kz$AkB  = ezAB.

This agrees with the result obtained earlier for homogeneous linear systems with constant
coefficients.

7.20 Exercises

1. Let p be a real-valued function and Q an it x 1 matrix function, both continuous on an interval
J. Let A be an n x n constant matrix. Prove that the initial-value problem

has the solution
Y’(x)  = ~(4-4  Y(x) + Qt.4 , Y(u) = E,

y(x) = edz)AB + @(%)A
s

r e-~(t)AQ(t)  &
a

on J, where q(x)  =  Jzp(t) dt.
2. Consider the special case of Exercise 1 in which A is nonsingular, a = 0, p(x) = 2x, and

Q(x) = XC,  where C is a constant vector. Show that the solution becomes

Y(x)  = ezzA(B + $A-%‘)  - $A-lC.

3. Let A(t) be an n x n matrix function and let E(t) = eBtt).  Let Q(t), Y(r), and B  be n x 1
column matrices. Assume that

E’(t)  = A’(t)E(t)
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on an open interval J. If a E  J and if A’ and Q are continuous on J, prove that the initial-value
problem

Y ’ ( t )  =  A’(t)Y(t) +  Q(t), Y(u) = B,

has the following solution on J:

y(x) = eAh)e-Ah)B  + eAh) ’ e-A(t)Q(t)  &.
ia

Let E(t) = eBtt). This exercise describes examples of matrix functions A(t) for which E’(t) =
A’(t)E(t).
(a) Let A(t) = l”A,  where A is an n x n constant matrix and r is a positive integer. Prove that
E’(t) = A’(t)E(t)  on (- co, w).
(b) Let A(t) be a polynomial in t with matrix coefficients, say

A(t) = 2 PA,.,
r=O

where the coefficients commute, A,A,  = A,A,  for all r and S.  Prove that E’(t) = A’(t)E(t)  on
(-a,  a).
(c) Solve the homogeneous linear system

Y’(r) = (I  + tA)Y(t), Y(0) = B

on the interval ( - KJ,  co), where A is an II x n constant matrix.
Assume that the n x n matrix function A(x) has a power-series expansion convergent for
1x1 Cr. Develop a power-series procedure for solving the following homogeneous linear system
of second order:

Y”(x) = A(x)Y(x), with Y(0) = B, Y’(0) = c.

Consider the second-order system Y”(x) + A Y(x) = 0, with Y(0) = B, Y’(0) = C, where A
is a constant II x n matrix. Prove that the system has the power-series solution

convergent for - co < x < + * I

7.21 Proof of the existence theorem by the method of successive approximations

In this section we prove the existence and uniqueness of a solution for any homogeneous
linear system

(7.56) Y’(t) = A(t) Y(t),

where A(t) is an n x n matrix function, continuous on an open interval J. We shall prove
that for any point a in J and any given initial-vector B there exists exactly one solution Y(t)
on J satisfying the initial condition Y(a) = B .
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We shall use the method of successive approximations, an iterative method which also has
applications in many other problems. The method was first published by Liouville in 1838
in connection with the study of linear differential equations of second order. It was later
extended by J. CaquC  in 1864, L. Fuchs in 1870, and G. Peano  in 1888 to the study of linear
equations of order n. In 1890 Smile Picard  (18561941)  extended the method to encompass
nonlinear differential equations as well. In recognition of his fundamental contributions,
some writers refer to the method as Picard’s  method. The method is not only of theoretical
interest but can also be used to obtain numerical approximations to solutions in some cases.

The method begins with an initial guess at a solution of the equation (7.56). We take as
initial guess the given initial vector B, although this is not essential. We then substitute
this guess in the right-hand member of the equation and obtain a new differential equation,

Y’(t) = A(t)B.

In this equation the right-hand member no longer contains the unknown function, so the
equation can be solved immediately by integrating both members from a to x, where x is
an arbitrary point in J. This equation has exactly one solution Y,  on J satisfying the initial
condition Y,(a) = B, namely

Y,(x)  = B + j-; A(t)B dt.

Now we replace Y(t) by Yl(t) in the right-hand member of the original differential
equation (7.56) to obtain a new differential equation

Y’(t) = A(t)Y,(t).

This equation has a unique solution Y,  on J with Y,(a) = B,

(7.57) Ydx)  = B + j-; A(t)Y,(t)  dt.

We then substitute Yz  in the right-hand member of (7.56) and solve the resulting equation
to determine Ya  with Y,(a)  = B, and so on. This process generates a sequence of functions
y,, y,,  yz,  * * * > where Y,  = B and where Yti+i is determined from Y,  by the recursion
formula

(7.58) Y,c+dx)  = B + j.; A(t)Y,(t)  dt for k = 0, 1, 2, . . . .

Our goal is to prove that the sequence of functions so defined converges to a limit
function Ywhich  is a solution of the differential equation (7.56) on Jand which also satisfies
the initial condition Y(a) = B. The functions Y,,  Y,  , Yz  , . . . are called successive approxi-
mations to Y. Before we investigate the convergence of the process we illustrate the method
with an example.

EXAMPLE. Consider the initial-value problem Y’(t) = A Y(t), Y(0) = B, where A is a
constant IZ  x n matrix. We know that the solution is given by the formula Y(x) = exAIB
for all real x. We will show how this solution can be obtained by the method of successive
approximations.
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The initial guess is Y,(x) = B. The recursion formula (7.58) gives us

Y,(x) = B + j;ABdt  = B + xAB,

Y,(x) = B + j; AY,(t) dt = B + jOz  (AB + tA2B)  dt = B + xAB  + +x2A2B,

By induction we find

Y,(x) = B + xAB  + $x2A2B  + . 1 .

The sum on the right is a partial sum of the series for e”-j. Therefore when k + CO  we find

lim Y,(x) =  eeriB
k-tm

for all x. Thus, in this example we can show directly that the successive approximations
converge to a solution of the initial-value problem on (- co, + oo).

Proof of convergence of the sequence of successive approximations. We return now to the
general sequence defined by the recursion formula (7.58). To prove that the sequence
converges we write each term Y,(x)  as a telescoping sum,

(7.59)
k - l

yk(x)  =  y,cx) +  m&’ ym+l(x)  - y,n<x>}  *

To prove that Yk(x)  tends to a limit as k + co we shall prove that the infinite series

(7.60)

eonverges for each x in J. For this purpose it suffices to prove that the series

(7.61) f, II Ym+l(X)  - Ymc4ll

converges. In this series we use the matrix norm introduced in Section 7.3; the norm of a
matrix is the sum of the absolute values of all its entries.

Consider a closed and bounded subinterval J1 of J containing a. We shall prove that for
every x in J1 the series in (7.61) is dominated by a convergent series of constants inde-
pendent of x. This implies that the series converges uniformly on J1,

To estimate the size of the terms in (7.61) we use the recursion formula repeatedly.
Initially, we have

Y,(x) - Ye(x)  = j,z  A(t)B dt.
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For simplicity, we assume that a < x . Then we can write

(7.62)

Since each entry of A(t) is continuous on J, each entry is bounded on the closed bounded
interval J1. Therefore jlA(t)ll  5 M, where A4 is the sum of the bounds of all the entries of
A(t) on the interval J1. (The number A4 depends on J1 .) Therefore the integrand in (7.62)
is bounded by llB\l M,  so we have

ll~(~>  - Y,(x)/I  I jaz 11~~1  M dt = IIBII  M(x  - a)

for all x > a in J1.
Now we use the recursion formula once more to express the difference Y, - Y,  in terms

of Y, - Y,, and then use the estimate just obtained for Y1  - Y, to obtain

lj Y,(X)  - Y,(x)II  = 11  f 4O{Y,(t)  - Yo(O}  dt 11  I 1,”  IIA(t>ll IIBII  M(t  - a>  dl

< ))B))  M2  1,” (t - a) dt = jJB/J M2(x2; a)2

for all x > a in J1. By induction we find

IIY,+,(x)  - Y,(x)ll  5 IlBll  M”+l(x  - a)m+l for
(m + I)!

m = 0, 1, 2, . . . ,

and for all x > a in J1. If x < a a similar argument gives the same inequality with Ix - al
appearing instead of (x - a). If we denote by L the length of the interval J1, then we have
Ix - al  < L for all x in J1 so we obtain the estimate

I I Y,+,(x) - Y&N  I IIBII  yn;;;,’ for m = 0, 1, 2, . . . ,

and for all x in J1. Therefore the series in (7.61) is dominated by the convergent series

This proves that the series in (7.61) converges uniformly on J1.
The foregoing argument shows that the sequence of successive approximations always

converges and the convergence is uniform on J1. Let Y denote the limit function. That is,
define Y(x) for each x in J1 by the equation

Y(x) = lim Y,(x).
h--+m
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We shall prove that Y has the following properties:
(a) Y is continuous on Jr.
(b) Y(x) = B + &4(t)Y(t)dt for all x in J1.
(c) Y(a) = B and Y’(x) = A(x)Y(x) for all x in J1.

Part (c) shows that Y is a solution of the initial-value problem on J1.

Proof of (a). Each function Y, is a column matrix whose entries are scalar functions,
continuous on J1. Each entry of the limit function Y is the limit of a uniformly convergent
sequence of continuous functions so, by Theorem 11.1 of Volume I, each entry of Y is also
continuous on J1. Therefore Y itself is continuous on J1.

Proof of(b). The recursion formula (7.58) states that

Therefore

y,+,(x) = B + j;  A(t)Y,(t)  dt .

Y(x) = lim Yk+r(x)  = B + lim
k-too

1” A(t)Y,(t)  dt = B + 1,” A(t)lim Yk(t) dt
k+cc a k-tm

= B + j;  A(t)Y(t)  dt .

The interchange of the limit symbol with the integral sign is valid because of the uniform
convergence of the sequence {Y,}  on J1.

Proof of (c). The equation Y(a) = B follows at once from (b). Because of (a), the
integrand in (b) is continuous on J1 so, by the first fundamental theorem of calculus, Y’(x)
exists and equals A(x) Y(x) on J1.

The interval J1 was any closed and bounded subinterval of J containing a. If J1 is
enlarged, the process for obtaining Y(x) doesn’t change because it only involves integration
from a to x. Since for every x in J there is a closed bounded subinterval of J containing a
and x, a solution exists over the full interval J.

THEOREM 7.17. UNIQUENESS THEOREM FOR HOMOGENEOUS LINEAR SYSTEMS. Zf A(t) is
continuous on an open interval J, the difSerentia1  equation

Y’(t) = A(t) Y(t)

has at most one solution on J satisfying a given initial condition Y(a) = B .

Proof. Let Y and Z be two solutions on J. Let J1  be any closed and bounded subinterval
of J containing a. We will prove that Z(x) = Y(x) for every x in J1. This implies that
Z = Y on the full interval J.

Since both Y and Z are solutions we have

Z’(t) - Y’(t)  = A(t){Z(t)  - Y(t)}.
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Choose x in J1 and integrate this equation from a to x to obtain

Z(x) - Y(x) = j-l  A(t){Z(t)  - Y(t)} dt.

This implies the inequality

(7.63) IIZW  - Y(x)ll I ~4  11,”  llz(t> - Y(t)ll  dt 1,

where Mis an upper bound for \lA(t)li  onJ,. Let MI be an upper bound for the continuous
function /Z(t) - Y(t)11  on J1. Then the inequality (7.63) gives us

(7.64) IlZ(4 - Y(x)ll I MM1 Ix  - 4.

Using (7.64) in the right-hand member of (7.63) we obtain

ljZ(x)  - Y(x)]1 < M2M,  16 It - al dt 1 = M’M, y.

By induction we find

(7.65) IIZ(x) - Y(x)11  5 MrnMl 7.

When m --f  co the right-hand member approaches 0, so Z(x) = Y(x). This completes the
proof.

The results of this section can be summarized in the following existence-uniqueness
theorem.

THEOREM 7.18. Let A be an n x n matrix function continuous on an open interval J.
If a E  J and if B is any n-dimensional vector, the homogeneous linear system

Y’(t) = A(t) Y(t), Y(a) = B,

has one and only one n-dimensional vector solution on J.

7.22 The method of successive approximations applied to first-order nonlinear systems

The method of successive approximations can also be applied to some nonlinear systems.
Consider a first-order system of the form

(7.66) Y’ = F(t,  Y),

where Fis a given n-dimensional vector-valued function, and Yis an unknown n-dimensional
vector-valued function to be determined. We seek a solution Y which satisfies the equation

Y’(t)  = F[t,  Y(t)]
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for each t in some interval J and which also satisfies a given initial condition, say Y(a) = B,
where a E J and B is a given n-dimensional vector.

In a manner parallel to the linear case, we construct a sequence of successive approxi-
mations Y,, Y,, Y,, . . . , by taking Y, = B and defining Y,,, in terms of Y, by the
recursion formula

(7.67) z’,+,(x)  = B + 1: Fit,  y,(t)1 dt for k = 0, 1, 2, . . . .

Under certain conditions on F, this sequence will converge to a limit function Y which will
satisfy the given differential equation and the given initial condition.

Before we investigate the convergence of the process we discuss some one-dimensional
examples chosen to illustrate some of the difficulties that can arise in practice.

EXAMPLE 1. Consider the nonlinear initial-value problem y’ = x2 + y2 withy = 0 when
x = 0. We shall compute a few approximations to the solution. We choose Y,,(x)  = 0
and determine the next three approximations as follows:

Y,(x) =
s0

‘t2  dt = 5 ,

Yz(x)=/jz+  Y;(t)]dt=[(t’+:)dt++;,

v,(x)=[[t’+  (;+di’]dt=:+$+g+-&.

It is now apparent that a great deal of labor will be needed to compute further approxi-
mations. For example, the next two approximations Y, and Y, will be polynomials of
degrees 3 1 and 63, respectively.

The next example exhibits a further difficulty that can arise in the computation of the
successive approximations.

EXAMPLE 2. Consider the nonlinear initial-value problem y’ = 2x + e” , withy = 0 when
x = 0. We begin with the initial guess Y,(x)  = 0 and we find

Ye  = if (2t + 1) dt = x2 + x,

Y2(x).  = 6 (2t + etztt) dt = x’  + 1,”  et2+t dt .

Here further progress is impeded by the fact that the last integral cannot be evaluated in
terms of elementary functions. However, for a given x it is possible to calculate a numerical
approximation to the integral and thereby obtain an approximation to Y,(x).

Because of the difficulties displayed in the last two examples, the method of successive
approximations is sometimes not very useful for the explicit determination of solutions
in practice. The real value of the method is its use in establishing existence theorems.
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7.23 Proof of an existence-uniqueness theorem for first-order nonlinear systems

We turn now to an existence-uniqueness theorem for first-order nonlinear systems. By
placing suitable restrictions on the function which appears in the right-hand member of the
differential equation

y’  = Ft’(x,  Y>,

we can extend the method of proof used for the linear case in Section 7.21.
Let Jdenote the open interval over which we seek a solution. Assume a E J and let B be a

given n-dimensional vector. Let S denote a set in (n + 1)-space given by

S = {(x, Y)  I Ix - al  I h, II Y - BII I k)  ,

where h > 0 and k > 0. [If n = 1 this is a rectangle with center at (a, B) and with base 2h
and altitude 2k.l We assume that the domain of F includes a set S of this type and that F is
bounded on S, say

(7.68) Ills(x, VII  I ~4

for all (x, Y) in S, where M is a positive constant.
Next, we assume that the composite function G(x) = F(x, Y(x)) is continuous on the

interval (a - h , a + h) for every function Y which is continuous on (a - h , a + h) and
which has the property that (x, Y(x)) E  S for all x in (a - h , a + h). This assumption
guarantees the existence of the integrals that occur in the method of successive approxi-
mations, and it also implies continuity of the functions so constructed.

Finally, we assume that F satisfies a condition of the form

IIF(x>  Y> - F(x, 2111  I A II Y - 41

for every pair of points (x, Y) and (x, 2) in S, where A is a positive constant. This is called
a L@chitz  condition in honor of Rudolph Lipschitz who first introduced it in 1876. A
Lipschitz condition does not restrict a function very seriously and it enables us to extend the
proof of existence and uniqueness from the linear to the nonlinear case.

THEOREM 7.19. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO FIRST-ORDER NONLINEAR

SYSTEMS. Assume F satisjies  the boundedness, continuity, and Lipschitz conditions speciJied
above on a set S. Let I denote the open interval (a - c , a + c), where c = min {h, k/M}.
Then there is one and onZy  one function Y de$ned  on Z with Y(a) = B such that (x, Y(x)) E S
and

Y’(x) = F(x, Y(x)) for each x in I.

Proof. Since the proof is analogous to that for the linear case we sketch only the
principal steps. We let Y,,(x) = B and define vector-valued functions Y, , Y,, . . . on Z by
the recursion formula

(7.69) Y,+,(x)  = B + j: FLt, Ym(Ol dt for m = 0, 1,2,  . . . .
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For the recursion formula to be meaningful we need to know that (x, Y,(x)) E  S for each
x in I. This is easily proved by induction on m. When m = 0 we have (x, Y,,(x)) = (x, B),
which is in S. Assume then that (x, Y,(x)) E  S for some m and each x in I. Using (7.69)
and (7.68) we obtain

llY,+dx)  - BII  I 1 J‘,” llF[t,  L(t>lll  dt 1 I M 1 1:  dt 1 = M Ix - al.

Since (x - al < c for x in I, this implies that

which shows that (x, Y,+,(X)) E  S for each x in I. Therefore the recursion formula is
meaningful for every m 2 0 and every x in I.

The convergence of the sequence {Y,(x)} is now established exactly as in Section 7.21.
We write

k-l

yk(x)  =  y,tx)  +  z:  iym+l(.x>  - ym(x)}
Wh=O

and prove that Y,(x) tends to a limit as k ---f  00  by proving that the infinite series

g Ym+*(x) - Ym(x>ll

converges on I. This is deduced from the inequality

llym+l(x)  - Y&>l/  s MA;;x+-I;,l
mi- 1

I
MAmcm+’

(m + l)!

which is proved by induction, using the recursion formula and the Lipschitz condition.
We then define the limit function Y by the equation

Y(x) = lim Y,(x)
m-m

for each x in I and verify that it satisfies t,he integral equation

Y(x)  = B + J^,”  F[t,  Y(t)] dt,

exactly as in the linear case. This proves the existence of a solution. The uniqueness may
then be proved by the same method used to prove Theorem 7.17.

7.24 Exercises

1. Consider the linear initial-value problem

y’+y  =2e”, with y = 1 when x = 0.
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(a) Find the exact solution Y of this problem.
(b) Apply the method of successive approximations, starting with the initial guess YO(x)  = 1.
Determine Y,(x) explicitly and show that

for all real x.

lim Y,(x) = Y(x)
ne+‘x

2. Apply the method of successive approximations to the nonlinear initial-value problem

y’  =x +y2, with y =Owhenx =O.

Take Y,(x) = 0 as the initial guess and compute Y,(x).
3. Apply the method of successive approximations to the nonlinear initial-value problem

y’= 1 +xya, with y =Owhenx =O.

Take Y,(x) = 0 as the initial guess and compute Y,(x).
4. Apply the method of successive approximations to the nonlinear initial-value problem

y’=x2  +y2, with y=Owhenx =O.

Start with the “bad” initial guess Y,(x) = 1,  compute Ys(x),  and compare with the results of
Example 1 in Section 7.22.

5. Consider the nonlinear initial-value problem

y’ =x2 +y2, w i t h  y=lwhenx=O.

(a) Apply the method of successive approximations, starting with the initial guess Y,(x) = 1,
and compute Y,(x).
(b) Let R = [ - 1 , I] x [ - 1 , 11.  Find the smallest Msuch  that jf(x, y)l 5 Mon R. Find an
interval Z = ( -c  , c) such that the graph of every approximating function Y, over Z will liein R.
(c) Assume the solution y = Y(x) has a power-series expansion in a neighborhood of the
origin. Determine the first six nonzero  terms of this expansion and compare with the result of
part (a).

6. Consider the initial-value problem

y’=l +ye, with y =Owhenx =O.

(a) Apply the method of successive approximations, starting with the initial guess Y,(x) = 0,
and compute Y,(x).
(b) Prove that every approximating function Y, is defined on the entire real axis.
(c) Use Theorem 7.19 to show that the initial-value problem has at most one solution in any
interval of the form (-h  , h).
(d) Solve the differential equation by separation of variables and thereby show that there is
exactly one solution Y of the initial-value problem on the interval (-n/2 , n/2) and no solution
on any larger interval. In this example, the successive approximations are defined on the entire
real axis, but they converge to a limit function only on the interval (--n/2  , n/2).

7. We seek two functions y = Y(x) and z = Z(x) that simultaneously satisfy the system of
equations

y’ =z, z’ = xyy + z)
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with initial conditions y = 1 and z = l/2 when x = 0. Start with the initial guesses Y,(x) = 1,
Z,(x) = l/2, and use the method of successive approximations to obtain the approximating
functions

Y,(x) = 1 + ; + ; + ; -t  g2 )

Z,(x)  = ; + y + ; + 2 + g + g.

8. Consider the system of equations

y’=2x fz, z’ = 3xy + xzz,

with initial conditions y = 2 and z = 0 when x = 0. Start with the initial guesses Y,(x) = 2,
Z,,(x) = 0, use the method of successive approximations, and determine Y,(x) and Z,(x).

9. Consider the initial-value problem

y’ = x2y’ + x4y, with y = 5 and y’ = 1 whenx = 0.

Change this problem to an equivalent problem involving a system of two equations for two
unknown functions y = Y(x) and z = Z(x), where z = y’. Then use the method of successive
approximations, starting with initial guesses Y,(x) = 5 and Z&j = 1, and determine Y,(x)
and Z,(x).

10. Letfbe defined on the rectangle R = [ -1 , l] x [ -1 , l] as follows:

0 i f  x = 0 ,

fc? y)  =
2YlX i f  x+0 a n d  IyI  <x2,

2 x if x f:O and y >x2,

- 2 x i f  x#O a n d  y <-x2.

(a) Prove that If(x, y)I < 2 for all (x,y) in R.
(b) Show thatfdoes not satisfy a Lipschitz condition on R.
(c) For each constant C satisfying ICI  5 1 , show that y = Cx2  is a solution of the initial-value
problem y’ =,f(x, y), with y = 0 when x = 0. Show also that the graph of each of these
solutions over (- 1 , 1) lies in R.
(d) Apply the method of successive approximations to &his initial-value problem, starting
with initial guess Y,(x) = 0. Determine Y,(x) and show that the approximations converge to
a solution of the problem on the interval (- 1 , 1).
(e) Repeat part (d), starting with initial guess Y,,(x) = x. Determine Y,(x) and show that
the approximating functions converge to a solution different from any of those in part (c).
(f) Repeat part (d), starting with the initial guess Y,,(x) = x3.
(g) Repeat part (d), starting with the initial guess Y,,(x) = x1j3.

* 7.25 Successive approximations and fixed points of operators

The basic idea underlying the method of successive approximations can be used not only
to establish existence theorems for differential equations but also for many other important
problems in analysis. The rest of this chapter reformulates the method of successive
approximations in a setting that greatly increases the scope of its applications.
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In the proof of Theorem 7.18 we constructed a sequence of functions {Y,}  according to
the recursion formula

Y,+,(x)  = B + 1:  AY,(t)  dt.

The right-hand member of this formula can be regarded as an operator T which converts
certain functions Y into new functions T(Y) according to the equation

T(Y) = B + j-;  AY(t) dt.

In the proof of Theorem 7.18 we found that the solution Y of the initial-value problem
Y’(t) = A Y(r), Y(a) = B, satisfies the integral equation

Y = B + j;AY(t)dt.

In operator notation this states that Y = T(Y). In other words, the solution Y remains
unaltered by the operator T. Such a function Y is called afixedpoint  of the operator T.

Many important problems in analysis can be formulated so their solution depends on the
existence of a fixed point for some operator. Therefore it is worthwhile to try to discover
properties of operators that guarantee the existence of a fixed point. We turn now to a
systematic treatment of this problem.

* 7.26 Normed  linear spaces

To formulate the method of successive approximations in a general form it is convenient
to work within the framework of linear spaces. Let S be an arbitrary linear space. When
we speak of approximating one element x in S by another element y in S, we consider the
difference x - y , which we call the error of the approximation. To measure the size of
this error we introduce a norm in the space.

DEFINITION OF A NORM. Let S be any linear space. A real-valuedfunction N dejned  on S
is called a norm if it has the following properties:

(a) N(x) 2 0 for each x in S.
(b) N(cx)  = ICI  N(x) for each x in S and each scalar c.
(c) N(x + y) < N(x) + N(y) for all  x and y in S.
(d) N(x) = 0 implies x = 0.

A linear space with a norm assigned to it is called a normed  linear space.

The norm of x is sometimes written llxll instead of N(x). In this notation the fundamental
properties become :

(a) llxll 2 0 for all x in S.
(b) llcxll = ICI  llxll for all x in S and all scalars c.
Cc)  llx + yll I llxll + llyll for all x and y in S.
(d) llxll = 0 implies x = 0.
If x and y are in S, we refer to IIx  - y 11 as the distance from x to y,
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If the space S is Euclidean, then it always has a norm which it inherits from the inner
product, namely, llxll = (x, x)x. However, we shall be interested in a particular norm
which does not arise from an inner product.

EXAMPLE. The max norm. Let C(J)  denote the linear space of real-valued functions
continuous on a closed and bounded interval J. If q E  C(J), define

where the symbol on the right stands for the maximum absolute value of v on J. The
reader may verify that this norm has the four fundamental properties.

The max norm is not derived from an inner product. To prove this we show that the
max norm violates some property possessed by all inner-product norms. For example, if a
norm is derived from an inner product, then the “parallelogram law”

lb + yl12  + lb - yl12  = 2 11x112  + 2 lly112

holds for all x and y in S. (See Exercise 16 in Section 1.13.) The parallelogram law is not
always satisfied by the max norm. For example, let x and y be the functions on the interval
[0, I] given by

x(t) = t, y ( t )=  1  -t.

Then we have llx\l = lly]l = /Ix  + yI[ = IIx  - yJI = 1, so the parallelogram law is violated.

* 7.27 Contraction operators

In this section we consider the normed  linear space C(J) of all real functions continuous
on a closed bounded interval J in which II  ~11  is the max norm. Consider an operator

T: C(J) ---f C(J)

whose domain is C(J) and whose range is a subset of C(J). That is, if q is continuous on J,
then T(p)  is also continuous on J. The following formulas illustrate a few simple examples
of such operators. In each case pl is an arbitrary function in C(J) and T(v)(x)  is defined for
each x in J by the formula given:

T(v)(x)  = wx> > where 2 is a fixed real number,

UP)(X)  = t ~(0  dt, where c is a given point in J,

T(v)(x)  = b + j)[t,  ~(01  dt,

where b is a constant and the compositionf[t,  p(t)] is continuous on J.
We are interested in those operators T for which the distance 11 T(v)  - T(y)\1  is less than

a fixed constant multiple tc  < 1 of I/p - y/l . These are called contraction operators; they
are defined as follows.
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DEFINITION OF A CONTRACTION OPERATOR. An operator T: C(J)- C(J) is called a
contraction operator if there is a constant 3: satisjying  0 < (y.  < 1 such that for every pair of
functions a, and y in C(J) we have

(7.70) II T(v)  - T(y)11 < tl. II  P  - Y II .

The constant tc  is called a contraction constant for T.

Note: Inequality (7.70) holds if and only if we have

IT(v)(x)  - T(Y)(X)1  I a l/P  - w/l for every x in J.

EXAMPLE 1.  Let T be the operator defined by T(v)(x)  = A&x),  where 1. is constant.
Since

IT(Y)(X)  - T(y)(x)l  = I4  IPW - YWI 3

we have 1) T(q)  - T(yl)I/  = lill II  q - y/I . Therefore this operator is a contraction operator
if and only if Jill < 1 , in which case lill may be used as a contraction constant.

EXAMPLE 2. Let T(p)(x)  = b + jzf[t,  p(t)]  dt, where f satisfies a Lipschitz condition
of the form

If(x,y) -f(x,  41 I Kly - 4

for all x in J and all real y and z; here K is a positive constant. Let L(J) denote the length
of the interval J. If KL(J) < 1 we can easily show that T is a contraction operator with
contraction constant KL(J). In fact, for every x in J we have

IT(v)(x) - T(ly)(x)l  = 1 s,” {f[t,  y(t)1 -f[4 y(f)l}  dt 1 I K 1 j” Ip(t)  - y(t)/  dt (

I~lIrp-~ll/~~~~~~I~~~J~lIp,-yll.

If KL(J)  < 1, then Tis a contraction operator with contraction constant r.  = KL(J).

* 7.28 Fixed-point theorem for contraction operators

The next theorem shows that every contraction operator has a unique fixed point.

THEOREM 7.20. Let T: C(J) 4 C(J) be a contraction operator. Then there exists one and
only one function q in C(J) such that

(7.71) T(v) = v.

Proof. Let p10  be any function in C(J) and define a sequence of functions {pl,}  by the
recursion formula

P)n+l = T(G) for n = 0, 1,2, . . . .
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Note that P)~+~ E C(J) for each n. We shall prove that the sequence {q,} converges to a
limit function p in C(J). The method is similar to that used in the proof of Theorem 7.18.
We write each qn as a telescoping sum,

n-1

(7.72) %(X>  = vob) +&bk+lb)  - PkW

and prove convergence of {p,}  by showing that the infinite series

(7.73)

converges uniformly on J. Then we show that the sum of this series is the required fixed
point.

The uniform convergence of the series will be established by comparing it with the
convergent geometric series

M&
k=O

where M = II  P)~II  + (IqlII  , and c( is a contraction constant for T. The comparison is
provided by the inequality

iP)k+~(~)  - pk(X)i  < M&k

which holds for every x in J and every k 2 1 . To prove (7.74) we note that

Therefore the inequality in (7.74) will be proved if we show that

(7.75) IIPk - Pk-111  5  Mak-l

for every k 2 1. We now prove (7.75) by induction. For k = 1 we have

II%  _-  ~011  I IIPIII  + lIploll = M,

which is the same as (7.75). To prove that (7.75) holds for k + 1 if it holds for k we note
that

Ivk+~(~)  - Q)k(X)I = IT(vk)(x)  - T(f?‘k-&)I  5  a  iIP)k  - ~k-lii  5  Ma”.

Since this is valid for each x in J we must also have

b~k+l - vkll  5  Ma”.

This proves (7.75) by induction. Therefore the series in (7.73) converges uniformly on J.
If we let v(x) denote its sum we have

(7.76) dx)  ‘;irnm%dx)  = e)Ocx>  +k~obk+l(x)  - vk<x>>  .
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The function p is continuous on J because it is the sum of a uniformly convergent series
of continuous functions. To prove that 9 is a fixed point of T we compare T(v) with

a) n+l = T(~I~).  Using the contraction property of T we have

(7.77) IT(gl)(x)  - ~n+lCdI  = IT(v)(x) - Al I a Id4 - R&~I .

But from (7.72) and (7.76) we find

where in the last step we used (7.74). Therefore (7.77) implies

IT(P)(x) - f?L+dx)I  I M 2 d+l*k=n

When n -+ co the series on the right tends to 0, so ~~+r(x)  - T(p)(x). But since pn+r(x)  -
p(x) as n + co, this proves that q(x) = T(v)(x) for each x in J. Therefore p = T(v),
so v is a fixed point.

Finally we prove that the fixed point q~  is unique. Let y be another function in C(J) such
that T(y) = y. Then we have

IIF  - YII  = IIT  - T(y)II  I a IIP  - YII.

This gives us (1 - a) 11 CJI  - yI[ 5 0. Since a < 1 we may divide by 1 - a to obtain the
inequality 11~  - yll < 0. But since we also have II  v - yII 2 0 this means that 11~  - yII =
0, and hence pl - y = 0. The proof of the fixed-point theorem is now complete.

r 7.29 Applications of the fixed-point theorem

To indicate the broad scope of applications of the fixed point theorem we use it to prove
two important theorems. The first gives a sufficient condition for an equation of the form
f(x, r) = 0 to define y as a function of x.

THEOREM 7.21. AN IMPLICIT-FUNCTION THEOREM. Let f be defined on a rectangular strip
R of the form

R={(x,y)Ia~xIb,--co<<++}.

Assume that the partial derivative D,f  (x, y) exists7  and satisfies an inequality of the form

(7.78) O<ml&f(x,y)lM

t D,f(x,  y) is the derivative off(x,  y) with respect to y, holding x fixed.
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for all (x, y) in R, where m and M are constants with m < M. Assume also that for each
function a, continuous on [a, b] the composite function g(x) =f’[x,  p(x)]  is continuous on
[a, b]. Then there exists one and on[y  one function y = Y(x), continuous on [a, b], such that

(7.79) f [x, c41  = 0

for all  x in [a, b].

Note: We describe this result by saying that the equationf(x, y) = 0 serves to define
y implicitly as a function of x in [a, b].

Proof. Let C denote the linear space of continuous functions on [a, b], and define an
operator T: C + C by the equation

T(v)(x) = P,(X) - !p, P(X)1

for each x in [a, b]. Here M is the positive constant in (7.78). The function T(v)  E C
whenever q E C. We shall prove that T is a contraction operator. Once we know this it
follows that T has a unique fixed point Y in C. For this function Y we have Y = T(Y)
which means

Y(x) = Y(x) - -$,  Y(x)]

for each x in [a, b]. This gives us (7.79),  as required.
To show that T is a contraction operator we consider the difference

T(F)(X)  - T(y)(x)  = P(X)  - Y(X)  - fbk dx>l - f[% v(x)1
M

By the mean-value theorem for derivatives we have

fk p?c41  -fh YWI = &fb?  44l[dx)  - Y(X)1  3

where z(x) lies between q(x) and y(x). Therefore (7.80) gives us

T(q)(x)  - T(y)(x) = [y(x)  - y(x)] (1 - “j[; ‘(x”) .

The hypothesis (7.78) implies that

0 < 1 _ wk z(x)1
-

M
<l---m.

M

Therefore (7.81) gives us the inequality

(7.82) IT(Y)(X) - T(yK4I < Id-4  - y(x)1 (1 - ;j 2 ct IIv  - YII  3

where u = 1 - m/M. Since 0 < m < M, we have 0 < M < 1. Inequality (7.82) is valid
for every x in [a, b]. Hence T is a contraction operator. This completes the proof.
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The next application of the fixed-point theorem establishes an existence theorem for the
integral equation

(7.83) yW = y(x) + 1 Jab W, Oy(t)  dt .

Here y is a given function, continuous on [a, b], L is a given constant, and K is a given
function defined and bounded on the square

The function K is called the kernel of the integral equation. Let C be the linear space of
continuous functions on [a, b]. We assume that the kernel K is such that the operator T
given by

T(F)(X)  = Y(X)  + 2 s,”  K(x>  t>dt>  dt

maps C into C. In other words, we assume that T(p)  E C whenever 9 E C. A solution of
the integral equation is any function ~1  in C that satisfies (7.83).

THEOREM 7.22. AN EXISTENCETHEOREMFOR INTEGRAL EQUATIONS. If,undertheforegoing
conditions. we have

(7.84) IW,YI  I M

for all (x, y) in S, where A4 > 0, then for each i such that

(7.85) 111  < l
M(b - a)

there is one and only one function 91 in C that satisjes  the integral equation (7.83).

Proof. We shall prove that T is a contraction operator. Take any two functions v1 and
qz in C and consider the difference

T(eld(x>  - T(P&)  = A J^,”  K(x,  t>[dt)  - dt)l  dt.

Using the inequality (7.84) we may write

IT(R)(X)  - Al  I I4  Wb - a) 11~  - PAI  = CC Iv1  - qd  ,

where CI  = Iill M(b  - a). Because of (7.85) we have 0 < tc  < 1, so T is a contraction
operator with contraction constant u. Therefore T has a unique fixed point q~  in C. This
function v satisfies (7.83).





PART 2
NONLINEAR ANALYSIS





8

DIFFERENTIAL CALCULUS OF SCALAR AND

VECTOR FIELDS

8.1 Functions from R” to R”. Scalar and vector fields

Part 1 of this volume dealt primarily with linear transformations

T:V+W

from one linear space V into another linear space W. In Part 2 we drop the requirement
that T be linear but restrict the spaces V and W to be finite-dimensional. Specifically, we
shall consider functions with domain in n-space R”  and with range in m-space R”.

When both n and m are equal to 1, such a function is called a real-valued function of a
real variable. When it = 1 and m > 1 it is called a vector-valued function of a real variable.
Examples of such functions were studied extensively in Volume I.

In this chapter we assume that n > 1 and m 2 1 . When m = 1 the function is called a
real-valued function of a vector variable or, more briefly, a scalar$eld.  When m > 1 it is
called a vector-valued function of a vector variable, or simply a vectorJeld.

This chapter extends the concepts of limit, continuity, and derivative to scalar and
vector fields. Chapters 10 and 11 extend the concept of the integral.

Notation: Scalars will be denoted by light-faced type, and vectors by bold-faced type.
If f is a scalar field defined at a point x = (x1,  . . . , XJ in R”,  the notations f(x) and
“f(x1,. . * 3 x,) are both used to denote the value offat that particular point. Iffis a vector
field we write f(x) or f(xl, . . . , x,) for the function value at x. We shall use the inner
product

n
x-y =xxry,

k=l

and the corresponding norm \lxll = (x * x)‘h,  where x =  (x1,  .  .  .  ) XJ and y =

e;“, )
. , y,). Points in R2  are usually denoted by (x, JJ)  instead of (x1,  x,); points in R3

X, , z ins t e a d o f ( x  x  x )
Scalar and vector field!s’d&~d on subsets of R2  and R3  occur frequently in the appli-

cations of mathematics to science and engineering. For example, if at each point x of the
atmosphere we assign a real numberf(x)  which represents the temperature at x, the function

243
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f so defined is a scalar field. If we assign a vector which represents the wind velocity at
that point, we obtain an example of a vector field.

In physical problems dealing with either scalar or vector fields it is important to know
how the field changes as we move from one point to another. In the one-dimensional case
the derivative is the mathematical tool used to study such changes. Derivative theory in
the one-dimensional case deals with functions defined on open intervals. To extend the
theory to R” we consider generalizations of open intervals called open sets.

8.2 Open balls and open sets

Let a be a given point in R” and let r be a given positive number. The set of all points x
in R” such that

lb - all < r

is called an open n-ball of radius r and center a. We denote this set by B(a) or by B(a; r).
The ball B(a; r) consists of all points whose distance from a is less than r. In R1 this is

simply an open interval with center at a. In R2 it is a circular disk, and in R3 it is a spherical
solid with center at II and radius r.

DEFINITION OF AN INTERIOR POINT. Let S be a subset of R”,  and assume that a E S . Then
a is called an interior point of S if there is an open n-ball with center at a, all of whose points
belong to S.

In other words, every interior point a of S can be surrounded by an n-ball B(a) such that
B(a)  G S. The set of all interior points of S is called the interior of S and is denoted by
int S. An open set containing a point a is sometimes called a neighborhood of a.

DEFINITION OF AN OPEN SET. A set S in R” is called open ifall  its points are interior points.
In other words, S is open if and only if S = int S.

EXAMPLES. In R1 the simplest type of open set is an open interval. The union of two or
more open intervals is also open. A closed interval [a, b] is not an open set because neither
endpoint of the interval can be enclosed in a l-ball lying within the given interval.

The 2-ball S = B(O;  1) shown in Figure 8.1 is an example of an open set in R2.  Every
point a of S is the center of a disk lying entirely in S. For some points the radius of this
disk is very small.

Some open sets in R2 can be constructed by taking the Cartesian product of open sets in
R1.  If Al and A, are subsets of R1,  their Cartesian product A, x A, is the set in R2 defined

bY
A ,  x A2=  {(al,a2)ja,EAl  and a,EA,}.

An example is shown in Figure 8.2. The sets A, and A2  are intervals, and A, x A2 is a
rectangle.

1 f A, and A, are open subsets of R’, then AI x A, will be an open subset of R2. To prove
this, choose any point a = (a,, a2) in A, x A,. We must show that a is an interior point
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Circular disk

FIGURE 8.1 The disk B(0; 1) is an open
set in R2.

FIGURE 8.2 The Cartesian product of two
open intervals is an open rectangle.

of A, x A,. Since Ai and A2 are open in R1  there is a l-ball B(a,;  rl) in A1 and a l-ball
B(a,  ; rJ in A,. Let r = min {rl, r2}. We can easily show that the 2-ball  B(a;  r) c
A1 x A,. In fact, if x = (x1,  x2)  is any point of B(a;  r) then 1(x - u/J  < r, so Ix1 - a,!  < rl
and lx, - a,]  < r2. Hence x1 E B(a,  ; rl) and x2 E B(a,  ; r2). Therefore x1 E A, and
x2  ~A29 so (x,,x,)~A,  x A,. This proves that every point of B(a;  r) is in A, x A*.
Therefore every point of A, x A? is an interior point, so A, x A2  is open.

The reader should realize that an open subset of R1  is no longer an open set when it is
considered as a subset of R2,  because a subset of R’  cannot contain a 2-ball.

DEFINITIONS OF EXTERIOR AND BOUNDARY. A point x is said  to be exterior to a set S in
R”  ifthere  is an n-b&l  B(x) containing no points of S. The set of allpoints  in R”  exterior to S
is culled the exterior of 5’ and is denoted by ext S. A point which is neither exterior to S nor an
interior point of S is called a boundary point of S. The set qf  ail boundary points of S is called
the boundary of S and is denoted by 8s.

These concepts are illustrated in Figure 8.1. The exterior of S is the set of all x with
llxjl  > 1.  The boundary of S consists of all x with l/xl/  = 1.

8.3 Exercises
1. Letf be a scalar field defined on a set S and let c be a given real number. The set of all points

x in S such thatf(x)  = c is called a level set  off. (Geometric and physical problems dealing
with level sets will be discussed later in this chapter.) For each of the following scalar fields.
S is the whole space Rfl. Make a sketch to describe the level sets corresponding to the given
values of c.
G-4 .f(x, y)  = x2 + y2, c =o,  1,4,9.
(b) .f(x,  y) = eZy, c = ee2 , e-l, 1,  c, e2,  e3.

(4 f(x, y) = cm (x I- y) 9 c = -1,0,&g& 1.
(d),f(x,y,z)  =x +y  +z, c = -l,O, 1.
(e) ,f(x,  y, z) = x2 + 2y2  + 3z2, c =0,6,12.

(f) ,f(x, y,  z) = sin (x”  + -y2 + z2), c = -1, -3,  o,+,b,  1.
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2. In each of the following cases, let S be the set of all points (x,y) in the plane satisfying the
given inequalities. Make a sketch showing the set S and explain, by a geometric argument,
whether or not S is open. Indicate the boundary of S on your sketch.
(a) x2 + y2 < 1 . (h) 1 Ix 12and3 <y  <4.
(b) 3x2  + 2y2 < 6. (i) 1 <x <2andy >O.
(c) 1x1 < 1 and lyl < 1. Cj)  x2y.
(d) x 2 0 and y > 0 . 04 x >y.
(e) 1x1 5 1 and lyl I 1. (1) y > x2 and [xl  < 2.
(f) x >Oandy  <O. (m) (x2  +y2 - 1)(4  -x2 -y2)  > 0.
(g)  xy < 1 . (n) (2x -x2 -y2)(x2  +y2 -x) >O.

3. In each of the following, let S be the set of all points (x, y, z) in 3-space  satisfying the given
inequalities and determine whether or not S is open.
(a) z* -x2 -y* - 1 >O.
(b) 1x1  < 1, lyl < 1, and Iz/ < 1.
(c) x + y + z < 1.
(d) 1x1  I 1,  lyl < 1, and Izl < 1.
(e) x+y+z<landx>O,y>O,z>O.
(f) x2 + 4y2 + 4z2  - 2x + 16y  +4Oz + 113 <O.

4. (a) If A is an open set in n-space and if x E A, show that the set A - {x}, obtained by
removing the point x from A, is open.
(b) If A is an open interval on the real line and B is a closed subinterval of A, show that
A - B is open.?
(c) If A and B are open intervals on the real line, show that A u B and A n B are open.
(d) If A is a closed interval on the real line, show that its complement (relative to the whole
real line) is open.

5. Prove the following properties of open sets in Rn:
(a) The empty set 0 is open.
(b) R” is open.
(c) The union of any collection of open sets is open.
(d) The intersection of a finite collection of open sets is open.
(e) Give an example to show that the intersection of an infinite collection of open sets is not
necessarily open.

Closed sets. A set Sin Rn is called closed if its complement Rn - S is open. The next three
exercises discuss properties of closed sets.

6. In each of the following cases, let S be the set of all points (x, y) in R2 satisfying the given
conditions. Make a sketch showing the set Sand give a geometric argument to explain whether
S is open, closed, both open and closed, or neither open nor closed.
(a) x2 +y2 2 0. (g)  1 <x  12,3 <y  14.
(b) x2 +y2 < 0. (h) 1 Ix 12,3  <y  <4.
(c) x2 + y2 5 1 . (i) y = x2.
(d) 1 < x2 + y2 < 2. Cj)  y 2 x2.
(e) 1 <x2 +y2 12. (k) y 2 x2 and 1x1  < 2.
(f) 1 <x2 +y2 12. (1) y 2 x2 and 1x1  I 2.

7. (a) If A is a closed set in n-space and x is a point not in A, prove that A u {x}  is also closed.
(b) Prove that a closed interval [a, 61  on the real line is a closed set.
(c) If A and B are closed intervals on the real line, show that A u B and A n B are closed.

t If A and B  are sets, the difference A - B  (called the complement of B relative to A) is the set of all
elements of A which are not in B.
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8. Prove the following properties of closed sets in Rn. You may use the results of Exercise 5.
(a) The empty set .a is closed.
(b) Rn is closed.
(c) The intersection of any collection of closed sets is closed.
(d) The union of a finite number of closed sets is closed.
(e) Give an example to show that the union of an infinite collection of closed sets is not
necessarily closed.

9. Let S be a subset of Rn.
(a) Prove that both int S and ext S are open sets.
(b) Prove that Rn  = (int S) u (ext S) U W, a union of disjoint sets, and use this to deduce
that the boundary aS is always a closed set.

10. Given a set S in Rn and a point x with the property that every ball B(xJ contains both interior
points of S and points exterior to S. Prove that x is a boundary point of S. Is the converse
statement true? That is, does every boundary point of S necessarily have this property?

11. Let S be a subset of Rn. Prove that ext S = int(R”  - S) .
12. Prove that a set S in R”  is closed if and only if S = (int S) u W.

8.4 Limits and continuity

The concepts of limit and continuity are easily extended to scalar and vector fields. We
shall formulate the definitions for vector fields; they apply also to scalar fields.

We consider a functionf: S + R” , where S is a subset of R”. If a E  R”  and b E R” we
write

(8.1)

to mean that

limf(x) = b
X-W

(or,f(x)  - b as x + a)

(8.2) ,,xF;+o II f(x)  - bil  = 0.

The limit symbol in equation (8.2) is the usual limit of elementary calculus. In this definition
it is not required thatf be defined at the point a itself.

If we write h = x - a, Equation (8.2) becomes

,,fifno  IIf@ + h)  - bll = 0.

For points in R2  we write (x, y) for x and (a, 6) for u and express the limit relation (8.1) as
follows :

lim f(x, y) = b.
(x,li)+(o,ll)

For points in R3  we put x = (x, y, z) and a = (a, b, c) and write

lim f(x, Y, 2)  = b s
(e,u,d-(o,b,c)

A function f is said to be continuous at a if f is defined at a and if

We say f is continuous on a set S iff is continuous at each point of S.
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Since these definitions are straightforward extensions of those in the one-dimensional
case, it is not surprising to learn that many familiar properties of limits and continuity can
also be extended. For example, the usual theorems concerning limits and continuity of
sums, products, and quotients also hold for scalar fields. For vector fields, quotients are
not defined but we have the following theorem concerning sums, multiplication by scalars,
inner products, and norms.

THEOREM 8.1. If lim f(x) = b and lim g(x) = c, then we also have:
*-+(I sea

(a)  22 If(x)  +  g(x)1 =  b +  c.

(b) lim I..(x)  =  Ib
x-0

for every scalar A.

(c) $iT f(x) - g(x) = b - c .

(4 lim  IIf(4II = llbll.x+a

Proof. We prove only parts (c) and (d); proofs of (a) and (b) are left as exercises for
the reader.

To prove (c) we write

f(x) * g(x) - b - c = [f(x) - b] * [g(x) - cl  + IJ . [g(x) - c]  + c - If(x) - 61.

Now we use the triangle inequality and the Cauchy-Schwarz  inequality to obtain

0 < llf(x) -g(x)  - 6 * CII < IIf  - 41  Ild4 - cll + II4 II&)  - cl/ + II4  IIf  - 611  *

Since IIf - 611 + 0 and Ilg(x) - cl/ + 0 as x + a, this shows that IIf * g(x) - b . cl1 -+
0 as x + a, which proves (c).

Takingf(x)  = g(x) in part (c) we find

from which we obtain (d).

FFa  Il.m)ll”  = 11412  9

EXAMPLE 1. Continuity and components of a vectorjeld. If a vector field f has values in
R”, each function value f(x) has m components and we can write

f(x) = y;c4,  * * * 3 f&N *

The m scalar fields fr , . . . ,f, are called components of the vector fieldf. We shall prove
that f is continuous at a point if, and only if, each componentf,  is continuous at that point.

Let ek  denote the kth unit coordinate vector (all the components of ek  are 0 except the
kth, which is equal to I). Thenf,(x) is given by the dot product
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Therefore, part (c) of Theorem 8.1 shows that each point of continuity offis also a point of
continuity of fk.  Moreover, since we have

repeated application of parts (a) and (b) of Theorem 8.1 shows that a point of continuity
of all m components fl, .  . . , f, is also a point of continuity off.

EXAMPLE 2. Continuity of the identity function. The identity function, f(x) = x, is
continuous everywhere in R”. Therefore its components are also continuous everywhere
in R”.  These are the n scalar fields given by

fi(X) = x1, fJx)  = x2, . . . ,fn(x)  = x,.

EXAMPLE 3. Continuity of linear transformations. Letfi R” + Rm  be a linear transforma-
tion. We will prove that f is continuous at each point a in R”. By linearity we have

f(a + ir)  = f(a)  +f@) -

Therefore, it suffices to prove thatf(B) + 0 as h - 0. Writing h in terms of its components
we have h = h,e, + **.  + h,e,. Using linearity again we find f(h) = h,f(e,) + * * * +
h&e,). This shows that f(h) -+ 0 as h + 0.

EXAMPLE 4. Continuity of polynomials in n variables. A scalar field P defined on R” by a
formula of the form

P(x) =jgO.  . .,r, Ck,.  . +,x:  * * * xk,,
1 ”

is called a polynomial in n variables x1, . . . , x, . A polynomial is continuous everywhere
in R” because it is a finite sum of products of scalar fields continuous everywhere in R”.
For example, a polynomial in two variables x and y, given by

is continuous at every point (x, y) in R2.

ExAMeLE  5. Continuity of rational functions. A scalar field f given by f (x) = P(x)/Q(x) ,
where P and Q are polynomials in the components of x, is called a rational function. A
rational function is continuous at each point where Q(x) # 0.

Further examples of continuous function can be constructed with the help of the next
theorem, which is concerned with continuity of composite functions.
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THEOREM 8.2. Let f and g be functions such that the composite function f 0 g is dejned  at
a, where

(fo d(x)  = fW>l  *

If g is continuous at a and if f is continuous at g(a), then the composition f 0 g is continuous
at a.

Proof. Let y = f(x) and 6 = g(a). Then we have

fM41 -fM41  =fW  -f(b).

By hypothesis, y +basx-ta,sowehave

,,x!~:_oIlfk(~))l  -fk(a>lII  ,liy ollf(y) -f(b)ll = 0.

Therefore tin f[g(x)]  = f[g(a)] , so f 0 g is continuous at a.

EXAMPLE 6. The foregoing theorem implies continuity of scalar fields h, where h(x, y) is
given by formulas such as

X+2/
sin (x”y), log (2 + y”>, x - -

X+Y’
log [cos (x” + y2)].

These examples are continuous at all points at which the functions are defined. The first is
continuous at all points in the plane, and the second at all points except the origin. The
third is continuous at all points (x, y) at which x + y # 0, and the fourth at all points at
which x2 + y2 is not an odd multiple of n/2. [The set of (x, y) such that x2 + y2 = m-/2,
n = 1)  3, 5, . . . , is a family of circles centered at the origin.] These examples show that
the discontinuities of a function of two variables may consist of isolated points, entire
curves, or families of curves.

EXAMPLE 7. A function of two variables may be continuous in each variable separately
and yet be discontinuous as a function of the two variables together.
the following example:

This is illustrated by

fb, Y> = e2 if  (x, Y)  Z (0, 01,  f(0, 0) =  0 .

For points (x, y) on the x-axis we have y = 0 andf(x, y) = f(i, 0) = 0, so the function
has the constant value 0 everywhere on the x-axis. Therefore, if we put y = 0 and think of
f as a function of x alone,fis continuous at x = 0. Similarly,fhas the constant value 0
at all points on the y-axis, so if we put x = 0 and think off as a function of y alone, f is
continuous at JJ = 0. However, as a function of two variables,fis not continuous at the
origin. In fact, at each point of the line y = x (except at the origin) the function has the
constant value 4 because f(x, x) = x*/(2x2) = 4 ; since there are points on this line
arbitrarily close to the origin and since f (0,O) # 4, the function is not continuous at (0, 0).
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The exercises in this section are concerned with limits and continuity of scalar fields defined on
subsets of the plane.

1. In each of the following examples a scalar fieldfis defined by the given equation for all points
(x, y) in the plane for which the expression on the right is defined. In each example determine
the set of points (x, y) at whichfis continuous.

(a) f(x,  y) = x4 + y4 - 4x2y2. (f) f(x,  y) = arcsin X .
Jx”  + y2

(b) f(x,  y) = log (x2  + y2).
x +Y(g) f(x,  y) = arctan  -

1 -xy’

(h) f(x,  y) = -A.
Jx”  + y2

(i) f(x,  y) = x(“‘).

(e) f(x,  y) = arctan  :. (j) f(x,  y) = arccos Jx/y  .

2. If lim f(x,  y) = L, and if the one-dimensional limits
(r,yl+h,bJ

lim f<x,  y) a n d limfh, y>
z+a v-b

both exist, prove that

lim [limf(x,  y)] = lim [limf(x,y)]  = L.
z+a ll+b 2/+b  ~+a

The two limits in this equation are called iterated limits; the exercise shows that the existence of
the two-dimensional limit and of the two one-dimensional limits implies the existence and equality
of the two iterated limits. (Th e converse is not always true. A counter example is given in
Exercise 4.)

3. Letf(x,  y) = (x - y)/(x  + y) if x + y Z 0. Show that

lim [limf(x,  y)] = 1
e - o  u-0

but that lim [limJ’(x,  y)] = -1.
u - o  x-.0

Use this result with Exercise 2 to deduce thatf(x,  y) does not tend to a limit as (x, y) -+ (0, 0).
4. Let

Show that

j-(X, y) = xzy”
x”y” + (x - y)2

whenever X'J? + (x - Y)~  # 0.

lim [limf(x,  y)] = lim [limf(x,  y)] = 0
x-0  v-0 1/r+o s+o

but thatf(x,  y) does not tend to a limit as (x, y) + (0,O).  [Hint: Examinefon the line y = x .]
This example shows that the converse of Exercise 2 is not always true.



252 Dlrerential  calculus of scalar and vector$elds

5.

6.

Let

l

1
x sin -

f<x,  y> = y
i f  y#O,

0 i f  y=O.

Show thatf(x,  y) + 0 as (x, y) + (0,O)  but that

lim [limf(x,  u)l  # lim [limf(x,  u)] .
u-0  x40 x7+0  w-+0

Explain why this does not contradict Exercise 2.

If  (x,  y) + @,O),  letfk  y) = (x2 - v2)/(x2 + v2).  Find the limit off(x,  v) as (x, y) + (0,O)
along the line y = mx. Is it possible to definef(0,  0) so as to makefcontinuous at (0, O)?
Letf(x,  y) = 0 ify < 0 or ify > x2 and letf(x,  y) = 1 if 0 < y < x2. Show thatf(x,  y) - 0
as (X,JJ)  + (0,O)  along any straight line through the origin. Find a curve through the origin
along which (except at the origin)f(x,  JJ)  has the constant-value 1. Isfcontinuous at the origin?
If f(x,  y) = [sin (x2  + v2)]/(x2 + u2)  when (x, u) # (0,O)  how must f(0,  0) be defined so as
to makefcontinuous at the origin?
Letfbe a scalar field continuous at an interior point a of a set S in R”. Iff(a)  # 0, prove that
there is an n-ball B(a) in whichfhas the same sign asf(a).

8.6 The derivative of a scalar field with respect to a vector

This section introduces derivatives of scalar fields. Derivatives of vector fields are dis-
cussed in Section 8.18.

Let f be a scalar field defined on a set S in R”, and let a be an interior point of S. We
wish to study how the field changes as we move from a to a nearby point. For example,
supposef(a) is the temperature at a point a in a heated room with an open window. If we
move toward the window the temperature will decrease, but if we move toward the heater
it will increase. In general, the manner in which a field changes will depend on the direction
in which we move away from I(.

Suppose we specify this direction by another vector y. That is, suppose we move from a
toward another point a + y along the line segment joining a and a + y . Each point on this
segment has the form a + hy, where h is a real number. An example is shown in Figure
8.3. The distance from a to a + hy is llhyll = lhl llyll .

Since a is an interior point of S, there is an n-ball B(a;  r) lying entirely in S. If h is chosen
so that Ihl llyll < r , the segment from a to a + hy will lie in S. (See Figure 8.4.) We keep

’ B(a;r)

FIGURE 8.3 The point a + hv lies on the line FIGURE 8.4 The point a + hy lies in the
through a parallel to JJ. n-ball B(a; r) if jlhyjl < r.
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h # 0 but small enough to guarantee that a + hy E S and we form the difference quotient

(8.3)
f@ + b) -f(a)

h ’

The numerator of this quotient tells us how much the function changes when we move
from a to a + hy . The quotient itself is called the average rate of change off over the line
segment joining a to a + hy . We are interested in the behavior of this quotient as h + 0.
This leads us to the following definition.

DEFINITION OF THE DERIVATIVE OF A SCALAR FIELD WITH RESPECT TO A VECTOR. Given a
scaIar$eldf:  S + R , where S c R”  . Let a be an interior point of S and let y be an arbitrary
point in R”. The derivative off at a with respect toy is denoted by the symbolf  ‘(a; y) and is
dejned  by the equation

(8.4)
fr(a; y) = limf(a + W -.I-(4

h-t0 h

when the limit on the right exists.

EXAMPLE 1. If y = 0, the difference quotient (8.3) is 0 for every h # 0, so f’(u; 0)
always exists and equals 0.

EXAMPLE 2. Derivative of a linear transformation. Iff: S + R is linear, then f (a + hy) =
f(a) + hf(y) and the difference quotient (8.3) is equal tof(y) for every h # 0. In this case,
f’(a; y) always exists and is given by

f’@;  Y> =f(y)

for every a in S and every y in R”. In other words, the derivative of a linear transformation
with respect to y is equal to the value of the function at y.

TO study how f behaves on the line passing through a and  a + y for  y # 0 we introduce
the function

g(t) = f(a + 09.

The next theorem relates the derivatives g’(t) and f '(a + ty; y).

T H E O R E M  8.3. Let g(t) =f(a  + ty). If one of the derivatives g’(t) or f ‘(a + ty; y)
exists then the other also exists and the two are equal,

(8.5) g’(t)  =f’(a + ty; y>.

In particular, when t = 0 we have g’(O)  = f ‘(a; y) .
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Proof. Forming the difference quotient for g, we have

At  + h) - g(t) = f(a + tY + hY> - f@ + ty>
h h

Letting h + 0 we obtain (8.5).

EXAMPLE 3. Compute f '(a; y) if f (x) = 11.x  /I 2 for all x in R”.

Solution. We let g(t)=f(a+tY)=(a+tY).(a+tY)=a.a+2taeY+t2YaY.
Therefore g’(t) = 2u  . y + 2ty . y , so g’(0) = f ‘(a; Y) = 2~ . y .

A simple corollary of Theorem 8.3 is the mean-value theorem for scalar fields.

THEOREM 8.4. MEAN-VALUE THEOREM FOR DERIVATIVES OF SCALAR FIELDS. Assume the
derivativef’(u  + ty; y) exists for each t in the interval 0 5 t < 1. Then for some real 19 in
the open interval 0 < 0 < 1 we have

flu + Y) -f(a) =f’(z;y), where z=u+By.

Proof. Let g(t) = f (a + ty) . Applying the one-dimensional mean-value theorem to g
on the interval [0, l] we have

g(l) - g(O)  = g’(W 3 where 0 < 6’  < 1.

Since g(l) - g(0) = f(u  + y) -f(u) and g’(0) = f ‘(a + 19y;  y), this completes the proof.

8.7 Directional derivatives and partial derivatives

In the special case when y is a unit vector, that is, when 11 yll = 1 , the distance between a
and a + hy is Ihl.  In this case the difference quotient (8.3) represents the average rate of
change offper  unit distance along the segment joining u to a + hy ; the derivative f ‘(a; y)
is called a directional derivative.

DEFINITION OF DIRECTIONAL AND PARTIAL DERIVATIVES. If y is a unit vector, the derivative
f ‘(a; y) is called the directional derivative off at a in the direction of y. In particular, if
y = ek (the kth unit coordinate vector) the directional derivative f ‘(a; e,J  is called the partial
derivative with respect to ek and is also denoted by the symbol Dkf (a). Thus,

&f (4 = f ‘(a ; ek)  .

The following notations are also used for the partial derivative Dkf  (a):

Dkf(al,  . . . , a,), and f&(a,,  . . . , a,).
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Sometimes the derivative fLk is written without the prime as f,, or even more simply

ash.
In R2  the unit coordinate vectors are denoted by i and j. If a = (a, b) the partial derivatives

f ‘(a; i) and f ‘(a; j) are also written as

E (a,  b) and ; (0, b),

respectively. In R3,  if a = (u, b, c) the partial derivatives D&u), D&(u), and Df(u) are
also denoted by

E (a, b, c> > ; (a, b, 4, and z (a,  b, 4.

8.8 Partial, derivatives of higher order

Partial differentiation produces new scalar fields DJ, . . . , DJfrom a given scalar field
J The partial derivatives of DJ, . . . , Dnf  are called second-order partial derivatives off.
For functions of two variables there are four second-order partial derivatives, which are
written as follows:

a”fDd4f) = -axay'
atf

D,(D,f  ) = ax 3
atf

Y
D,(W) = j--y.

Note that D1(D2f)  means the partial derivative of D,f  with respect to the first variable.
We sometimes use the notation Di,jf  for the second-order partial derivative Di(Djf).  For
example, D,,,f  = D,(D,f).  In the &notation we indicate the order of derivatives by
writing

a2f a af
zFy=&iy( 1

This may or may not be equal to the other mixed partial derivative,

a”f a af
ayax  = G Z *( 1

In Section 8.23 we shall prove that the two mixed partials D,(D2f)  and D,(D,f)  are equal
at a point if one of them is continuous in a neighborhood of the point. Section 8.23 also
contains an example in which D1(D2f)  # D2(DIf)  at a point.

8.9 Exercises

1. A scalar field f is defined on Rn  by the equationf(x) = a . x, where a is a constant vector.
Computef’(x; y) for arbitrary x and y.
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2. (a) Solve Exercise 1 whenf(x) = ll~11~.
(b) Take n = 2 in (a) and find all points (x, y) for whichf’(2i + 3j; xi + yj)  = 6.
(c) Taken = 3 in (a) and find all points (x, y, z) for whichf’(i + 2j + 3k; xi + yj + zk) = 0.

3. Let T: Rn + Rn be a given linear transformation. Compute the derivativef’(x; y) for the
scalar field defined on Rn by the equationf(x) = x . T(x).

In each of Exercises 4 through 9, compute all first-order partial derivatives of the given scalar field.
The fields in Exercises 8 and 9 are defined on Rn.

4. f(x, y) = x2 + y2 sin (xy) . 7.&y) =z, x #y.

5. f(X, y) = Jx” + y2. 8. f(x) = a . x , II fixed.

6.f(x,y) = 5,
Jx” + y2

(x, y) # (0,O). 9. f(x) = 2 2 UijXiXi, adj  = aji.
i-1  j=l

In each of Exercises 10 through 17, compute all first-order partial derivatives. In each of Exercises
10, 11, and 12 verify that the mixed partials D,(D,f) and D,(D,f) are equal.

10. f(X, y) = x4 + y4 - 4xzy2. 14. f(x, y) = arctan  (y/x), x #O.

11. f(X, y) = log (x2  + y2),
x +Y(x, y) # (0,O).  15. f(x, y) = arctan  -
1 -xy’

xy # 1.

12. J-(x, y) = $ cos X2) y #O. 16. f(x, y) = x@J  , x  >o .

13. f<x, y) = tan (x2/y), y #O. 17. f(x, y:) = arccos Jxlv, y #O.

18. Let v(r,  t) = tne--T2/(41). Find a value of the constant n such that v satisfies the following
equation :

19. Given z = u(x,  y)eax+bv  and a2u/( ax ay) = 0. Find values of the constants a and b such that

azz  az az-----++z=().
axay ax ay

20. (a) Assume thatf’(x;  y) = 0 for every x in some n-ball B(a) and for every vector y. Use the
mean-value theorem to prove thatfis constant on B(a).
(b) Suppose that f’(x; JJ) = 0 for a $xed  vector y and for every x in B(a). What can you
conclude about f in this case?

21. A set S in Rn is called convex if for every pair of points a and b in S the line segment from a
to b is also in S;  in other words, ta + (1 - t)b E S for each t in the interval 0 < t < 1 .
(a) Prove that every n-ball is convex.
(b) Iff’(x; JJ) = 0 for every x in an open convex set S and for every y in Rn, prove thatfis
constant on S.

22. (a) Prove that there is no scalar fieldfsuch thatf’(a;  y) > 0 for a fixed vector a and every
nonzero  vector y.
(b) Give an example of a scalar field f such thatf’(x; y) > 0 for a fixed vector y and every
vector x.
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8.10 Directional derivatives and continuity

In the one-dimensional theory, existence of the derivative of a function f at a point
implies continuity at that point. This is easily proved by choosing an h # 0 and writing

f(a+h)-f(a)=f(a+h)--f(a).h.
h

As h + 0 the right side tends to the limit f’(a) * 0 = 0 and hence f(a  + h) --f(a). This
shows that the existence off’(a) implies continuity off at a.

Suppose we apply the same argument to a general scalar field. Assume the derivative
f’(a; y) exists for some y. Then if h # 0 we can write

f(a  + hy) -f(a)  = j(’ + ‘; -f(u).  h.

As h -+  0 the right side tends to the limitf’(u; JJ)  .O  = 0 ; hence the existence off’(u; y)
for a given y implies that

limf(a + hy) = f(a)
h+O

for the same y. This means thatf(x) -f(a as x --f a along a straight line through u having)
the direction y. Iff’(u; y) exists for every vector y, thenf(x) +f(u) as x + a along every
line through a. This seems to suggest thatfis continuous at u. Surprisingly enough, this
conclusion need not be true. The next example describes a scalar field which has a direc-
tional derivative in every direction at 0 but which is not continuous at 0.

EXAMPLE. Letfbe the scalar field defined on R2  as follows:

f(x, Y) = --g-j$ i f  x#O, f(O,  Y> = 0.

Let a = (0,O) and let y = (a, b) be any vector. If a # 0 and h # 0 we have

f@ + hy> -f(u) = .fW  -f(O) = f(ha,  hb) = ab2
h h h a2 + h2b4  *

Letting h + 0 we find f ‘(0; y) = b2/a. If y = (0, b) we find, in a similar way, that
f’(0; y) = 0. Therefore f’(0; y) exists for all directions y. Also, f(x) + 0 as x + 0
along any straight line through the origin. However, at each point of the parabola x = y2
(except at the origin) the functionfhas the value +. Since such points exist arbitrarily close
to the origin and since f (0) = 0, the function f is not continuous at 0.

The foregoing example shows that the existence of all directional derivatives at a point
fails to imply continuity at that point. For this reason, directional derivatives are a some-
what unsatisfactory extension of the one-dimensional concept of derivative. A more suitable
generalization exists which implies continuity and, at the same time, permits us to extend
the principal theorems of one-dimensional derivative theory to the higher dimensional case.
This is called the total derivative.
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8.11 The total derivative

We recall that in the one-dimensional case a function f with a derivative at a can be
approximated near a by a linear Taylor polynomial. Iff ‘(a) exists we let E(a,  h) denote the
difference

(8.6) E(a,  h) = f(a  + h, - f(a) - f’(a)
h

i f  h#O,

and we define E(a,  0) = 0. From (8.6) we obtain the formula

f(a + h) =f(a) + f'(a>h + hE(a,h),

an equation which holds also for h = 0. This is the first-order Taylor formula for approxi-
mating f (a + h) - f(a) by f ‘(a)h. The error committed is hE(a,  h). From (8.6) we see
that E(a, h) --f  0 as h + 0. Therefore the error hE(a,  h) is of smaller order than h for
small h.

This property of approximating a differentiable function by a linear function suggests a
way of extending the concept of differentiability to the higher-dimensional case.

Let f: S + R be a scalar field defined on a set S in R”. Let a be an interior point of S,
and let B(a;  r) be an n-ball lying in S. Let u be a vector with llujl < r, so that
a +  uEB(a;r).

DEFINITION OF A DIFFERENTIABLE SCALAR FIELD. We say that f is dtrerentiable  at a if there
exists a linear transformation

T,:R”+R

from R” to R, and a scalar function E(a,  u) such that

(8.7) f (a + v)  = f (a) + T,(v)  + II 4 -W, 4,

for II  VII  < r , where E(a,  u) + 0 as II  ~11  + 0. The linear transformation T, is called the total
derivative off at a.

Note: The total derivative T, is a linear transformation, not a number. The function
value T,(v) is a real number; it is defined for every point u in Rn. The total derivative was
introduced by W. H. Young in 1908 and by M. Frechet  in 1911 in a more general context.

Equation (8.7), which holds for II  uII < r, is called aflrst-order  Taylorformula forf (a + u).
It gives a linear approximation, T,(u), to the difference f(a + u) -f(u). The error in the
approximation is II  uII E(a, u), a term which is of smaller order than II  uII as 11 VII + 0 ; that is,
W, 4 = o(ll4>  as  Ilull - 0.

The next theorem shows that if the total derivative exists it is unique. It also tells us how
to compute T,(y) for every y in R”.
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THEOREM 8.5. Assume f is differentiable at a with total derivative T,. Then the derivative
f’(a; y) exists for every y in R”  and we have

w3) T,(Y) =.f’(a;y).

Moreover, f ‘(a; y) is a linear combination of the components ofy. Infact,  $y = (yI,  . . . , y,,)  ,
we have

(8.9)

Proof. Equation (8.8) holds trivially if y = 0 since both T,(O) = 0 andf’(a; 0) = 0.
Therefore we can assume that y # 0.

Since f is differentiable at a we have a Taylor formula,

(8.10) f(a  + v)  =f(a) + T,(u)  + II41 E(a, 4

for ((u/l  < r for some r > 0, where E(a,  u) + 0 as Ij~11  -+ 0. In this formula we take
21 = hy, where h # 0 and lhl  llyll < r. Then Ilull <r. Since T, is linear we have
T,(u) =  T,(hy) = hT,,(y)  . Therefore (8.10) gives us

(8.11) f(a + hy) - f(a) = T (y)
h n

+ I h I llvll
-E(a, 0).

h

Since IIuII  -+ 0 as h ---f  0 and since IhJ/h  = f 1, the right-hand member of (8.11) tends to the
limit T,(y) as h --f 0. Therefore the left-hand member tends to the same limit. This proves
(8.8).

Now we use the linearity of T, to deduce (8.9). If y = (yl, . . . , yn)  we have y =
lQ=, ykek,  hence

8.12 The gradient of a scalar field

The formula in Theorem 8.5, which expressesf’(a;  y) as a linear combination of the
components of y, can be written as a dot product,

where Vf (a) is the vector whose components are the partial derivatives off at a,

Vf  (a) = (W(a), . . . 7 o,f(a)) .

This is called the gradient off The gradient Of  is a vector field defined at each point a where
the partial derivatives D,f(a),  . . . , D&a)  exist. We also write grad f for Vf. The symbol
V is pronounced “del.”
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The first-order Taylor ormula (8.10) can now be written in the form

(8.12) f( + 4 =m + VfW  * u + II 4 J% 4 5

where E(a, u) ---f  0 as II  uI[ -+  0. In this form it resembles the one-dimensional Taylor
formula, with the gradie t vector V’(u) playing the role of the derivativef’(u).

From the Taylor form la we can easily prove that differentiability implies continuity.

THEOREM  8.6. iIf a sea rjeldf is difSerentiable  at a, then f is continuous at a.

Proof. From (8.12) we have

If@  + 4 -f@>l  = IV@> * u + 1141  WY 41.

Applying the triangle inequality and the Cauchy-Schwarz  inequality we find

0 I If(a  + 4 - .fWl I IlWa)ll  Ilull + Ilull LW,  41.

This shows thatf(u + u) --f( )u as 11 II2, + 0, so f is continuous at u.

FIGURE 8.5 Geometric relation of the directional derivative to the gradient vector.

When y is a unit vector the directional derivativef’(u;  y) has a simple geometric relation
to the gradient vector. Assume that Of(u)  # 0 and let 0 denote the angle between y and
Vf(u).  Then we have

~‘(u;Y)  = VW  3 = IIVWII  lbll ~0s  e = IIVWII  ~0s  0.

This shows that the directional derivative is simply the component of the gradient vector
in the direction of y. Figure 8.5 shows the vectors Vf(u) and y attached to the point u.
The derivative is largest when cos 8 = 1 , that is, when y has the same direction as Vf(u).
In other words, at a given point a, the scalar field undergoes its maximum rate of change in
the direction of the gradient vector; moreover, this maximum is equal to the length of the
gradient vector. When Vf( )u is orthogonal to y, the directional derivative f’(a;  y) is 0.
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In 2-space the gradient vector is often written as

261

Vfk Y> = -jyVk Y> i + wxt  Y$-
aY  *

In 3-space the corresponding formula is

v-(x,  Y, 4 =
af(x’  ” ‘) i + af(x’  Y, ‘)j + af(x,  y,  ‘) k

.&
aY aZ

8.!3  A sufficient condition for differentiability

Iffis differentiable at a, then all partial derivatives Dj(a),  . . . , D&a) exist. However,
the existence of all these partials does not necessarily imply that f is differentiable at (I.
A counter example is provided by the function

.a Y> = -$$ i f  x#O, f@, Y)  = 0,

discussed in Section 8.10. For this function, both partial derivatives D&O)  and D&O)
exist but f is not continuous at 0, hence f cannot be differentiable at 0.

The next theorem shows that the existence of continuous partial derivatives at a point
implies differentiability at that point.

THEOREM 8.7. A SUFFICIENT CONDITION FOR DIFFERENTIABILITY. Assume that thepartial
derivatives DJ,  . . . , D,,f exist in some n-ball B(a) and are continuous at a. Then f is dif-
ferentiable at a.

Note: A scalar field satisfying the hypothesis of Theorem 8.7 is said to be continuously
diflerentiable  at a.

Proof. The only candidate for T,(V)  is Of (a) * v . We will show that

f (a + 4 - f (4 = Vf (4 * v + II 41 Jm  4 >

where E(a, v) + 0 as 11 VII  -+ 0. This will prove the theorem.
Let il = I(v((  . Then v = iu , where ((u(( = 1. We keep iz small enough so that a + v lies

in the ball B(a) in which the partial derivatives D&  . . . , DJexist. Expressing u in terms
of its components we have

where e,, . . . , e, are the unit coordinate vectors. Now we write the difference f (a + v) -
f(a) as a telescoping sum,

(8.13) f(a  + v) - f(a) = f(u  + 1~)  - f(a) =*&(a  + h) - f(a  + k,)) 9
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where v,, , ul, . . . , o, are any vectors in R”  such that I+,  = 0 and u,, = u. We choose these
vectors so they satisfy the recurrence relation uk = u~...~ + ukek  . That is, we take

u()=  0 , u1  = wl, u2  =  ulel  +  u2e2, . . . , u, = ulel  + . * * + u,e, .

Then the kth term of the sum in (8.13) becomes

f(a + Iu,-,  + h4 - f(a + h-J  = .f(h + J.w,J - f(h) ,

where 6, = a + Au,-, . The two points b, and b, + lu,:e, differ only in their kth component.
Therefore we can apply the mean-value theorem of differential calculus to write

(8.14)

where ck  lies on the line segment joining 6, to 6, + lu,e,. Note that 6, + a and hence
ck+aasA-+O.

Using (8.14) in (8.13) we obtain

But Cf(u) * u = 1 V’(u) . u = /I z;==, D,f(u)u,,  so

f(a + u> -f(a) - V(a) . u = 6 {W-(4  - W-(4}u,  = Ilull  @a, ~1,
h = l

where

Since clc -+ a as 11 u/I + 0, and since each partial derivative Dkf  is continuous at a, we see
that E(u,  u) 4 0 as 11 uII + 0. This completes the proof.

8.14 Exercises

1. Find the gradient vector at each point at which it exists for the scalar fields defined by the
following equations :

(a) f(x, y) = x2 + y2 sin (xy) . (d) f(x, y, z) = x2 - y2 + 2z2.
(b) J-(x, y) = e5  cos ,v . (e) f(x, y, z) = log (x2  + 2y2 - 3~~).
(c) f(X, y, z) = x2y3z4. (0  f(X,.Y, z> = xy”*

2. Evaluate the directional derivatives of the following scalar fields for the points and directions
given :
(a) f(x,  y, z) = x2 + 2y2 + 3z2 at (1, 1,O) in the direction of i -j + 2k.
(b) f(x,  y, z) = (x/y)” at (1, 1, 1) in the direction of 2i + j - k.

3. Find the points (x, y) and the directions for which the directional derivative of f(x,  y) =
3x2  + y2 has its largest value, if (x, y) is restricted to be on the circle x2 + y2 = 1 .

4. A differentiable scalar fieldfhas, at the point (1, 2), directional derivatives +2 in the direction
toward (2,2)  and -2 in the direction toward (1, 1). Determine the gradient vector at (1, 2)
and compute the directional derivative in the direction toward (4, 6).

5. Find values of the constants a, b, and c such that the directional derivative off(x,  y, z) =
axy2 + byz + cz2.? at the point (1,2,  - 1) has a maximum value of 64 in a direction parallel
to the z-axis.
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6. Given a scalar field differentiable at a point a in R2. Su ppose thatf’(a; JJ) = 1 andf’(a; z) = 2,
where y = 2i + 3j and z = i + j. Make a sketch showing the set of all points (x, v) for which
f’(a;  xi + vj) = 6. Also, calculate the gradient V’(a).

7. Let f andg denote scalar fields that are differentiable on an open set S. Derive the following
properties of the gradient:
(a) grad f = 0 iff is constant on S.
(b) grad (f + g) = gradf + gradg .
(c) grad (cf) = c gradfif c is a constant.
(4  grad (fg) = fgradg  + g gradf.

(e) grad f &wav-ftPd~
08 g2

at points at which g # 0.

8. In R3 let r(x,  y, z) = xi + rj + zk, and let r(x,  y, z) = Ilr(x,Y,  z)il  .
(a) Show that Vr(x,  y, z) is a unit vector in the direction of r(x, y, z).
(b) Show that V(P)  = nrnv2r  if n is a positive integer. [Hint: Use Exercise 7(d).]
(c) Is the formula of part (b) valid when n is a negative integer or zero?
(d) Find a scalar field f such that Vf = r .

9. Assume f is differentiable at each point of an n-ball B(a). If f ‘(x; y) = 0 for n independent
vectors y, , . . . , y, and for every x in B(a), prove that f is constant on B(a).

10. Assume f is differentiable at each point of an n-ball B(a).
(a) If Vf (x) = 0 for every x in B(u), prove that f is constant on B(a).
(b) Iff(x) I f(a) for all x in B(u), prove that of(a)  = 0.

11. Consider the following six statements about a scalar field f: S - R, where S c Rn  and u is
an interior point of S.
(a) f is continuous at a.
(b) f is differentiable at a.
(c) f ‘(a; y) exists for every y in Rn.
(d) All the first-order partial derivatives off exist in a neighborhood of a and are continuous
at a.
(e) Of  (a) = 0.
(f) f(x)  = I/x  - alI for all x in R”.

a b c d e f
-----__-

a T
In a table like the one shown here, mark T - - - - - - -

in the appropriate square if the statement in b T

row (x) always implies the statement in - - - - - - -

column (y). For example, if (a) always implies C T

(b), mark T in the second square of the first
----____-

row. The main diagonal has already been d T

filled in for you.
----____-

e T
-----__-

f T

8.15 A chain rule for derivatives of scalar fields

In one-dimensional derivative theory, the chain rule enables us to compute the derivative
of a composite function g(t) =f[r(t)] by the formula

g’(t) = f ‘[r(t)] * r’(t).
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This section provides an extension of the formula when f is replaced by a scalar field
defined on a set in n-space and r is replaced by a vector-valued function of a real variable
with values in the domain off.

In a later section we further extend the formula to cover the case in which both f and r
are vector fields.

It is easy to conceive of examples in which the composition of a scalar field and a vector
field might arise. For instance, supposef(x)  measures the temperature at a point x of a
solid in 3-space, and suppose we wish to know how the temperature changes as the point x
varies along a curve C lying in the solid. If the curve is described by a vector-valued
function r defined on an interval [a, b], we can introduce a new function g by means of the
formula

g(t)  = fb+(t)l i f  a<t<b.

This composite function g expresses the temperature as a function of the parameter f, and
its derivative g’(t) measures the rate of change of the temperature along the curve. The
following extension of the chain rule enables us to compute the derivative g’(t) without
determining g(t) explicitly.

THEOREM 8.8. CHAIN RULE. Let f be a scalarjeld  dejned  on an open set S in R”, and let
r be a vector-valuedfunction which maps an interval J from R1 into S. Dejine the composite
function g = f 0 r on J by the equation

g(t)  = fbft)l if tEJ.

Let t be a point in J at which r’(t) exists and assume that f is dlxerentiable  at r(t). Then g’(t)
exists and is equal to the dot product

(8.15) g’(t) = VW - r’(t), where a = r(t).

Proof. Let a = r(t), where t is a point in J at which r’(t) exists. Since S is open there is
an n-ball B(a)  lying in S. We take h + 0 but small enough so that r(t  + h) lies in B(a),
and we let y = r(t + h) - r(t). Note that y + 0 as h --f  0. Now we have

g(t + h) -g(t)  =fMt + h)l -f P(t)1  = fh + Y> -f(a)

Applying the first-order Taylor formula for f we have

S(a + Y> -f(a) = Vf(4.Y  + llYll GPY)9

where E(u, y) + 0 as I/y/( ---f  0. Since y = r(t  + h) - r(t) this gives us

dt i- h; - g(t)  = vff(u)  . r(t  + hj - 40 + IIr(t  + hl - r(t)I(
ECU,  Y> .

Letting h + 0 we obtain (8.15).
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EXAMPLE 1. Directional derivative along a curve. When the function r describes a curve
C, the derivative r’ is the velocity vector (tangent to the curve) and the derivative g’ in
Equation (8.15) is the derivative off with respect to the velocity vector, assuming that
r’ # 0 . If T(t)  is a unit vector in the direction of r’(t) (Tis the unit tangent vector), the dot
product Vf [r(t)] * T(t) is called the directional derivative off along the curve C or in the
direction of C. For a plane curve we can write

T(t) = cos cx(t)  i + cos /3(t)j,

where cl(t) and ,B(t) are the angles made by the vector T(t) and the positive x- and y-axes;
the directional derivative off along C becomes

Of [r(t)] *  T(t) = D&(t)]  cos a(t) + D&r(t)]  cm P(t).

This formula is often written more briefly as

Vf.T=$cos~+afcos~.
ay

Some authors write df/ds  for the directional derivative Vf * T. Since the directional
derivative along C is defined in terms of T, its value depends on the parametric representa-
tion chosen for C. A change of the representation could reverse the direction of T; this,
in turn, would reverse the sign of the directional derivative.

EXAMPLE 2. Find the directional derivative of the scalar field f(x, y) = x2 - 3xy along
the parabola y = x2 - x + 2 at the point (1,2).

.

.’

Solution. At an arbitrary point (x, r) the gradient vector is

afVf(X, y) = $Ji + -j = (2x - 3y)i - 3xj.
ay

At the point (1,2) we have Vf(l, 2) = -4i - 3j. The parabola can be represented
parametrically by the vector equation r(t) = ti + (t2 - t + 2)j. Therefore, r(1) = i + 2j,
r’(t) = i + (2t - l)j, and r'(l) = i + j. For this representation of C the unit tangent

vector T(1) is (i + j)/%h and the required directional derivative is Vf(l ,2)  * T(1) = -7/d?.

EXAMPLE 3. Let f be a nonconstant scalar field, differentiable everywhere in the plane,
and let c be a constant. Assume the Cartesian equation f (x, y) = c describes a curve C
having a tangent at each of its points. Prove that f has the following properties at each
point of C:

(a) The gradient vector Of is normal to C.
(b) The directional derivative off is zero along C.
(c) The directional derivative off has its largest value in a direction normal to C.
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Solution. If T is a unit tangent vector to C, the directional derivative off along C is the
dot product Of. T. This product is zero if Vf is perpendicular to T, and it has its largest
value if Of is parallel to T. Therefore both statements (b) and (c) are consequences of (a).
To prove (a), consider any plane curve r with a vector equation of the form r(t) =
X(t)i  + Y(t)j  and introduce the function g(t) = f [r(t)]. By the chain rule we have
g’(t) = Of [r(t)] . r’(t). When r = C, the function g has the constant value c so g’(t) = 0
if r(t) E C. Since g’ = Of. r’, this shows that Of is perpendicular to r’ on C; hence Of
is normal to C.

8.16 Applications to geometry. Level sets. Tangent planes

The chain rule can be used to deduce geometric properties of the gradient vector. Let f
be a scalar field defined on a set S in R”  and consider those points x in S for which f (x) has
a constant value, say f (x) = c. Denote this set by L(c), so that

The set L(c)  is called a levelset off. In R2,  L(c)  is called a Zevel curve; in R3  it is called a
level surface.

FIGURE 8.6 The dotted curves are iso-
thermals: f (x, y) = c. The gradient vector
Vf points in the direction of the lines of flow.

FIGURE 8.7 The gradient vector Vfis normal
to each curve I? on the level surface

j-(x,  y, z> = c-

Families of level sets occur in many physical applications. For example, if f(x,  y)
represents temperature at (x, y), the level curves off (curves of constant temperature) are
called isothermals. The how of heat takes place in the direction of most rapid change in
temperature. As was shown in Example 3 of the foregoing section, this direction is normal
to the isothermals. Hence, in a thin flat sheet the flow of heat is along a family of curves
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orthogonal to the isothermals. These are called the lines of~?ow; they are the orthogonal
trajectories of the isothermals. Examples are shown in Figure 8.6.

Now consider a scalar fieldfdifferentiable on an open set S in R3, and examine one of its
level surfaces, L(c). Let u be a point on this surface, and consider a curve I which lies on
the surface and passes through u, as suggested by Figure 8.7. We shall prove that the
gradient vector V’(a) is normal to this curve at u. That is, we shall prove that Vf(a)  is
perpendicular to the tangent vector of I’ at a. For this purpose we assume that I is

VL a normal vector

I
/

Tangent plane

/
Level surface L(c)

FIGURE  8.8 The gradient vector Vf is normal to the tangent plane of a level surface
f(x, y, z) = c.

described parametrically by a differentiable vector-valued function r defined on some interval
J in R1. Since I?  lies on the level surface L(c), the function r satisfies the equation

fEr(Ql  = c foralltinJ.

If g(r) =f[r(t)]  for t in J, the chain rule states that

g’(t) = Vf[r(t)] - r ’ (t ) .

Since g is constant on J, we have g’(t) = 0 on J.
we find that

In particular, choosing t, so that g(tJ = a

Vf(u) * r’(tJ  =  0 .

,
In other words, the gradient off at a is perpendicular to the tangent vector r’(tJ,  as
asserted.
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Now. we take a family of curves on the level surface L(c), all passing through the point
a. According to the foregoing discussion, the tangent vector?  of all these curves are per-
pendicular to the gradient vector V’(a). If Vf( )a IS not the zero vector, these tangent vectors
determine a plane, and the gradient V’(a) is normal to this plane. (See Figure 8.8.). This
particular plane is called the tangentpzane  of the surface L(c)  at a.

We know from Volume I that a plane through a with normal vector N consists of all
points x in R3 satisfying N.  (x - a) = 0. Therefore the tangent plane to the level surface
L(c)  at u consists of all x in R3 satisfying

q-(u)+-u)=O.

To obtain a Cartesian equation for this plane we express x, u, and V’(u) in terms of their
components. Writing x = (x, y, z), a = (x1 ,yl , zl), and

Vf(4  = 4fW  + D2f(4i + D3fW  2

we obtain the Cartesian equation

4f(4(x - XI)  + Dzf(4O)  - yJ + D,f(+  - 4 = 0.

A similar discussion applies to scalar fields defined in R2. In Example 3 of the foregoing
section we proved that the gradient vector Vf(u) at a point u of a level curve is perpendicular
to the tangent vector of the curve at a. Therefore the tangent line of the level curve L(c)  at
a point a = (x1 ,rJ has the Cartesian equation

W-(4(x  - 4 + Dzf(4(y  - UI)  = 0.

8.17 Exercises

1. In this exercise you may assume the existence and continuity of all derivatives under con-
sideration. The equations u = f(x, y) , x = X(t), y = Y(t) define u as a function of t, say
u = F(t).
(a) Use the chain rule to show that

af afF(t) = GX’(f) + qJ Y’(l),

where af/lax  and aflay  are to be evaluated at [X(t), Y(r)].
(b) In a similar way, express the second derivative F”(t) in terms of derivatives off, X, and
Y. Remember that the partial derivatives in the formula of part (a) are composite functions
given by

z = 4f[m), W)l, af
-  = D,J’w(th  W)l.
aY

2. Refer to Exercise 1 and compute F’(t) and F”(t) in terms of t for each of the following special
cases :
(a) f(x,  y) = x2  + y2, X(t) = t, Y(t) = t2.
(b) f(x,  y) = exy  cos (xy”),  X(t) = cos t , Y(t) = sin t .
(c) f (x, y) = log [(l + f&)/(1 + eY2)],  X(t) = e, Y(t)t = emt.
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3. In each case, evaluate the directional derivative off for the points and directions specified:
(a) f(x,  y,  z) = 3x - Sy  + 22 at (2,2,  1) in the direction of the outward normal to the sphere
x2 + y2 + 22  = 9.

(b) f(x>  y,  z) = x2 - y2 at a general point of the surface x2 $-  y2 + z2 = 4 in the direction
of the outward normal at that point.

(cl  f(X>  y,  z) = x2 + y2 - z2 at (3,4,  5) along the curve of intersection of the two surfaces
2x2  +2yz-z2  =25andx2  +y2  =z2.

4. (a) Find a vector V(x, y, z) normal to the surface

2 = Jx”  + y2 + (x2 + y2p

at a general point (x, y, z) of the surface, (x, y, z) # (0, 0,O).
(b) Find the cosine of the angle 0 between V(x, y,  z) and the z-axis and determine the limit of
cos 8 as (x, y, z) + (0, 0, 0).

5. The two equations e” cos v = x and eU sin v = y define u and v as functions of x and y, say
u = U(x,  y) and v = V(x,  y). Find explicit formulas for U(x,  y) and V(x,  y), valid for x > 0,
and show that the gradient vectors VU(x,  y) and V V(x, y) are perpendicular at each point

6,  y).
6. Letfk y> = &yl .

(a) Verify that af/ax  and af/lay  are both zero at the origin.
(b) Does the surface z =f(x,  y) have a tangent plane at the origin? [Hint: Consider the
section of the surface made by the plane x = y .]

7. If (x0, yO,  z,,) is a point on the surface z = xy , then the two lines z = y,x  , y = y,,  and z = xOy,
x = x,,  intersect at (x0, ye, zO)  and lie on the surface. Verify that the tangent plane to this
surface at the point (x0, ye, z,,) contains these two lines.

8. Find a Cartesian equation for the tangent plane to the surface xyz = a3 at a general point
(x0, y,,  , zJ.  Show that the volume of the tetrahedron bounded by this plane and the three
coordinate plane is 9a3/2.

9. Find a pair of linear Cartesian equations for the line which is tangent to both the surfaces
~~+y~+2~~=4andz=e~~atthepoint(l,l,l).

10. Find a constant c such that at any point of intersection of the two spheres

(x - c)2 + y2 + 22 =  3 and x2 + (y - 1)s + zz =  1

the corresponding tangent planes will be perpendicular to each other.
11. If r1 and r2 denote the distances from a point (x, y) on an ellipse to its foci, show that the

equation r1 + r2 = constant (satisfied by these distances) implies the relation

T.  V(r,  + r2)  = 0,

where T is the unit tangent to the curve. Interpret this result geometrically, thereby showing
that the tangent makes equal angles with the lines joining (x, y) to the foci.

12. If Vf(x,  y, z) is always parallel to xi + yj  + zk, show thatfmust assume equal values at the
points (0, 0, a) and (0, 0, -a).

8.18 Derivatives of vector fields

Derivative theory for vector fields is a straightforward extension of that for scalar fields.

Letfi  S + Rm  be a vector field defined on a subset S of R”. If a is an interior point of S
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and if y is any vector in R’” we define the derivativef’(a;  y) by the formula

f’(a; y) = lim f@ + hY) - f(4
h-0 h ’

whenever the limit exists. The derivativef’(a; y) is a vector in R”.
Letf, denote the kth component off. We note that the derivativef’(u;  JJ)  exists if and

only iffi(u; y) exists for each k = 1, 2, . . . , m, in which case we have

f’(a;  y> = (flYa;  Y>,  . . * , fAda;  Y>>  =lgKu;  Ykk  3

where ek  is the kth unit coordinate vector.
We say that f is d@erentiable  at an interior point a if there is a linear transformation

such that

(8.16) f(u + u) = f(a) + T,(u) + II  u II E(a,  4 7

where E(u, a) --f  0 as u + 0. The first-order Taylor formula (8.16) is to hdd for all u
with /(u  I/ < r for some r > 0, The term E(u, u) is a vector in R” . The linear trans-
formation T, is called the total derivative off at a.

For scalar fields we proved that T,(y) is the dot product of the gradient vector Vf(u)
withy. For vector fields we will prove that T,(y) is a vector whose kth component is the dot
product Vfk(u) . JJ .

THEOREM 8.9. Assume f is d@erentiable  at a with total derivative T,. Then the derivative
f ‘(a; y) exists jbr every u  in R", and tile  have

(8.17) T,(Y) = f ‘(u; Y> .

Moreover, iff = (fi , . . . , f,) and ify = (yI , . . . , ,vJ , we have

(8.18) T,(Y)  = 5 vfk(u>  ’ Y ek  = (vfi(a>  ’ Y, . . . , C7fm(a>  ’ Y> .
k=l

Proof. We argue as in the scalar case. Ify= 0, thenf’(u;y) = Oand T,(O) = 0.
Therefore we can assume that y # 0. Taking u = lzy in the Taylor formula (8.16) we have

f(u + hy) -f(u) = T,,(hy)  + llhyli  Ecu, 8) = hT,b)  + Ihl  11~11 E(u, 8).

Dividing by h and letting h + 0 we obtain (8.17).
To prove (8.18) we simply note that

f'@;y)  =k~lf;(u;y)  ek  =kg ‘jkb> ‘ye,.
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Equation (8.18) can also be written more simply as a matrix product,

T,(Y) = Df(a>v  >

where Df(a) is the m x n matrix whose kth row is Vfk(a),  and where y is regarded as an
n x 1 column matrix. The matrix Df (a) is called the Jacobian matrix off at a. Its kj entry
is the partial derivative Djfk(a).  Thus, we have

Df(a)  =

The Jacobian matrix Df(a) is defined at each point where the mn partial derivatives
D,,&(a)  exist.

The total derivative T,,  is also written as f ‘(a). The derivative f’(a) is a linear trans-
formation; the Jacobian Df(a) is a matrix representation for this transformation.

The first-order Taylor formula takes the form

(8.19) f(a +  4 =f (a)  +f  ‘(u)(s)  +  II4 E(a, u),

where E(a, v) --f  0 as u --f  0. This resembles the one-dimensional Taylor formula. To
compute the components of the vector f ‘(a)( )u we can use the matrix product Df(a)u or
formula (8.18) of Theorem 8.9.

8.19 Differentiability implies continuity

THEOREM 8.10. If a vector$eldf  is difSerentiable  at a, then f is continuous at a.

Proof. As in the scalar case, we use the Taylor formula to prove this theorem. If we let
u + 0 in (8.19) the error term II  u/I E( a, u + 0. The linear part f ‘(a)(u) also tends to 0)
because linear transformations are continuous at 0. This completes the proof.

At this point it is convenient to derive an inequality which will be used in the proof of
the chain rule in the next section. The inequality concerns a vector field f differentiable at
a; it states that

(8.20) IIf’M~Nl  5 $64  Ilull 9 where Mj(4 = If IlVf,(4ll.
k=l

To prove this we use Equation (8.18) along with the triangle inequality and the Cauchy-
Schwarz  inequality to obtain

lif’(a>(u>ll  =
II

k@k(“)  *  u  ek
(I

5  f IVfk(a>  *  uI 5  2  Iivfk(a>li  ilull  .
k=l x=1
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8.20 The chain rule for derivatives of vector fields

THEOREM 8.11.  CHAIN RULE. Let f and g be vector fields  such that the composition
h = f 0 g is defined in a neighborhood of a point a. Assume that g is dtyerentiable  at a, with

total derivative g’(a). Let b = g(a) and assume that f is dtflerentiable  at b, with total
derivative f ‘(b). Then h is dtifSentiable  at a, and the total derivative h’(a) is given by

h’(a)  =f ‘W Og’W,

the composition of the linear transformations f ‘(b) and g’(a).

Proof We consider the difference h(a + y) - h(a) for small IIy  II,  and show that we have
a first-order Taylor formula. From the definition of h we have

(8.21) hh(a + Y)  - 44  = f Ma + ~91  - f Cd41  = f (b + 8)  - f (4 y

where u = g(u  + y) - g(a). The Taylor formula for g(a + y) gives us

(8.22) u = g’(a)(y)  + IIYII  E&, Y>  > w h e r e  E,(a,  y)- 0  a s  y -  0 .

The Taylor formula for f(b + v) gives us

(8.23) f (b + u) - f(b) = f '(b)(u)  + II u II E,(b,  4 3

where EJb,  u) ---f  0 as u ---f  0. Using (8.22) in (8.23) we obtain

(8.24) f(b + 4 -f(b) =f'(b)d(a)(y) +f ‘(b)(Ilyll  &(a, Y>>  + II 41 E,@,  u)
= f ‘(W(a)(y)  + IIY  I I E(a,  Y>  3

where E(a, 0) = 0 and

(8.25) E(a,  Y>  = f '(b)(E&,  YN  + 1 E,(b,  4 i f  y#O.

To complete the proof we need to show that E(a, y) - 0 as y - 0.
The first term on the right of (8.25) tends to 0 as y - 0 because E,(a,  y) - 0 as y - 0

and linear transformations are continuous at 0.
In the second term on the right of (8.25) the factor Ef(b, u) - 0 because u - 0 as

y-f 0. The quotient llull/IlyII remains bounded because, by (8.22) and (8.20) we have

Therefore both terms on the right of (8.25) tend to 0 as y + 0, so E(a, y) - 0.
Thus, from (8.24) and (8.21) we obtain the Taylor formula

hh(a + Y> - 44 = f '(b)d(a)(y)  + I IY  I I Way Y)  y
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where E(a,  y) - 0 as y - 0. This proves that h is differentiable at a and that the total
derivative K(a)  is equal to the compositionf’(b)  0 g’(u).

8.21 Matrix form of the chain rule

Let It = f 3 g , where g is differentiable at a andfis differentiable at b = g(u). The chain
rule states that

h’(a) = f’(b) 0 g’(u).

We can express the chain rule in terms of the Jacobian matrices DA(u), Df(b),  and Dg(u)
which represent the linear transformations h’(a), f’(b), and g’(u),  respectively. Since
composition of linear transformations corresponds to multiplication of their matrices, we
obtain

(8.26) where b = g(u).

This is called the matrix form of the chain rule. It can also be written as a set of scalar
equations by expressing each matrix in terms of its entries.

Suppose that a E RP , 6 = g(u) E R” , and f(b) E  Rm. Then h(u) E R” and we can write

g=(g,,...,g,), f= cfl~  * - * ,fm>, h = (h,, , . . , h,).

Then D/z(u) is an m x p matrix, Df(b)  is an m x n matrix, and Dg(u)  is an n x p matrix,
given by

The matrix equation (8.26) is equivalent to mp scalar equations,

DM4 = i QJXWigd4  2 f o r  i=l,2,...,m and j=l,2 )...) p,
k=l

These equations express the partial derivatives of the components of h in terms of the
partial derivatives of the components off and g.

EXAMPLE 1. Extended chain rule for scalar jelds.  Suppose 1”  is a scalar field (m = 1).
Then h is also a scalar field and there arep equations in the chain rule, one for each of the
partial derivatives of h :

D&4  = i 4c.f@P,g,(4  > for j = 1,2,  . . . , p.
k = l

The special casep  = 1 was already considered in Section 8.15. In this case we get only one
equation,

k’(a) = i PJVM(4.
k=l
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Nowtakep=2andn=2. Write a = (s, t) and b = (x, JJ)  . Then the components x
and y are related to s and t by the equations

x = g,(s,  t) 7 Y = g,(s,  t>.

The chain rule gives a pair of equations for the partial derivatives of h:

D,h(s,  t> = W-k  y> D,g,(s,  0 + D,f(x, Y> 4g&  t) 3
D,h(s,  t) = D,f(x, y) D,g,(s,  t) + W-(x, y) D,g&,  t>.

In the &notation, this pair of equations is usually written as

(8.27)
ah-= afam+zay ah-=--
as ax  as ay  as  ’ at

EXAMPLE 2. Polar coordinates. The temperature of a thin plate is described by a scalar
fieldf, the temperature at (x, u) beingf(x, y). Polar coordinates x = r cos 8,  y = r sin 8
are introduced, and the temperature becomes a function of r and 19 determined by the
equation

y(r,  0) = f(r cos 8, r sin e)  .

Express the partial derivatives a&% and a@0 in terms of the partial derivatives aflax
and aflay.

Solution. We use the chain rule as expressed in Equation (8.27), writing (r, 0)  instead of
(s, t), and p instead of h. The equations

give us
x  =  rc0s  8, y = r sin e

k,y $=cose,  $=sinO,  g= -rsinfI, $=rcose.

Substituting these formulas in (8.27) we obtain

(8.28) afz = E cos 8 + ay  sin 8, aQ? af afas = -rzsine+r-c0sO.

ay

These are the required formulas for aq@r and i?p/aO.

EXAMPLE 3. Second-order partial derivatives. Refer to Example 2 and express the second-
order partial derivative a2pl/a02  in terms of partial derivatives off.

Solution. We begin with the formula for &p/a0 in (8.28) and differentiate with respect
to 0,  treating r as a constant. There are two terms on the right, each of which must be
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differentiated as a product. Thus we have

275

3%-=
(8 .29)  ae2

+  r af a(cos e, +  r- -
ay ae

r sin e af + r cos 8
ay

To compute the derivatives of aflax and aflay  with respect to 8 we must keep in mind that,
as functions of r and 8,  af/lax  and afjay  are composite functions given by

af = D f(r cos 8 r sin e)
ax  ’ ’

and af- = D, f (r cos 8, r sin e)  .
ay

Therefore, their derivatives with respect to 0 must be determined by use of the chain rule.
We again use (8.27), withfreplaced by DJ, to obtain

a af uhf) ay- -
( 1

=-- - -
ae ax

a(D,f) ax +
ax ae

zf c-r sin 0) + 37
ay ae=ax2

- (r cos e) .
dyax

Similarly, using (8.27) withfreplaced by D,f, we find

a af
( 1

a(D,f) ax  + a(D,f) ay ?f- - = - - --=-
ae ay ax ae ay ae axay

(-rsinO)fazf(rcOsO).
aY2

When these formulas are used in (8.29) we obtain

a2q as w atf-=
a82

-rcosO--  + r2sin28-  - r2 sinOcostl----
ax ax2 ayax

- r sin 8 Lf - Y’ sin 8 cos 8 a”f + r2 cos’ 8 aY
ay axay

-.
w

This is the required formula for az~/a02. Analogous formulas for the second-order partial
derivatives a2@r2, a2p/(ar  a@,  and a2yl/(a0  &) are requested in Exercise 5 of the next
section.

8.22 Exercises

In these exercises you may assume differentiability of all functions under consideration.

1. The substitution t = g(x, y) converts F(t) into f (x, y), wheref(x, y) = F[g(x, y)] .
(a) Show that

z = F’rg(x,  y>l $ and

(b) Consider the special case F(t) = Fin t, g(x,  y) = cos (x2  + y2). Compute af/lax  and
aflay  by use of the formulas in part (a). To check your result, determine f (x, y) explicitly in
terms of x and y and compute af/  ax and af/ ay  directly fromJ:
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2. The substitution u = (x - y)/2,  v = (x + y)/2  changesf  (u, v) into F(x,  y). Use an appropriate
form of the chain rule to express the partial derivatives aF/  ax and aF/  ay in terms of the partial
derivatives af/ au and afj au.

3. The equations u =f(x, y), x = X(s,  t), y = Y(s, t)  define u as a function of s and t, say
u = F(s, t).
(a) Use an appropriate form of the chain rule to express the partial derivatives aF/as and
aqat  in terms of aflax,  aflay,  ax/as,  ax/at,  atlas,  arlat.
(b) If azf/c ?X ay) = azfl(ay  ax), show that

a2F af a2x a2f ax 2
ax%+%  z +2---( 1

ax ay a2f af a2y a2f ay 2
-=
a.32 as as ax ay +dyas2+ay2ds.( 1

(c) Find similar formulas for the partial derivatives a2F/(  as at) and a2F/  at2.
4. Solve Exercise 3 in each of the following special cases:

(a) X(s,  t)  = s + t, Y(s, t)  = st.
(b) X(s,  t) = st, Y(s, t) = s/t.
cc>  as, t>  = (s - tY2, Y(s, t)  = (s + ty2.

5. The introduction of polar coordinates changes f(x, y) into p(r,  .9),  where x = r cos 8 and
y = r sin 0. Express the second-order partial derivatives a”qlar2, a2q/( au a@),  and a*p/(  80 ar)
in terms of the partial derivatives off. You may use the formulas derived in Example 2 of
Section 8.21.

6. The equations u = f(x,  y, z), x = X(r, s, t),  y = Y(r, s,  t), and z = Z(r,  s,  ti define u as  a
function ofr, s, and t, say u = F(r, s, t) . Use an appropriate form of the chain rule to express
the partial derivatives aF/  au,  aF/  as, and aF/  at in terms of partial derivatives off, X, Y, and Z.

7. Solve Exercise 6 in each of the following special cases:
(a) X(r, s, t)  = r + s + t, Y(r, s, t) = r - 2s + 3t, Z(r, s, t) = 2r + s - t.
(b) X(r, s, t) = r2 + s2 + t2, Y(r,  s, t) = r2 - s2 - t2, Z(r, s, t) = r2 - s2 + t2.

8. The equations u = f (x, y,  z), x = X(s,  t), y = Y(s, t) , z = Z(s,  t) define u as a function of
s and t, say u = F(s,  t) . Use an appropriate form of the chain rule to express the partial de-
rivatives aF/  as and aF/  at in terms of partial derivatives off, X, Y, and Z.

9. Solve Exercise 8 in each of the following special cases:

10.

11.

1 2 .

1 3 .

(a) X(s,  t) = s2  + t2, Y(s, 1) = s2  - t2, Z(s, t) = 2st.
(b) X(s,  t)  = s + t, Y(s, t) = s - t, Z(s,  t) = st.
The equations u = f (x, y),  x = X(r, s,  t), y = Y(r, s,  t) define u as a function of r, s,  and t,

say u = F(r,  s, t). Use an appropriate form of the chain rule to express the partial derivatives
aF/ar,  aF/  as, and aFlat  in terms of partial derivatives off, X, and Y.
Solve Exercise 10 in each of the following special cases:
( a )  X(r,s,t)  = r  +s, Y(r,  s, t) = t.
( b ) X ( r , s , t ) = r + s + t , Y(r, s, t) = r2 + s2 + t2.

Cc)  X(r, s, t> = r/s, Y(r, s, t) = s/t.

Let 0) = ,fk(x)l  , where g = (gr , . . . , g,) is a vector field differentiable at a, and f is a
scalar field differentiable at b = s(a). Use the chain rule to show that the gradient of h can
be expressed as a linear combination of the gradient vectors of the components of s,  as
follows :

Vh(u)  = 5 &f  (b)Vg&)  .
k=l

(a) If f(x,  y, z) = xi + yi  + zk,  prove that the Jacobian matrix Df(x,  y, z) is the identity
matrix of order 3.
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(b) Find all differentiable vector fieldsf: R3 - R3 for which the Jacobian matrix Df(x, y, z)
is the identity matrix of order 3.
(c) Find all differentiable vector fieldsf: R3 - R3  for which the Jacobian matrix is a diagonal
matrix of the form diag (p(x), q(y),  r(z)), wherep, q, and r are given continuous functions.

14. Let f: R2 + R2 and g: R3 --+  R2 be two vector fields defined as follows:

f(x, y) = exfzYi  + sin 0, + 2x)j,

g(u,  v, w)  = (u + 2u2  + 3w3)i + (20 - u2)j.

(a) Compute each of the Jacobian matrices Df(x, y) and Dg(u, u, w).
(b) Compute the composition h(u, v, W) =f[g(u,  v, w)].
(c) Compute the Jacobian matrix DR(l , - 1, 1).

15. Let f: R3 + R2 and g: R3 + R3 be two vector fields defined as follows:

f(x,y,z) = (x2 +y + z)i + (2x +y + z2)j,

g(u, 21,  w )  =  uu”w2i  +  w2  sin v j + Auk.

(a) Compute each of the Jacobian matrices Df(x, y, z) and Dg(u,  v, w).
(b) Compute the composition h(u, u, w) =f[g(u,  u, w)].
(c) Compute the Jacobian matrix DR(u, 0, w).

k8.23 Sufficient conditions for the equality of mixed partial derivatives

Iffis a real-valued function of two variables, the two mixed partial derivatives D,,,f
and D,,,Sare  not necessarily equal. By D,,zf  we mean D,(D2f)  = azfi(ax ay), and by
D,,,fwe  mean D2(D1f)  = azfl(ay ax). F or example, ifJ’is defined by the equations

.0x,  Y> = XY $f$ for (x3 Y> Z (0,  0)) f(O, 0)  = 0 2

it is easy to prove that D,,J(O,  0) = - 1 and D,,,f(O, 0) = 1. This may be seen as follows:
The definition of D2,1f(0,  0) states that

(8.30) D2,J(0,  0) = lim W(O,  k) - D,f(o,  0)
k-0 k -’

Now we have

D,f(O,  0) = limf(k 0)  - f@, 0)  = o
h-t0 h

and,  if (x, y) # (O,O), we find

4m Y> =
y(x4  + 4x29  - y”)

(x2 + y2)2 *

Therefore, if k # 0 we have D,f (0, k) = -k5/k4  = -k and hence

W(o,  k)  - W-(0,0)  = -l
k



278 DifSerential  calculus of scalar and vectorjelds

Using this in (8.30) we find that D,,,f(O,  0) = -1 . A similar argument shows that
%f(O,  0)  = 1, and hence  &,,f(O,  0)  Z D~f(0,0).

In the example just treated the two mixed partials D,,,f and D,,,f are not both con-
tinuous at the origin. It can be shown that the two mixed partials are equal at a point
(a, b) if at least one of them is continuous in a neighborhood of the point. We shall prove
first that they are equal if both are continuous. More precisely, we have the following
theorem.

THEOREM 8.12. A SUFFICIENT CONDITION FOR EQUALITY OF MIXED PARTIAL DERIVATIVES.

Assumef is a scalar$eldsuch  that the partial derivatives Dlf, D,f, D,,,f,  and D,,,f  exist on
an open set S. If (a, b) is apoint  in S at which both Dl,zf  and D,,,f  are continuous, we have

(8.31) Dl,2f@, b) = D2,1f(a9 b) I

Proof. Choose nonzero  h and k such that the rectangle R(h, k) with vertices (a, b),
(a + h, b), (a + h, b + k), and (a, b + k) lies in S. (An example is shown in Figure 8.9.)

(a, h + k) (a + h, h + k)

(4 6 :ll + h,  b)

FIGURE  8.9 A@,  k)  is a combination of values off at the vertices.

Consider the expression

A(h,k)=f(a+h,b+k)-ff(a+h,b)-f(a,b+k)+f(a,b).

This is a combination of the values off at the vertices of R(h, k) , taken with the algebraic
signs indicated in Figure 8.9. We shall express A(h,  k) in terms of D,,,f and also in terms
of Dd

We consider a new function G of one variable defined by the equation

G(x)  =f(x, b + 4 -f&b)

for all x between a and a + h . (Geometrically, we are considering the values off at those
points at which an arbitrary vertical line cuts the horizontal edges of R(h, k).) Then we
have

(8.32) A(h, k) = G(a + h) - G(a).
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Applying the one-dimensional mean-value theorem to the right-hand member of (8.32) we
obtain G(a + h) - G(a) = hG’(x,), where x1 lies between a and a + h. Since G’(x) =
W-(x,  b + k) - D$(x,  b), Equation (8.32) becomes

(8.33) Nh, k) = h[D,fh  b + k) - 4fh  b)l.

Applying the mean-value theorem to the right-hand member of (8.33) we obtain

(8.34) A@, 4 = hkhfhy,),

where y1 lies between b and b + k. The point (x,, yJ  lies somewhere in the rectangle
R@,  4.

Applying the same procedure to the function H(y) = f(a  + h, y) - f(a,  y) we find a
second expression for A(h,  k), namely,

(8.35) A@, k> = hk%fb,,yd,

where (xz,  yJ  also lies in R(h, k) . Equating the two expressions for A(h, k) and cancelling
hk we obtain

%f(Xl,Yl) = DZ,lf(&YJ  *

Now we let (h, k) -+ (0,O)  and use the continuity of D,,,f  and D,,,f  to obtain (8.31).

The foregoing argument can be modified to prove a stronger version of Theorem 8.12.

THEOREM 8.13. Letf be a scalarfield  such that the partial derivatives Dlf,  D,f,  and D,,,f
exist on an open set S containing (a, b). Assume further that D,,,f  is continuous on S. Then
the derivative D,,,f  (a, b) exists and we have

D,,,f  (a,  b) = Dz,S  (a, b)  .

Proof. We define A(h,  k) as in the proof of Theorem 8.12. The part of the proof leading
to Equation (8.34) is still valid, giving us

(8.36) A@, 4- = 4,,f(xl,  ~1)
hk

for some (x1, yJ  in the rectangle R(h, k). The rest of the proof is not applicable since it
requires the existence of the derivative D,,,f(a,  b), which we now wish to prove.

The definition of DI,,f(a,  b) states that

(8.37)
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We are to prove that this limit exists and has the value D,,,f (a, b). From the definition of
D,f we have

and

D fca b) = limf(a,  b + k) - f(a,  b)
2 9

k-0 k

DJ(a + h, b) = lim f(a + h, b + k) - f(a + h,  b)

k-t0 k

Therefore the difference quotient in (8.37) can be written as

&f(a  + k b)  - W(a, b) = lim ‘(h, k)
h k’Ohk’

Using (8.36) we can rewrite this as

(8.38) D&a  + h, b)  - W(a, b)
h

= lim  4,Jh  9 Yd  .
k-+0

To complete the proof we must show that

(8.39)
. [

lim lim &J(x,  , vl> = D2J(a,  b) .
h-0  k-0 1

When k -+ 0, the point y1 -+ b, but the behavior of x1 as a function of k is unknown.
If we knew that x1 approached some limit, say R, as k -+ 0, we could use the continuity of
DzsIf to deduce that

lim D2J(x,,  Y,)  = &f(% b)  .
k+O

Since the limit f would have to lie in the interval a 5 1 < a + h , we could then let h + 0
and deduce (8.39). However, the fact that 3 depends on k in an unknown fashion makes a
slightly more involved argument necessary.

Because of Equation (8.38) we know that the following limit exists:

lim D2,J(xl~  Y,)  .
k-r0

Let us denote this limit by F(h). To complete the proof we must show that

lim F(h) = D,,,f(a, b) .
h - 1 0

For this purpose we appeal to the definition of continuity of D,,,f at (a, b).
Let E be a given positive number. Continuity of D,,,f at (a, b) means that there is an

open disk N with center (a, b) and radius 6, say, such that

ID2,Jh  Y> - 4,&, WI < z whenever (x, y) E N.
L
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If we choose h and k so that Ihl < S/2  and Ikl  < 612,  the entire rectangle shown in Figure
8.9 will lie in the neighborhood N and, specifically, the point (xi, y,) will be in N. Therefore
(8.40) is valid when (x, r) = (x,, vi) and we can write

(8.41) 0 5 I4Jb,,  Y,)  - 4JXa, b)l < 5 .

Now keep h fixed and let k --f  0. The term D,,,f(x,, y,) approaches F(h) and the other
terms in (8.41) are independent of k. Therefore we have

0 I F’(h) - 4,,f(a,  b)l  I i < E,

provided that 0 < IhJ  < 8/2.  But this is precisely the meaning of the statement

lim F(h) = D,,,f(a,  b)
h-0

and, as we have already remarked, this completes the proof.

Note: It should be observed that the theorem is also valid if the roles of the two
derivatives D,*,f  and D,,,f  are interchanged.

8.24 Miscellaneous exercises

1.

2.

3.

4.

5.

6 .

Find a scalar field f satisfying both the following conditions:
(a) The partial derivatives D,f(O,  0) and D,f(O,  0) exist and are zero.
(b) The directional derivative at the origin in the direction of the vector i + j exists and has
the value 3. Explain why such an f cannot be differentiable at (0,O).
Let f be defined as follows :

f(x,y)  =yg$ if thy) Z (0, O>, f(O,O)  = 0.

Compute the following partial derivatives, when they exist: Df (0, 0), D,f  (0, 0), D,,,f (0, 0),

D,,,f  (0, 0).

Let f (x, y) = xy3- if (x, u) # (0,O)  , and define f (0,O)  = 0.
x3 + y6

(a) Prove that the derivative f ‘(0; a) exists for every vector a and compute its value in terms
of the components of a.
(b) Determine whether or not f is continuous at the origin.
Define f (x, y) = ~~~e--t2  dt for x > 0, y > 0. Compute af/  ax in terms of x and y.
Assume that the equations u = f (x, y) , x = X(t), y = Y(t) define u as a function of t, say
u = F(t). Compute the third derivative F”‘(t) in terms of derivatives off, X, and Y.
The change of variables x = u + u , y = uv2 transforms f (x, JJ)  into g(u, u). Compute the
value of azg/(av  au) at the point at which u = 1, v = 1 , given that

af azf  azf  azf  azfay=ax3=ay2--=
ax ay

-=1
ay  ax

at that point.
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7. The change of variables x = uu, y = i(u2 - 02) transformsf(x,  y) to g(u,  0).
(a) Calculate g/au,  ag/au,  and a2g/(&  ao) in terms of partial derivatives of & (You may
assume equality of mixed partials.)

(b) If  II  Vf(x,  yW  = 2 for all x and y, determine constants a and b such that

8. Two functions F and G of one variable and a function z of two variables are related by the
equation

[F(x) + G(y)12  eZ(Z,y)  = 2F’(x)G’(y)

whenever F(x) + G(y) # 0. Show that the mixed partial derivative D,,,z(x,  y) is never zero.
(You may assume the existence and continuity of all derivatives encountered.)

9. A scalar field f is bounded and continuous on a rectangle R = [a, b] x [c, d] . A new scalar
field g is detined  on R as follows :

gh 0) = s,“[/;.fk  y) dx] dy  .

(a) It can be shown that for each fixed u in [a, b] the function A defined on [c, d]  by the
equation A(y) = JE  f(x,  y) dx is continuous on [c, d]. Use this fact to prove that ag/ au exists
and is continuous on the open rectangle S = (a, b) x (c, d) (the interior of R).
(b) Assume that

.
I‘ D

:’ ;f(x, 4’)  dx]  dy = j-;  [I’:fhr)  dy] dx

for all (u, v) in R. Prove that g is differentiable on S and that the mixed partial derivatives
D,,,g(u,  u) and &,g(u,  v) exist and are equal tof(u,  v) at each point of S.

10. Refer to Exercise 9. Suppose u and v are expressed parametrically as follows: u = A(t),
v = B(t) ; and let q(t)  = g[A(t),  B(t)].
(a) Determine q’(t) in terms off, A’, and B’.
(b) Compute p)‘(t) in terms of t whenf(x,  y) = e’+3/  and A(t) = B(t) = t2. (Assume R lies
in the first quadrant.)

11. Iff(x,y,  z) = (r x A) . (u x B), where r = xi + yj + zk and A and B are constant vectors,
showthat  Vf(x,y,z)  = B x (r x A) +A x (r x B).

12. Let r = xi + yj  + zk and let r = J/r/J . If A and B are constant vectors, show that:

( a )  A.I’ i =  -7.
0

(b) B. $A. V(i))  = 3A’;;-r  -7,

13. Find the set of all points (a, b, c) in 3-space for which the two spheres (x - a)”  + (y - b)” +
(z -c)~  = 1 andx2  +y2 +z 2 = 1 intersect orthogonally. (Their tangent planes should be
perpendicular at each point of intersection.)

14. A cylinder whose equation is y =f( x is tangent to the surface z2 + 2xz  + y = 0 at all)
points common to the two surfaces. Findf(x).



9
APPLICATIONS OF DIFFERENTIAL CALCULUS

9.1 Partial differential equations

The theorems of differential calculus developed in Chapter 8 have a wide variety of
applications. This chapter illustrates their use in some examples related to partial differen-
tial equations, implicit functions, and extremum problems. We begin with some elemen-
tary remarks concerning partial differential equations.

An equation involving a scalar fieldfand its partial derivatives is called a partial dlferen-
tiul equation. Two simple examples in whichf is a function of two variables are the first-
order equation

(9.1)

and the second-order equation

(9.4
w(x3  Y) + axx, Y)

-=
o

axa ay2 .

Each of these is a homogeneous linear partial differential equation. That is, each has the
form L(f) = 0, where L is a linear differential operator involving one or more partial
derivatives. Equation (9.2) is called the two-dimensional Luphce  equation.

Some of the theory of linear ordinary differential equations can be extended to partial
differential equations. For example, it is easy to verify that for each of Equations (9.1)
and (9.2) the set of solutions is a linear space. However, there is an important difference
between ordinary and partial linear differential equations that should be realized at the
outset. We illustrate this difference by comparing the partial differential equation (9.1)
with the ordinary differential equation

(9.3) f'(x) = 0.

The most general function satisfying (9.3) isJ’(x) = C, where C is an arbitrary constant:
In other words, the solution-space of (9.3) is one-dimensional. But the most general
function satisfying (9.1) is

fh u> = gw 3

283
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where g is any function of y. Since g is arbitrary we can easily obtain an infinite set of
independent solutions. For example, we can take g(y) = ecu  and let c vary over all real
numbers. Thus, the solution-space of (9.1) is inznite-dimensional.

In some respects this example is typical of what happens in general. Somewhere in the
process of solving a first-order partial differential equation, an integration is required to
remove each partial derivative. At this step an arbitrary function is introduced in the
solution. This results in an infinite-dimensional solution space.

In many problems involving partial differential equations it is necessary to select from the
wealth of solutions a particular solution satisfying one or more auxiliary conditions. As
might be expected, the nature of these conditions has a profound effect on the existence or
uniqueness of solutions. A systematic study of such problems will not be attempted in this
book. Instead, we will treat some special cases to illustrate theideas introducedinChapter8.

9.2 A first-order partial differential equation with constant coefficients

Consider the first-order partial differential equation

(9.4)
3 am Y) + 2 am Y> _ o

ax ay

All the solutions of this equation can be found by geometric considerations. We express the
left member as a dot product, and write the equation in the form

(3i + 2j) * Of (x, y) = 0.

This tells us that the gradient vector Of (x, y) is orthogonal to the vector 3i + 2j at each
point (x, y). But we also know that V’(x,  y) is orthogonal to the level curves of.6  Hence
these level curves must be straight lines parallel to 3i + 2j.  In other words, the level curves
off are the lines

2x - 3y = c.

Thereforef(x,  y) is constant when 2x - 3y is constant. This suggests that

(9.5) f(x, y> = g(2x  - 3y)

for some function g.
Now we verify that, for each differentiable function g, the scalar fieldf defined by (9.5)

does, indeed, satisfy (9.4). Using the chain rule to compute the partial derivatives off we
find

af- = 2g’(2x - 3y), af
ax

- = -3g’(2x  - 3y) )
ay

3 E + 2 ; = 6g’(2x - 3y)  - 6g’(2x - 3y)  = 0.

Therefore, f satisfies (9.4).
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Conversely, we can show that every differentiablefwhich satisfies (9.4) must necessarily
have the form (9.5) for some g. To do this, we introduce a linear change of variables,

(9.6) x = Au + Bv, y=Cu+ Dv.

This transformsf’(x, v) into a function of u and v, say

h(u, v)  =f(Au  + Bv, CM  + Dv) .

We shall choose the constants A, B, C, D so that h satisfies the simpler equation

(9.7)
wu, VI  (),-=

au

Then we shall solve this equation and show that f has the required form.
Using the chain rule we find

ah afax af ay af af-=--
au axaz,+--=GA+-C.ay  au 8))

Sincef  satisfies (9.4) we have afjay = - (3/2)(af/ax), so the equation for ah/au becomes

Therefore, h will satisfy (9.7) if we choose A = {C.  Taking A = 3 and C = 2 we find

(9.8) x = 311 + BP, y = 2u + Dz>.

For this choice of A and C, the function h satisfies (9.7), so h(u, z,) is a function of c alone,

say
Mu, 1))  = g(v)

for some function g. To express 1’ in terms of x and J we eliminate u from (9.8) and obtain
2x-3y=(2B-3D)r.  NowwechooseBandDtomake2B-3D=l,sayB=2,
D = 1. For this choice the transformation (9.6) is nonsingular; we have c = 2x - 3~,
and hence

.f(x,  y) = h(u, r) = g(c) = g(2x  - 3y).

This shows that every differentiable solutionfof (9.4) has the form (9.5).
Exactly the same type of argument proves the following theorem for first-order equations

with constant coefficients.

THEOREM 9.1. Let g he difSerentiadle  on RI, and let f be the scalarjeld  dejined on R2 b)v
the equation

(9.9) f(x,  y) = g(bx  - ay),
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sphere  a and b are constants, not both zero. ThenJ’satis$es  thejrst-order partial dlJ%erential
equation

(9.10)
m, Y) + b V(X>  Y) _ o

a-z-- ay
everywhere in R2. Converseb,  every dljierentiable  solution of (9.10) necessarily has the form
(9.9) for some g.

9.3 Exercises

In this set of exercises you may assume differentiability of all functions under consideration.

1. Determine that solution of the partial differential equation

4 af(x7Y)  + 3 WGy)  _ o
ax aY

which satisfies the conditionf(x,  0) = sin x for all x.
2. Determine that solution of the partial differential equation

?m Y) _ 2 af(x,  .v)  _ o
s - - - - - - -

ax aY

which satisfies the conditionsf(0,  0) = 0 and D&x,  0) = e” for all x.
3. (a) If u(x,  y) =f(xy),  prove that u satisfies the partial differential equation

au au

“ax -y-  = OSaY

Find a solution such that u(x,  x) = x4erZ  for all x.
(b) If V(X,  y) = f(x/y)  for y # 0, prove that u satisfies the partial-differential equation

Find a solution such that ~(1,  1) = 2 and D,u(x,  l/x) = l/x for all x # 0.
4. Ifg(u,  v) satisfies the partial differential equation

prove thatg(u,  v) = p,(u)  + IJ+(v),  where P)~(N)  is a function of u alone and pZ(v)  is a function
of 2~ alone.

5. Assume f satisfies the partial differential equation

apt. a2f azf--
ax2

2- -3--o.
ax ay ay

Introduce the linear change of variables, x = Au + Bv, y = Cu + Dv, where A, B, C, D
are constant, and let g(u,  v) = f(Au + Bv , Cu + Dv) . Compute nonzero  integer values of
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A, B, C, D such thatg satisfies azg/( au au)  = 0. Solve this equation forg and thereby deter-
minef.  (Assume equality of the mixed partials.)

6. A function u is defined by an equation of the form

x +Y
4&y) = xyf ~( 1XY  *

Show that u satisfies a partial differential equation of the form

au
"*aX -Y

za”  = G(x,y)u,
ay

and find G(x,  y).
7. The substitution x = es, y = et convertsf(x, y) into g(s,  t), whereg(s,  t) =f(e”,  et).  Iffis

known to satisfy the partial differential equation

azt- a*f af afX2%* +y*dy2  +xX +Yry  =O,

show that g satisfies the partial-differential equation

azg azg
s +$ =o.

8 . Let,fbe  a scalar field that is differentiable on an open set Sin R”. We say that f is homogeneous
of degree p over S if

f(t4 = tpfw

for every t > 0 and every x in S for which tx E S. For a homogeneous scalar field of degreep
show that we have

x . Vf(x> = p f (x) for each x in S .

This is known as Euler’s theorem for homogeneous functions. If x = (x1, . . . , x,) it can be
expressed as

afx1- f...
8x1

+.,; =pf(xl,...,xn).
n

[Hint: For fixed x, defineg(t)  = f(tx)  and computeg’(l).]

9. Prove the converse of Euler’s theorem. That is, if f satisfies x Cf (x) = p f (x) for all x in an
open set S, then ,f  must be homogeneous of degree p over S.  [Hint: For fixed x,  define
g(t) =f(tx)  - t”f(x)  and computeg’(t).]

10. Prove the following extension of Euler’s theorem for homogeneous functions of degree p in
the 2-dimensional case. (Assume equality of the mixed partials.)

a2fx2 j--i2 + 2xy5 + y2$ =p(p  - 1,f.
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9.4 The one-dimensional wave equation

Imagine a string of infinite length stretched along the x-axis and allowed to vibrate in the
xq’-plane. We denote by y = f(x, t) the vertical displacement of the string at the point x
at time t. We assume that, at time t = 0, the string is displaced along a prescribed curve,
y = F(x). An example is shown in Figure 9.1(a).  Figures 9.1(b)  and (c) show possible
displacement curves for later values oft. We regard the displacementf(x,  t) as an unknown
function of x and t to be determined. A mathematical model for this problem (suggested
by physical considerations which we shall not discuss here) is the partial differential equation

where c is a positive constant depending on the physical characteristics of the string. This
equation is called the one-dimensional waue  equation. We will solve this equation subject to
certain auxiliary conditions.

Y
t Y

(a) t = 0 (b) t = 1

FI G U R E 9.1 The displacement curve y = J’(x, t) shown for various values of t.

Since the initial displacement is the prescribed curve y = P(x), we seek a solution
satisfying the condition

.f(x, 0)  = F(x).

We also assume that ay/af, the velocity of the vertical displacement, is prescribed at time
t = 0, say

4f(x, 0)  = G(x),

where G is a given function. It seems reasonable to expect that this information should
suffice to determine the subsequent motion of the string. We will show that, indeed, this is
true by determining the functionfin terms of F and G. The solution is expressed in a form
given by Jean d’Alembert  (1717-1783),  a French mathematician and philosopher.

THEOREM 9.2. D'ALEMBERT'S  SOLUTION OF THE WAVE EQUATION. Let Fand G be given
functions such that C is dlflerentiable  and F is twice difSerentiable  on R1. Then the function f
given by the formula

(9.11) f’(x,  g = F(x  + cf> + R-u  - ct) + _L
2 2c I

z’~‘tc(s)  ds
*--et
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(9.12)

and the initial conditions

(9.13) “f-(x,  0)  = F(x) > D&x, 0) = G(x).

Conversely, any function ,f’ with equal mixed partials  Mshich  satisjes  (9.12) and (9.13) neces-
sari/y has the form (9.11).

Proof. It is a straightforward exercise to verify that the function f given by (9.11)
satisfies the wave equation and the given initial conditions. This verification is left to the
reader. We shall prove the converse.

One way to proceed is to assume thatfis a solution of the wave equation, introduce a
linear change of variables,

x=Au+Bv, t=Cu+  Dv,

which transformsf(x,  t) into a function of u and v, say

g(u,  v) = f’(Au  + Bv, Cu + Dv) *

and choose the constants A, B, C, D so that g satisfies the simpler equation

B-0
allav *

Solving this equation for g we find that g(u,  v) = vr(u) + ~l.Jc), where ml(u)  is a function
of u alone and pi,(c) is a function of v alone. The constants ‘4,  B, C, D can be chosen so
that u = x + ct, v = x - ct , from which we obtain

(9.14) f(x, t) = f&(x + Cl> + yz(x  - ct>.

Then we use the initial conditions (9.13) to determine the functions q1 and va in terms of
the given functions F and G.

We will obtain (9.14) by another method which makes use of Theorem 9.1 and avoids the
change of variables. First we rewrite the wave equation in the form

where L,  and L,  are the first-order linear differential operators given by

Letf be a solution of (9.15) and let

4x9 t> = w-(x, t) *
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Equation (9.15) states that u satisfies the first-order equation L,(u) = 0. Hence, by
Theorem 9.1 we have

u(x, t) = 9(x  + ct)

for some function ~1.  Let 0 be any primitive of 9, say @(JJ)  = jz v(s)  ds,  and let

u(x,  t) = h 0(x + ct) .

We will show that L2(tl)  = L,(f). We have

S O

au=  12, @‘(x + co and
ax

g = iO’(x  + ct),

L,v = g + c g = W(x  + ct) = p(x  + ct) = u(x, t) = LJ-.

In other words, the difference f - v satisfies the first-order equation

L,(f-  v) = 0.

By Theorem 9.1 we must havef(x, t) - u(x, t) = y(x - ct) for some function y. There-
fore

f(x, t) = v(x, t) + y(x  - ct) = i 0(x + ct) + y(x  - ct) .

This proves (9.14) with q1 = & (Ii  and p2 = y.

Now we use the initial conditions (9.13) to determine the functions v1 and v2 in terms of
the given functions F and G. The relationf(x, 0) = F(x) implies

(9.16) Q)~(x)  +  PZ(X>  =  F(x).

The other initial condition, D,f(x, 0) = G(x), implies

(9.17) q;(x) - up;;(x)  = G(x).

Differentiating (9.16) we obtain

(9.18) P;(x) + P;(x) = F’(x) *

Solving (9.17) and (9.18) for p;(x) and q;(x) we find

m;(x)  = ; F’(x)  + h G(x), &x) = ; F’(x) - $ G(x).
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Integrating these relations we get

ml(x)  - 940)  = F(x)  ; F(o) + ; o”c(r)  ds,
f

Q)&)  - p,(O)  = F(x) ; F(o)  - h 3(s) ds.
s

In the first equation we replace x by x + ct; in the second equation we replace x by
x - ct. Then we add the two resulting equations and use the fact that ~~(0)  + ~~(0)  =
F(O)  to obtain

f(X,  t) = pl(X  + ct) + &X  - ct) = F(x  + ct)  ; F(x - ct)  + ; j”;‘&)  ds.
+ et

This completes the proof.

EXAMPLE. Assume the initial displacement is given by the formula

1 + cos 7rX for
F(x) =

-l<xll,

0 for 1x1 2 ‘1.

Y
y = J(x,  0) = I-(.x)

A-

t
/ Y =fk 2)

-l o- I x -ELLA-x-4-3 -2 -I 0 I 2 3 4

(a) t = 0 (b)r = 2

FIGURE 9.2 A solution of the wave equation shown for t = 0 and t = 2.

The graph of F is shown in Figures 9.1(a)  and 9.2(a). Suppose that the initial velocity
G(x) = 0 for all x. Then the resulting solution of the wave equation is given by the formula

fcx, t) = F(x + ct>  + F(x - ct)
2

Figures 9.1 and 9.2 show the curve y = f(x, t) for various values of t. The figures illustrate
that the solution of the wave equation is a combination of two standing waves, one traveling
to the right, the other to the left, each with speed c.

Further examples illustrating the use of the chain rule in the study of partial differential
equations are given in the next set of exercises.
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9.5 Exercises

1.

2.

3.

In this set of exercises you may assume differentiability of all functions under consideration.

If k is a positive constant and&,  t) = $x/Jkt,  let

f(x,  I) = Ji’““’  ecu2  du.

af ag(a) Show that z = e-g8  - a n d af -g*  ag
ax at’” a t ’

(b) Show thatfsatisfies the partial differential equation

az/- afk ax2  = z (the heat equation).

Consider a scalar fieldfdefined in R* such thatf(x,  y) depends only on the distance r of (x, y)
from the origin, say f(x,  y) = g(r), where r = (x2  + y*)”  .
(a) Prove that for (x, y) # (0,O)  we have

g< + $ = i g’(r) + g”(r).

(b) Now assume further thatfsatisfies Laplace’s equation,

a2f a*f
s+y=o,

au

for all (x, y) # (0,O). Use part (a) to prove that f (x, yj  = a log (x2  + y*)  + b for (x,  Y) #
(0, 0)) where a and b are constants.
Repeat Exercise 2 for the n-dimensional case, where n > 3. That is, assume that f(x) =
fk,..., x,) =g(r), where r = 1IxlI. Show that

azf azf n-1
jp +...  +j-g  =

1 n

Y g’(r)  + g”(r)

for x # 0. If f satisfies the n-dimensional Laplace  equation,

azf
ax2  +

a2f
1

...  +j-g =o,
n

for all x # 0, deduce that f(x) = a ljx112-n + b for x # 0, where a, b are constants.

Note: The linear operator ‘i2 defined by the equation

r2f=!Y+...+$
1 n

is called the n-dimensional Laplacian.
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4.

5 .

6.

7 .

Two-dimensiclnal  Laplacian in polar coordinates. The introduction of polar coordinates x =
r cos 0,  )I  = r sin 8,  converts f(x,  y) into g(r, 19). Verify the following formulas:

(a) /[ Yf(r  cos 0, r sin e>llz  = ;i;
ca7 Yagr

+ y2 jj

Three-dimensional Laplacian in spherical coordinates. The introduction of spherical coordinates

x = pcos0sin  92, y = p sin 0 sin p, z = pcos  p,

transformsf(x,  y,  z) to F(p,  0,  q).  This exercise shows how to express the Laplacian V2f in
terms of partial derivatives of F.
(a) First introduce polar coordinates x = r cos 0 ,y  = r sin 0 to transformf (x, y, z) tog@, 0, z).
Use Exercise 4 to show that

a?? I a2g 1 ag a2g
““f =g +ps +;z  +jgz.

(b) Now transform g(r, 0, z) to F(p,  0, 9) by taking z = p cos p, r = p sin p. Note that,
except for a change in notation, this transformation is the same as that used in part (a). Deduce

that
cos v aF  1 a2F

This exercise shows how Legendre’s differential equation arises when we seek solutions of
Laplace’s equation having a special form. Letfbe a scalar field satisfying the three-dimensional
Laplaceequation, T2f  = 0. Introduce spherical coordinates as in Exercise 5 and let F(p,  0, p)  =

f(X>  y>  z).
(a) Suppose we seek solutions f of Laplace’s equation such that F(p,  0,  9) is independent of 0
and has the special form F(p,  0, ~7)  = p”G(p,)  . Show that f satisfies Laplace’s equation if G
satisfies the second-order equation

d2G
dpii+cot~$+n(n+l)G=O.

(b) The change of variable x = cos 9 (q = arccos x, -1 < x 5 1) transforms G(v)  to g(x).
Show that g satisfies the Legendre equation

Two-dimensional wave equation. A thin flexible membrane is stretched over the xy-plane and
allowed to vibrate. Let z = f(x,  y,  t)  denote the vertical displacement of the membrane at the
point (x, y) at time t. Physical considerations suggest that,f satisfies the two-dimensional  wave
equation,
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where c is a positive constant depending on the physical characteristics of the membrane. This
exercise reveals a connection between this equation and Bessel’s differential equation.
(a) Introduce polar coordinates x = r cos 0, y = r sin 0,  and let F(r,  0, t)  = f(r cos 0, r sin 0, t) .
Iffsatisfies the wave equation show that F satisfies the equation

a2F 2 i a% i aF
-=

at2
c2 dl“+2z+Td,-.

c ar2 1

(b) If F(r,  0, t) is independent of 8, say F(r, 0, t) = q(r,  t) the equation in (a) simplifies to

Now let p be a solution such that qfr,  t) factors into a function of r times a function of t, say
p(r,  t) = R(r)T(t)  . Show that each of the functions R and T satisfies an ordinary linear differ-
ential equation of second order.
(c) If the function T in part (b) is periodic with period 2n/c, show that R satisfies the Bessel
equation r2R”  + rR’ + r2R = 0.

9.6 Derivatives of functions defined implicitly

Some surfaces in 3-space are described by Cartesian equations of the form

F(x,y, z) = 0.

An equation like this is said to provide an implicit representation of the surface. For
example, the equation x2 + y2 + z2 - 1 = 0 represents the surface of a unit sphere with
center at the origin. Sometimes it is possible to solve the equation F(x,  y, z) = 0 for one
of the variables in terms of the other fwo, say for z in terms of x and y. This leads to one or
more equations of the form

z =f(x,y).

For the sphere we have two solutions,

z=dl -x2-y2 and z=--1/1-&y27

one representing the upper hemisphere, the other the lower hemisphere.
In the general case it may not be an easy matter to obtain an explicit formula for z in

terms of x and y. For example, there is no easy method for solving for z in the equation
y2 + xz + z2 - ez  - 4 = 0. Nevertheless, a judicious use of the chain rule makes it
possible to deduce various properties of the partial derivatives af/ax and aflay without an
explicit knowledge off(x, y). The procedure is described in this section.

We assume that there is a functionf(x, y) such that

(9.19) ax, y,f(x,  y)l  = 0

for all (x, y) in some open set S, although we may not have explicit formulas for calculating
f(x, y). We describe this by saying that the equation F(x,  y, z) = 0 defines z implicitly as a
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function of x and y, and we write

z =f’(x,y>.

Now we introduce an auxiliary function g defined on S as follows:

g(x,  Y>  = F[x,  y,f(x, .Y)l .

Equation (9.19) states that g(x,  y) = 0 on S; hence the partial derivatives ag/ax  and
i?g/ay are also 0 on S. But we can also compute these partial derivatives by the,chain rule.
To do this we write

g(x,  Y> = F[Ul(X,  y>,  dx, y>,  u,(x,  VII  >

where u,(x, y) = x, u,(x, y) = y, and u&x,  y) =f(x, y). The chain rule gives us the
formulas

ag-= DlFa2 + D,Faz+  D,F?
ax

and ag- = D,& + D,Fa*  + D,Fa3
ay ay ay ay  ’

where each partial derivative D,F  is to be evaluated at (x, y,J’(x, y)). Since we have

au,- 1 au, o au3 af-=-
ax ' XL' ' ax ax'

and ag  = 0
ax 2

the first of the foregoing equations becomes

DF+DFaf=O1 3ax *
Solving this for aflax we obtain

(9.20) af D,F[x,  y,f(x, ~11-=-
ax D,F[x,  Y, fk Y)l

at those points at which D,F  [x, y, f(x, y)] # 0. By a similar argument we obtain a corre-
sponding formula for aflay:

(9.21) !x- wk YYfbf  Y)l- -
ay D,FbG  Ytf(X,  Y)l

at those points at which D,F[x, y,f(x, y)] # 0. These formulas are usually written more
briefly as follows:

af aFlax  af aFlay-=--
ax aqaz G ---=z*

EXAMPLE. Assume that the equation y2 + xz + z2 - ez  - c = 0 defines z as a function
of x and y, say z =f(x, y). Find a value of the constant c such that ,f(O,  e) = 2, and
compute the partial derivatives af/jax and @/lay  at the point (x, y) = (0, e) .
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Solution. Whenx=O,y=e,andz=2,theequationbecomese2+4-e2-c=0,
and this is satisfied by c = 4. Let F(X,  y, z) = y2 + xz + z2 - eZ  - 4. From (9.20)
and (9.21) we have

af Z af 2Y-=-
ax x + 22  - e”

-=-
ay x + 22 - ez  ’

When x = 0, y = e, and z = 2 we find aflax = 2/(e2 - 4) and af/jay = 2e/(e2 - 4).
Note that we were able to compute the partial derivatives afiax and af;iay using only the
value off(x, y) at the single point (0, e).

The foregoing discussion can be extended to functions of more than two variables.

THEOREM 9.3. Let F be a scalarjeld  difSerentiable on an open set Tin R”.  Assume that
the equation

F(x,,  . . . , x,) = 0

dejines x,  implicitly as a d@erentiable  function of x1, . . . , x,-~, say

x,  =f(x,,  * *. 3 x,-J,

for allpoints (x1, . . . , x,_~)  in some open set S in R”-I. Then for each k = 1,2, . . . , n - 1,
the partial derivative Dlcf is given by the formula

(9.22) Dkf=  -E
71

at those points at which D,F # 0. The partial derivatives D,F  and D,F which appear in
(9.22) are to be evaluated at the point (x1, x2, . . . , x,-~,  f(x,  , . . . , x,-J).

The proof is a direct extension of the argument used to derive Equations (9.20) and
(9.21) and is left to the reader.

The discussion can be generalized in another way. Suppose we have two surfaces with
the following implicit representations :

(9.23) F(x,  y, z) = 0, G(x,y,z) = o .

If these surfaces intersect along a curve C, it may be possible to obtain a parametric
representation of C by solving the two equations in (9.23) simultaneously for two of the
variables in terms of the third, say for x and y in terms of z. Let us suppose that it is
possible to solve for x and y and that solutions are given by the equations

x = X(z), Y = Y(z)

for all z in some open interval (a, b). Then when x and y are replaced by X(z) and Y(z),
respectively, the two equations in (9.23) are identically satisfied. That is, we can write
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F[X(z), Y(z), z] = 0 and G[X(z), Y(z), z] = 0 for all z in (a, b). Again, by using the
chain rule, we can compute the derivatives X’(z) and Y’(z) without an explicit knowledge of
X(z) and Y(z). To do this we introduce new functionsf and g by means of the equations

f(z)  = FW(z),  Y(z),  zl and g(z) = G [X(z),  Y(z),  z].

Then f(z) = g(z) = 0 for every z in (a, b) and hence the derivatives f’(z) and g’(z) are
also zero on (a, b). By the chain rule these derivatives are given by the formula

f’(z)  = fz X’(z)  + E Y’(z) + z )
ax ay aZ

g’(z) = E X’(z)  + E Y’(z) + a;  .

Sincef’(z) and g’(z) are both zero we can determine X’(z) and Y’(z) by solving the follow-
ing pair of simultaneous linear equations:

aF
-&X’(z) + E Y’(z) = - g )

,

g X’(z) + g Y’(z) = - g .

At those points at which the determinant of the system is not zero, these equations have a
unique solution which can be expressed as follows, using Cramer’s rule:

(9.24) X’(z)  = -

aF aF

zay

ac ac-
aZ  ay

aF aF- -
ax  ay
aG ac- -
ax  ay

aF aF- -
ax  aZ
aG aG- -
ax aZ

2 Y’(z) = -
aF  aF-
Z ay
aG  aG- -
ax ay

-.

The determinants which appear in (9.24) are determinants of Jacobian matrices and are
called Jacobian determinants. A special notation is often used to denote Jacobian deter-
minants. We write

3, af,-

/

- . . .
ax, ax,
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In this notation, the formulas in (9.24) can be expressed more briefly in the form

(9.25)

(The minus sign has been incorporated into the numerators by interchanging the columns.)
The method can be extended to treat more general situations in which m equations in n

variables are given, where n > m and we solve for m of the variables in terms of the
remaining n - m variables. The partial derivatives of the new functions so defined can be
expressed as quotients of Jacobian determinants, generalizing (9.25). An example with
m = 2 and n = 4 is described in Exercise 3 of Section 9.8.

9.7 Worked examples

In this section we illustrate some of the concepts of the foregoing section by solving
various types of problems dealing with functions defined implicitly.

EXAMPLE 1. Assume that the equation g(x, y) = 0 determines y as a differentiable
function of x, say y = Y(x) for all x in some open interval (a, b). Express the derivative
Y’(x) in terms of the partial derivatives of g.

Solution. Let G(x) = g[x, Y(x)] for x in (a, b). Then the equation g(x,  y) = 0 implies
G(x) = 0 in (a, b). By the chain rule we have

from which we obtain

G’(x) = $a  1 + %’ Y’(x),
ay

(9.26)

at those points x in (a, b) at which ag/ay # 0. The partial derivatives ag/ax and ag/ay
are given by the formulas ag/ax = D,g[x,  Y(x)] and ag/ay = D,g[x,  Y(x)].

EXAMPLE 2. When y is eliminated from the two equations z =f(x, y) and g(x, y) = 0,
the result can be expressed in the form z = h(x). Express the derivative h’(x) in terms of
the partial derivatives off and g.

Solution. Let us assume that the equation g(x, y) = 0 may be solved for y in terms of
x and that a solution is given by y = Y(x) for all x in some open interval (a, b). Then
the function h is given by the formula

h(x)  =fb,  Y(x)1 if x E (a, b) .

Applying the chain rule we have

a-h’(x) = E + ay Y’(x).
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Using Equation (9.26) of Example 1 we obtain the formula

wf af  ag- - _ - -

h’(x) =
ay  ax ay  ax

as .
ay

The partial derivatives on the right are to be evaluated at the point (x, Y(x)). Note that
the numerator can also be expressed as a Jacobian determinant, giving us

h’(x)  = a(fT dia(x3 Y)
aday  .

EXAMPLE 3. The two equations 2x = v2 - u2 and y = MU define u and ~1  as functions
0f x and y. Find formulas for au/ax,  au/ay, au/ax, av/ay.

Solution. If we hold y fixed and differentiate the two equations in question with respect
to x, remembering that u and v are functions of x and y, we obtain

~=&k-&?
ax ax

and

Solving these simultaneously for au/ax  and au/ax  we find

all u-=--
2 + uz

and - = 2au
ax ax u2 + v2'

On the other hand, if we hold x fixed and differentiate the two given equations with respect
to y we obtain the equations

04$-&!!
ay

and
ay

~=uLv,vau
ay ay *

Solving these simultaneously we find

au  v
and - = 2au-==

ay u2 + v2 ay u2 + 2’

EXAMPLE 4. Let u be defined as a function of x and y by means of the equation

u = F(x  + u,yu).

Find au/ax  and au/ay  in terms of the partial derivatives of F.

Solution. Suppose that u = g(x,  y) for all (x, y) in some open set S.  Substituting
g(x,  y) for u in the original equation  we must have

(9.27) g(x,u> = F[u,(x,y),  u26,  y)l,
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where u,(x, y) = x + g(x, y) and u,(x, y) = y g(x,  y)  . Now we hold y fixed and differ-
entiate both sides of (9.27) with respect to x, using the chain rule on the right, to obtain

(9.28) ag=.,au,+.,au,
8X l ax 2 ax’

But &,/ax  = 1 + ag/ax,  and &,/ax  = y ag/ax.  Hence (9.28) becomes

Solving this equation for ag/ax (and writing au/ax  for ag/ax) we obtain

In a similar way we find

au -DD,F-=
ax D,F  + y D,F  - 1 ’

_ = D,F  au, + D,F  f!!Z = D,F  ag  + D,Fag .
ay ay ay ay

y ’ + g(x, Y>
ay

This leads to the equation
au -dx,  Y>  W
ay= D,F  + y D,F  - 1 ’

The partial derivatives D,F and D,F are to be evaluated at the point  (x + g(x, y), y g(x, y)).

EXAMPLE 5. When u is eliminated from the two equations x = u + v and y = uv2,  we
get an equation of the form F(x,  y, v) = 0 which defines v implicitly as a function of x
and y, say v = h(x, y) . Prove that

ah h(x, Y)-=
ax 3h(x, y) - 2x

and find a similar formula for ahlay.

Solution. Eliminating u from the two given equations, we obtain the relation

xv2  - v3-y=o.

Let F be the function defined by the equation

F(x,  y, 4 =  xv2  - v3  - y .

The discussion in Section 9.6 is now applicable and we can write

(9.29)
ah aFlax-=--
ax aqav

and ah amy- = - -
ay aqav  *
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~~~  aFlax  = 9, aFlav = 2xv - 3v2,  and aF@y = - 1. Hence the equations in (9.29)
become

ah V2 11 h(x,  Y)-=- --=

ax 2xv - 3v2 = 2x - 3v 3h(x, y) - 2x
and

ah - 1 1-=-
ay 2xv - 3v2 = 2xh(x,  y) - 3h2(x,  y) ’

EXAMPLE 6. The equation F(x,  y, z) = 0 defines z implicitly as a function of x and y,
say z =f(x,y). Assuming that a2r;l(ax  az)  = a2F/(az ax),  show that

(9.30)
ay- (5)  (Zj - 2(iZ) (IF) (3 + (iFi’
- = -
ax2 aF 3

i 1

2

z

where the partial derivatives on the right are to be evaluated at (x, y,f(x,  y)).

Solution. By Equation (9.20) of Section 9.6 we have

(9.31) af aFlax

a x -- - i @ % *

We must remember that this quotient really means

_ W’b,  y,fk  Y)I
D,Fb,  Y?f(xYYN’

Let us introduce G(x,y)  = D,F[x,y,f(x,y)]  and H(x,y)  = D,F[x,y,f(x,y)].  Our
object is to evaluate the partial derivative with respect to x of the quotient

af G(x,  Y)-=--
ax WG  Y)  ’

holding y fixed. The rule for differentiating quotients gives us

-_ aG -aH

(9.32) azf H--G-
ax ax-=-

ax2 H2 *

Since G and H are composite functions, we use the chain rule to compute the partial
derivatives aG/ax  and aH/ax.  For aG/&x we have

a2F + a2F  aj=-  - -
ax2 az ax ax *
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Similarly, we find
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aH af- = D,(D,F)  . 1 + D,(D,F)  * 0 + D,(D,F)  . -g
ax

?F a2F af
=ax++aZ::a.X

Substituting these in (9.32) and replacing aflax  by the quotient in (9.31) we obtain the
formula in (9.30).

9.8 Exercises

In the exercises in this section you may assume the existence and continuity of all derivatives
under consideration.

1. The two equations x + y = uv and xy = u - v determine x and y implicitly as functions of
u and v, say x = X(u, v) and y = Y(u, v). Show that ax/au  = (XV - 1)/(x - y) if x # y ,
and find similar formulas for ax/ au, 8 Y/au, 8 Y/au.

2. The two equations x + y = uv and xy = u - v determine x and v as functions of u and y,
say x = X(u, y) and v = V(u, y). Show that ax/au  = (u + v)/(l  + yu) if 1 + yu # 0, and
find similar formulas for ax/ ay, aV/ au, 8 V/  ay.

3. The two equations F(x, y, u, v) = 0 and G(x, y, u, v) = 0 determine x and y implicitly as
functions of u and v, say x = X(u, v) and y = Y(u, v). Show that

ax a(& C>/  a& U)-=
au a@‘,  G)/ a@,  Y)

at points at which the Jacobian a(F, G)/a(x,  y) # 0, and find similar formulas for the partial
derivatives ax/ au, a Y/au, and 8 Y/au.

4. The intersection of the two surfaces given by the Cartesian equations 2x’ + 3y2 - z2 = 25
and x2 +y 2 = z2 contains a curve C passing through the point P = (47,  3,4).  These
equations may be solved for x and y in terms of z to give a parametric representation of C
with z as parameter.
(a) Find a unit tangent vector T to C at the point] P without usingtan  explicit knowledge of
the parametric representation.
(b) Check the result in part (a) by determining a parametric representation of C with z as
parameter.

5. The three equations F(u,  v) = 0, u = xy, and v = dm define a surface in xyz-space.
Find a normal vector to this surface at the point x = 1, y = 1, z = fi if it is known that
D,F(l,  2) = 1 and D,F(l  ,2)  = 2.

6. The three equations
x2-ycos(uv) +22=0,

x2 + y2 - sin (uv) + 2z2 = 2,

xy -sinucosv +z =O,

define x, y, and z as functions of u and v. Compute the partial derivatives ax/ au and ax/au at
thepointx =y  = 1,~  = ~12,~ =O,z  =O.
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7. The equationf(y/x, z/x)  = 0 defines z implicitly as a function of x and y, say z = g(x,  y).
Show that

xg +y%  =g(x,y)
aY

at those points at which DPf[y/x,  g(x, y)/x] is not zero.
8. Let F be a real-valued function of two real variables and assume that the partial derivatives

D,F  and D,F are never zero. Let u be another real-valued function of two real variables such
that the partial derivatives au/ ax and &A/  8y  are related by the equation F( au/  ax, au/  ay)  = 0.
Prove that a constant n exists such that

a%  a% a%  *
--=
ax2 ay2 ( 1ms \

and find n. Assume that a2u/( ax ay) = a2u/( ay ax).
9. The equation x + z + (y + z)~ = 6 defines z implicitly as a function of x and y, say

z =f(x, y) . Compute the partial derivatives af/lx, af/lay,  and a2f(  ax ay) in terms of x,
y, and z.

10 .

11.

12.

The equation sin (x + y) + sin (y + z) = 1 defines z implicitly as a function of x and y, say
z =f(x, y) . Compute the second derivative D,,,fin terms of x, y, and z.
The equation F(x  + y + z, x2 + y2 + z2) = 0 defines z implicitly as a function of x and y,
say z =f(x, y) . Determine the partial derivatives af/ ax and af/  ay  in terms of x, y, z and the
partial derivatives DIF and D,F.
Letfandg be functions of one real variable and define F(x,  y) = f[x + g(y)]. Find formulas
for all the partial derivatives of Fof first and second order, expressed in terms of the derivatives
off and g. Verify the relation

aF a2F aF a2F
- -
ax ax ay = 6 axi *

9.9 Maxima, minima, and saddle points

A surface that is described explicitly by an equation of the form z =f(x, y) can be
thought of as a level surface of the scalar field F defined by the equation

F(x,  y, 4 = f(x, y> - z .

Iffis differentiable, the gradient of this field is given by the vector

vF=Ei+afj-k.
ay

A linear equation for the tangent plane at a point P1 = (x1,  y, , zr) can be written in the form

where
2 - z1 = A(x - x1) + B(y - y1) 7

A = Rf(x19yd and B = D,f(x,  3 rd.

When both coefficients A and B are zero, the point PI  is called a stationary point of the
surface and the point (x1,  yJ is called a stationarypoint or a criticalpoint of the function f.
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The tangent plane is horizontal at a stationary point. The stationary points of a surface are
usually classified into three categories : maxima, minima, and saddle points. If the surface
is thought of as a mountain landscape, these categories correspond, respectively, to
mountain tops, bottoms of valleys, and mountain passes.

The concepts of maxima, minima, and saddle points can be introduced for arbitrary scalar
fields defined on subsets of R”.

DEFINITION. A scalarfieldf  is said to have an absolute maximum at a point a of a set S
in R”  if

(9.33)

for allx  in S. The number f (a) is called the absolute maximum value off on S. The function f
is said to have a relative maximum at a if the inequality in (9.33) is satisjiedfor every x in
some n-ball B(a) lying in S.

In other words, a relative maximum at a is the absolute maximum in some neighborhood
of a. The terms absolute minimum and relative minimum are defined in an analogous
fashion, using the inequality opposite to that in (9.33). The adjectives global and local are
sometimes used in place of absolute and relative, respectively.

DEFINITION. A number which is either a relative maximum or a relative minimum off is
called an extremum off.

Iff has an extremum at an interior point a and is differentiable there, then all first-order
partial derivatives D&a), . . . , D&a) must be zero. In other words, Vf(a) = 0. (This
is easily proved by holding each component fixed and reducing the problem to the one-
dimensional case.) In the case n = 2, this means that there is a horizontal tangent plane
to the surface z = f(x,  y) at the point (a, f (a)). On the other hand, it is easy to find examples
in which the vanishing of all partial derivatives at a does not necessarily imply an extremum
at a. This occurs at the so-called saddlepoints which are defined as follows.

DEFINITION. Assume f is differentiable at a. If Of (a) = 0 the point a is called a stationary
point of J A stationary point is called a saddle point if every n-ball B(a) contains points x
such that f (x) < f(a) and other points such that f (x) > f (a).

The situation is somewhat analogous to the one-dimensional case in which stationary
points of a function are classified as maxima, minima, and points of inflection. The
following examples illustrate several types of stationary points. In each case the stationary
point in question is at the origin.

EXAMPLE 1. Relative maximum. z = f (x, y)  = 2 - x2 - ~2. This surface is a parabo-
loid of revolution. In the vicinity of the origin it has the shape shown in Figure 9,3(a).  Its
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(a) z = 2 - x2 - y* (b) Level curves: x’ + y’ = c

Example 1. Relative maximum at the origin.

XJ

(c) z = x” + ,!J2

Example 2. Relative minimum at the origin.

FIGURE 9.3 Examples 1 and 2.

level curves are circles, some of which are shown in Figure 9.3(b). Since f(x, y)  =
2 - (x2 + y”) 5 2 = f(0, 0) for all (x, y), it follows thatfnot only has a relative maximum
at (0,O) but also an absolute maximum there. Both partial derivatives af/ax  and aflay
vanish at the origin.

EXAMPLE 2. Relative minimum. z = f(x, y) = x2 + y2.  This example, another parabo-
loid of revolution, is essentially the same as Example 1,  except that there is a minimum at
the origin rather than a maximum. The appearance of the surface near the origin is
illustrated in Figure 9.3(c) and some of the level curves are shown in Figure 9.3(b).
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EXAMPLE 3. Saddle point. z = f(x, y) = xy. This surface is a hyperbolic paraboloid.
Near the origin the surface is saddle shaped, as shown in Figure 9.4(a). Both partial
derivatives aflax and aflay  are zero at the origin but there is neither a relative maximum
nor a relative minimum there. In fact, for points (x, y)  in the first or third quadrants,
x and y have the same sign, giving us f(x,  y) > 0 = f(0,  0) , whereas for points in the
second and fourth quadrants x and y have opposite signs, giving us f (x, y) < 0 = f (0,O).
Therefore, in every neighborhood of the origin there are points at which the function is
less thanf(O,  0) and points at which the function exceedsf(0, 0), so the origin is a saddle

(a) z = XL’ (b) Level curves: xy = c

FIGURE 9.4 Example 3. Saddle point at the origin.

point. The presence of the saddle point is also revealed by Figure 9.4(b), which shows
some of the level curves near (0,O).  These are hyperbolas having the x- and y-axes as
asymptotes.

EXAMPLE 4. Saddle point. z = f(.x, y) = x3 - 3xy2.  Near the origin, this surface has
the appearance of a mountain pass in the vicinity of three peaks. This surface, sometimes
referred to as a “monkey saddle,” is shown in Figure 9.5(a). Some of the level curves
are illustrated in Figure 9.5(b).  It is clear that there is a saddle point at the origin.

EXAMPLE 5. Relative minimum. z = f(x, y) = 2x y2. This surface has the appearance of
a valley surrounded by four mountains, as suggested by Figure 9.6(a). There is an absolute
minimum at the origin, sincef(x,  y) >f(O,  0) for all (x, y). The level curves [shown in
Figure 9.6(b)] are hyperbolas having the x- and y-axes as asymptotes. Note that these level
curves are similar to those in Example 3. In this case, however, the function assumes only
nonnegative values on all its level curves.

EXAMPLE 6. Relative maximum. z =f(x, y)  = 1 - x2.  In this case the surface is a
cylinder with generators parallel to the y-axis, as shown in Figure 9.7(a). Cross sections
cut by planes parallel to the x-axis are parabolas. There is obviously an absolute maximum
at the origin becausef(x,  y)  = 1 - x2 < 1 = f(0,  0) for all (x, y). The level curves form a
family of parallel straight lines as shown in Figure 9.7(b).



(a) ; zz .Y.’ - 3 Xj”. (b) Level curves: s.’  - 3 q“ = c.

FIGURE 9.5 Example 4. Saddle point at the origin.

J
i

(a) z = Yy’ (b)  Level curves: x’y’  = c

FIGURE 9.6 Example 5. Relative minimum at the origin.

; ?

Tangent plane at (O,O,l)

/

(a) i = 1 - xz (b) Level curves: 1 - x’ = c

FIGURE 9.7 Example 6. Relative maximum at the origin.
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9.10 Second-order Taylor formula for scalar fields

If a differentiable scalar field f has a stationary point at a, the nature of the stationary
point is determined by the algebraic sign of the difference f’(x) -f(a) for x near a. If
x = CI + y , we have the first-order Taylor formula

f(a + Y) - f(a) = Vf(a)  * Y  + IIY II J%&  Y> > where E(a,y)+O  as y+ 0.

At a stationary point, Vf(u)  = 0 and the Taylor formula becomes

f(a + Y) -f(u) = IIY  II -m  Y) *

To determine the algebraic sign of f(u  + y) - f( u we need more information about the)
error term IIy  11 E(u,  y). The next theorem shows that if f has continuous second-order
partial derivatives at a, the error term is equal to a quadratic form,

plus a term of smaller order than IIy  \12. The coefficients of the quadratic form are the
second-order partial derivatives Diif = Di(Df) , evaluated at a. The n x n matrix of
second-order derivatives Dijf(x)  is called the Hessian matrix? and is denoted by H(x).
Thus, we have

whenever the derivatives exist. The quadratic form can be written more simply in matrix
notation as follows:

where y = (yl,  . . . ,u,J is considered as a 1 x n row matrix, and yt is its transpose, an
n x 1 column matrix. When the partial derivatives Dijf are continuous we have Dijf =
Djif and the matrix H(u) is symmetric.

Taylor’s formula, giving a quadratic approximation to f(u + y) - f(u), now takes the
following form.

THEOREM 9.4. SECOND-ORDER  TAYLOR  FORMULA  FOR SCALAR FIELDS. Let f be a scalar
jield  with continuous second-order partial derivatives Dijf in an n-ball B(u). Then for all
y in R”  such that a + y E B(u) we have

(9.34) f(a + y) -f(a)  = v-64  ‘Y + $YfJ(U + CY>Y”, where O<c<l.

t Named for Ludwig Otto Hesse (1811-1874),  a German mathematician who made many contributions to
the theory of surfaces.
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This can also be written in the form

(9.35) f(a + y) --f(a)  = v-w 'Y + ~YH(aly'  + Ml2 E2(4Y),

where E2(u,  y) + 0 as y - 0.

Proof. Keep y fixed and define g(u) for real u by the equation

Thenfb  + y) -f(a)  = g(l) - g(O). W e will prove the theorem by applying the second-
order Taylor formula to g on the interval [0, 11.  We obtain

(9.36) g(l)  - g(O)  = g’(O)  + +j f(c), where 0 < c < 1.

Here we have used Lagrange’s form of the remainder (see Section 7.7 of Volume I).
Since g is a composite function given by g(u)  =f[v(u)]  , where r(u) = u + uy,  we can

compute its derivative by the chain rule. We have r’(u) = y so the chain rule gives us

g’(u)  = Vf[r(u>l  . r’(u)  = Vf[r(u)l  *Y =jiiI~jflr(uNui9

provided r(u) E B(u). In particular, g’(0) = Of(u)  * y . Using the chain rule once more
we find

g”(u)  = 2 Di  i Djf[r(u>lvi
i 1

Yi  = 5 i Rif[r(u)lwj  = yfWu)lyt.i=l j=l i-1 j=l

Hence g”(c) = yH(u + cy)yt,  so Equation (9.36) becomes (9.34).
To prove (9.35) we define  E,(u,  y)  by the equation

(9.37) llyl12  E,&Y) = ~YW(U + CY)  - W4)yt i f  y#O,

and let E,(u,  0) = 0. Then Equation (9.34) takes the form

f(u  +y)  -f(u) = Vf(u)-y  + $ yH(u)y”  4 (lyl12 E,(~,Y).

To complete the proof we need to show that E2(u,  y) -+ 0 as y -+ 0.
From (9.37) we find that

llyl12  IE,@, y)l  = ; x 3 {DJ(u  + cy) - Dtjf(u>}YiYj
2=19=1
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Dividing by l\y (I2 we obtain the inequality

I&k Y)I I 5 i‘ $lDiJ(u  + cy) - DiJ(u>l
2=13=1

for y # 0. Since each second-order partial derivative Dijf is continuous at a, we have

D&a + CY>  - D&a>  as Y -+  0, so E,(a, y) -+ 0 as y + 0. This completes the proof.

9.11 The nature of a stationary point determined by the eigenvalues of the Hessian matrix

At a stationary point we have V’(a) = 0, so the Taylor formula in Equation (9.35)
becomes

f(a + Y) -f(a) = +YH(4Yt  + IIY II2  -%(a, Y> *

Since the error term ((y/j2 E,(a,  y) tends to zero faster than lIylj2,  it seems reasonable to
expect that for small y the algebraic sign of f(a  + y) -f(a) is the same as that of the
quadratic form yH(a)yt; hence the nature of the stationary point should be determined by
the algebraic sign of the quadratic form. This section is devoted to a proof of this fact.

First we give a connection between the algebraic sign of a quadratic form and its eigen-
values.

THEOREM 9.5. Let A = [aij]  be an n x n realsymmetric matrix, and let

Then we have:

Q(Y)  = y-4~~  = 2 i ww j.i=l  j=l

(a) Q(y) > 0 for ally  # 0 ifand  onb ifall  the eigenvalues of A are positive.
(b) Q(y) < 0 for ally # 0 if and only ifall  the eigenvalues of A are negative.

Note: In case (a), the quadratic form is calledpositive definite; in case (b) it is called
negative definite.

Proof. According to Theorem 5.11 there is an orthogonal matrix C that reduces the
quadratic form yAyt  to a diagonal form. That is

(9.38) Q(y) = YAY~  = &:

wherex=(x,,..., x,) is the row matrix x = yC,  and 1,)  . . . , 1, are the eigenvalues of
A. The eigenvalues are real since A is symmetric.

If all the eigenvalues are positive, Equation (9.38) shows that Q(y) > 0 whenever
x # 0. But since x = yCwe have y = xc-l, so x # 0 if and only if y # 0. Therefore
Q(y)>Oforally# 0 .

Conversely, if Q(y) > 0 for all y # 0 we can choose y so that x = yC is the kth co-
ordinate vector ek  . For this y, Equation (9.38) gives us Q(y) = &, so each L, > 0. This
proves part (a). The proof of (b) is entirely analogous.
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The next theorem describes the nature of a stationary point in terms of the algebraic
sign of the quadratic form yH(a)$.

THEOREM  9.6. Let f be a scalar field with continuous second-order partial derivatives
Dijf  in an n-ball B(a), and let H(a) denote the Hessian matrix at a stationary point a. Then
we have:

(a) Ifall  the eigenvalues of H(a) are positive, f has a relative minimum at a.
(b) If all the eigenvalues of H(a) are negative, f has a relative maximum at a.
(c) If H(a) has both positive and negative eigenvalues, then f has a saddle point at a.

Proof. Let Q(y) = yH(u)yt.  The Taylor formula gives us

(9.39) f@ + Y)  - f (4 = BQ(Y)  + IIY II2  E,(a,  Y),

where E,(a,  y) + 0 as y --f  0. We will prove that there is a positive number Y such that, if
0 < llyll < r, the algebraic sign off(a  + y) -f(u) is th[e same as that of Q(y).

Assume first that all the eigenvalues A1,  . . . , 1, of H(a) are positive. Let h be the
smallest eigenvalue. If u < h, the n numbers

are also positive. These numbers are the eigenvalues of the real symmetric matrix H(a) -
uI, where I  is  the n x n identity matrix. By Thseorem 9.5 ,  the  quadrat ic  form
y[H(a) - u1Jy” is positive definite, and hence y[H(a) - uZJyt > 0 for all y # 0. There-
fore

yH(4yt > YW)Y”  = u lbl12

for all real u < h . Taking u = frh  we obtain the inequality

Q(Y) > $3 IIYII~

for all y # 0. Since E,(a,  JJ)  ---f  0 as y + 0, there is a positive number r such that
IE2(a,  y)I  < ah whenever 0 < IIyII  < r. For such y we have

0 I Ilull” IEz(a,  Y)I  < $h Ilyll” <:  &Q(y),

and Taylor’s formula (9.39) shows that

f (a + Y> - f (4 2 &Q(Y)  - I IY  I I 2 IE2k  y)l > 0 -

Therefore f has a relative minimum at a, which proves part (a). To prove (b) we can use a
similar argument, or simply apply part (a) to -f.

To prove (c), let I, and L, be two eigenvalues of H(u) of opposite signs. Let h =
min {l&l,  l&l}.  Then for each real u satisfying -h < u ,< h the numbers

2, - 24 and /I, - u
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are eigenvalues of opposite sign for the matrix H(a) - ~1.  Therefore, if u E  (--h,  h) , the
quadratic form y[H(a)  - uZ]yt takes both positive and negative values in every neighbor-
hood of y = 0. Choose r > 0 as above so that ]&(a,  y)( < fh whenever 0 < (lyll < r.
Then, arguing as above, we see that for such y the algebraic sign off(a + y) -f(a) is the
same as that of Q(y).  Since both positive and negative values occur as y -+ 0, f has a
saddle point at u. This completes the proof.

Note: If all the eigenvalues of H(a)  are zero, Theorem 9.6 gives no information
concerning the stationary point. Tests involving higher order derivatives can be used to
treat such examples, but we shall not discuss them here.

9.12 Second-derivative test for extrema of functions of two variables

In the case n = 2 the nature of the stationary point can also be determined by the
algebraic sign of the second derivative D,,,f(u) and the determinant of the Hessian matrix.

THEOREM 9.7. Let a be a stationary point of a scalarjeldf  (x,, XJ  with continuous second-
order partial derivatives in a 2-ball B(u). Let

and let

A = det H(u) = det =  A C -  B2.

Then we have:
(a) If A < 0, f has a saddle point at u.
(b) If A > 0 and A > 0, f has a relative minimum at a.
(c) If A > 0 and A < 0, f has a relative maximum at a.
(d) If A = 0, the test is inconclusive.

Proof. In this case the characteristic equation det [A1  - H(u)] = 0 is a quadratic
equation,

The eigenvalues iI, 1, are related to the coefficients by the equations

A,+&=A+C, A,&  = A.

If A < 0 the eigenvalues have opposite signs, so f has a saddle point at a, which proves (a).
If A > 0, the eigenvalues have the same sign. In this case AC > B2 > 0, so A and C have
the same sign. This sign must be that of J., and il, since A + C = A1 + 1,.  This proves
(b) and (c).

To prove (d) we refer to Examples 4 and 5 of Section 9.9. In both these examples we have
A = 0 at the origin. In Example 4 the origin is a saddle point, and in Example 5 it is a
relative minimum.
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Even when Theorem 9.7 is applicable it may not be the simplest way to determine the
nature of a stationary point. For example, when f(x, y) = el’g(z*y),  where g(x,  y) =
x2 + 2 + CO?  y - 2 cos y , the test is applicable, but the computations are lengthy. In this
case we may express g(x,  y) as a sum of squares by writing g(x,  y) = 1 + x2 + (1 - cos y)” .
We see at once thatf  has relative maxima at the points at which x2 = 0 and (1 - cos y)” =
0. These are the points (0,2nn),  when n is any integer.

9.13 Exercises

In Exercises 1 through 15, locate and classify the stationary points (if any) of the surfaces having
the Cartesian equations given.

1.
2 .
3.
4 .
5 .
6.

13.

14.

15.

16.

17.

18.

z = x2 + 0, - 1)2. 7. z = x3 - 3xy2 + y3.
z = x2 - (y - 1)2. 8. z = x2y3(6  ‘- x - y).
z=l +x2--2. 9. z =x3 +y’l  - 3xy.
z = (x - y + 1)2. 10. z = sin x cash y .
z=2x2-xy-3y2-3x+7y. 11. z = e2r+3y(8~2  - 6xy + 3y2).
z=x2-xy+y2-2x+y. 12. z = (5x + ‘7y - 25)e-(2a+zy+y*).
z =sinxsinysin(x +y), OIxIn,OIy<n.

z =x -2y +log&v +3arctanY-
X ’

x >o.

z = (x2  + y2)e-(z2+t!*).

Letf(x,  y) = 3x4  - 4x2y  + y2. Show that on every line y =: mx the function has a minimum
at (0, 0), but that there is no relative minimum in any two-dimensional neighborhood of the
origin. Make a sketch indicating the set of points (x, y) at whichf(x, y) > 0 and the set at
whichf(x, y) < 0.
Letf(x,  y) = (3 - x)(3 - y)(x  + y - 3).
(a) Make a sketch indicating the set of points (x, y) at whic‘h  f (x, y) 2 0.
(b) Find all points (x, y) in the plane at which DJ (x, y) = D2f  (x, y) = 0. [H in t :  D&x,  y)
has (3 - y) as a factor.]
(c) Which of the stationary points are relative maxima.7 Which are relative minima? Which
are neither? Give reasons for your answers.
(d) Does f  have an absolute minimum or an absolute maximum on the whole plane? Give
reasons for your answers.
Determine all the relative and absolute extreme values and the saddle points for the function
f(x7y)=xy(l-x2-  __ _ _ _ _y2)onthesquare0  <x 5 1,O <y 5 1.

19. Determine constants a and b such that the integral

i
,’ {ax + b -f(x)}” dx

will be as small as possible if (a) f (x) = x2  ; (b) f (x) = (x2 + 1)-l.
20. Let f(x, y) = Ax2  + 2Bxy  + Cy2  + 2Dx + 2Ey  + F, where A > 0 and B2 < AC.

(a) Prove that a point (xX, yl) exists at which f  has a minimum. [Hint:  Transform the quad-
ratic part to a sum of squares.]
(b) Prove that f(x,,y,)  = Dxl  + Ey, + Fat this minimum.
(c) Show that

IA B DI

f(x1vy1)  = AC ‘- B2 /B C El.
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21. Method of least squares. Given n distinct numbers x1, . . . , x, and n further numbers yl, . . . ,
yn (not necessarily distinct), it is generally impossible to find a straight linef(x) = ax + b
which passes through all the points (xi, yi),  that is, such thatf(x,) = yi for each i. However,
we can try a linear function which makes the “total square error”

a minimum. Determine values of a and 6 which do this.
22. Extend the method of least squares to 3-space. That is, find a linear functionf(x,y) = ax +

by + c which minimizes the total square error

Q, 6,  c)  = 2 if&, yi)  - zi12,
i=l

where (xi, yi) are IZ given distinct points and zl, . . . , z, are 72 given real numbers.
23. Letzl,..., zn be n distinct points in m-space. If x E  R” , define

f(X)  =k$l  lb - Zkl12.

Prove thatfhas a minimum at the point a = i
12

c
zli (the centroid).

k=l

24. Let a be a stationary point of a scalar fieldfwith continuous second-order partial derivatives
in an n-ball B(a). Prove thatfhas a saddle point at a if at least two of the diagonal entries
of the Hessian matrix H(a)  have opposite signs.

25. Verify that the scalar fieldf(x, y, z) = x4 + y4 + z4 - 4xyz has a stationary point at (1, 1, l),
and determine the nature of this stationary point by computing the eigenvalues of its Hessian
matrix.

9.14 Extrema with constraints. Lagrange’s multipliers

We begin this section with two examples of extremum problems with constraints.

EXAMPLE 1. Given a surface S not passing through the origin, determine those points of
S which are nearest to the origin.

EXAMPLE 2. Iff(x,y, z) denotes the temperature at (x, y, z),  determine the maximum
and minimum values of the temperature on a given curve C in 3-space.

Both these examples are special cases of the following general problem: Determine the
extreme values of a scalarJieldf  ( )x w h en x is restricted to lie in a given subset of the domain
off.

In Example 1 the scalar field to be minimized is the distance function,

f(x, y, 2) = (x2 + y2  + + ;
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the constraining subset is the given surface S. In Example 2 the constraining subset is the
given curve C.

Constrained extremum problems are often very difficult; no general method is known
for attacking them in their fullest generality. Special methods are available when the
constraining subset has a fairly simple structure, for instance, if it is a surface as in Example
1, or a curve as in Example 2. This section discusses the method of Lagrange’s multipliers
for solving such problems. First we describe the method in its general form, and then we
give geometric arguments to show why it works in the two examples mentioned above.

The method of Lagrange’s multipliers. If a scalar field f(xl, . . . , x,) has a relative
extremum when it is subject to m constraints, say

(9.40) glh,...,&)=O,  .-., g,(~l,....,x,)=o,

where m < n , then there exist m scalars 1,)  . . . , 1, such that

(9.41) Vf=il,Vg,+-+A,Vg,

at each extremum point.

To determine the extremum points in practice we consider the system of n + m equations
obtained by taking the m constraint equations in (9.40) allong  with the n scalar equations
determined by the vector relation (9.41). These equations are to be solved (if possible) for
the n + m unknowns xi, . . . , x, and 3r,,  . . . , 1,. The points (x1,  . . . , x,) at which
relative extrema occur are found among the solutions to these equations.

The scalars Jr,  . . . , 1, which are introduced to help us solve this type of problem are
called Lagrange’s multipliers. One multiplier is introduced for each constraint. The scalar
field f and the constraint functions gl, . . . , g, are assumed to be differentiable. The
method is valid if the number of constraints, m, is less than the number of variables, n, and
if not all the Jacobian determinants of the constraint functions with respect to m of the
variables x1, . . . , x, are zero at the extreme value in question. The proof of the validity of
the method is an important result in advanced calculus and will not be discussed here.
(See Chapter 7 of the author’s Mathematical Analysis, Adldison-Wesley, Reading, Mass.,
1957.) Instead we give geometric arguments to show why the method works in the two
examples described at the beginning of this section.

Geometric solution of Example 1. We wish to determine: those points on a given surface
S which are nearest to the origin. A point (x, y, z) in 3-space lies at a distance r from the
origin if and only if it lies on the sphere

x2 + y2  + z2 = r2.

This sphere is a level surface of the function f (x, y, z) = (x2  + y2 + z2)lm which is being
minimized. If we start with r = 0 and let r increase until the corresponding level surface
first touches the given surface S, each point of contact will be a point of S nearest to the
origin.
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To determine the coordinates of the contact points we assume that S is described by a
Cartesian equation g(x,  y, z) = 0. If S has a tangent plane at a point of contact, this plane
must also be tangent to the contacting level surface. Therefore the gradient vector of the
surface g(x,  y, z) = 0 must be parallel to the gradient vector of the contacting level surface
f(x,y, 4 = I+. Hence there is a constant il such that

at each contact point. This is the vector equation (9.41) provided by Lagrange’s method
when there is one constraint.

Geometric solution to Example 2. We seek the extreme values of a temperature function
f(x, y, z) on a given curve C. If we regard the curve C as the intersection of two surfaces,

say
g,b,  y, 4 = 0 and g,(x,y, 4 = 0,

we have an extremum problem with two constraints. The two gradient vectors Vgl and
Vg,  are normals to these surfaces, hence they are also normal to C, the curve of inter-
section. (See Figure 9.8.) We show next that the gradient vector Of of the temperature

FIGURE 9.8 The vectors Vgr,  Vgz,  and Vf
shown lying in the same plane.

FIGURE  9.9 The gradient vector Vf lies in a
plane normal to C.

function is also normal to C at each relative extremum on C. This implies that Vflies in the
same plane as Vgr and Vg,; hence if Vg,  and Vg2  are independent we can express Vf as a
linear combination of Vg,  and Vg,  , say

Vf  = a,vg, + A,Vg,.

This is the vector equation (9.41) provided by Lagrange’s method when there are two
constraints.
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To show that Of  is normal to C at an extremum we imagine C as being described by a
vector-valued function a(t), where t varies over an interval [a, 61.  On the curve C the
temperature becomes a function oft, say q(t)  = f [a(t)]. If fp has a relative extremum at an
interior point tl  of [a, b] we must have cp’(tl)  = 0. On the other hand, the chain rule tells
us that v’(t)  is given by the dot product

q’(t)  = Of [a(t)] . a’(t).

This dot product is zero at t,  , hence Of  is perpendicular to a’(tJ  . But a’(tJ  is tangent to C,
so Of [a(t,)] lies in the plane normal to C, as shown in Figure 9.9.

The two gradient vectors Vgl and Vgz are independent if a.nd only if their cross product is
nonzero.  The cross product is given by

i i k

vg
1

x vg
2

= &l  f&l  f& = %% 9 g2>  i + 3% 3 g2) j + a(.&  9 g2)  k

.ax  ay  aZ ah  4 acz,  4 ah  Y)
“&  ag, agz
ax ay aZ

Therefore, independence of Vgl and VgZ means that not all three of the Jacobian deter-
minants on the right are zero. As remarked earlier, Lagrange’s method is applicable
whenever this condition is satisfied.

If Vg, and Vg,  are dependent the method may fail. For example, suppose we try to apply
Lagrange’s method to find the extreme values of f(x,y,  z) = x2  + y2 on the curve of
intersection of the two surfaces g,(x,y, z) = 0 and g,(x,  J',  Z)  = 0, where g,(x,  y, z) = z
and g,(x,  y, z) = z2 - (y - 1)“. The two surfaces, a plane and a cylinder, intersect along
the straight line C shown in Figure 9.10. The problem obviously has a solution, because

FIGURE 9.10 An example where Lagrange’s method is not applicable.
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f(x, y, Z) represents the distance of the point (x, y, z) from the z-axis and this distance is a
minimum on C when the point is at (0, 1, 0). However, at this point the gradient vectors
are Ygl  = k , Vgs = 0, and Of = 2j,  and it is clear that there are no scalars il, and 1, that
satisfy Equation (9.41).

9.15 Exercises

1. Find the extreme values of z = xy subject to the condition x + y = 1.
7.. Find the maximum and minimum distances from the origin to the curve 5x2  + 6xy + 5y2 = 8.
3. Assume a and b are fixed positive numbers.

(a) Find the extreme values of z = x/a + y/b subject to the condition x2 + y2 = 1 .
(b) Find the extreme values of z = x2 + y2 subject to the condition x/a + y/b = 1 .
In each case, interpret the problem geometrically.

4. Find the extreme values of z = cos2 x + cos2 y subject to the side condition x - y = n/4.
5. Find the extreme values of the scalar fieldf(x,  y, z) = x - 2y + 22  on the sphere x2 + y2 +

z2 = 1.
6. Find the points of the surface z2 - xy = 1 nearest to the origin.
7. Find the shortest distance from the point (1,O)  to the parabola y2 = 4x.
8. Find the points on the curve of intersection of the two surfaces

x2 - xy + y2 - 22 = 1 and x2 + y2 = 1

which are nearest to the origin.
9. If n, b, and c are positive numbers, find the maximum value off (x, y, z) = xaybzc  subject to

the side condition x + y + z = 1 .
10. Find the minimum volume bounded by the planes x = 0, y = 0, z = 0, and a plane which

is tangent to the ellipsoid

atapointintheoctantx>O,y>O,z>O.
11. Find the maximum of log x + logy + 3 log z on that portion of the sphere x2 + y2 + ~2  = 5r2

where x > 0, y > 0, z > 0. Use the result to prove that for real positive numbers a, b, c
w e  h a v e

abc3 <27(a  +z  +‘r.

12. Given the conic section Ax2  + 2Bxy + Cy2 = 1, where A > 0 and B2 < AC. Let m and M
denote the distances from the origin to the nearest and furthest points of the conic. Show that

J42= A + C + &A - C)2 + 4B2
2(AC - B2)

and find  a companion formula for m2.
13. Use the method of Lagrange’s multipliers to find the greatest and least distances of a point

on the ellipse x2 + 4y2 = 4 from the straight line x + y = 4.
14. The cross section of a trough is an isosceles trapezoid. If the trough is made by bending up

the sides of a strip of metal c inches wide, what should be the angle of inclination of the sides
and the width across the bottom if the cross-sectional area is to be a maximum?



The extreme-value theorem for continuous scalar$elds 319

9.16 The extreme-value theorem for continuous scalar fields

The extreme-value theorem for real-valued functions continuous on a closed and bounded
interval can be extended to scalar fields. We consider scalar fields continuous on a closed
n-dimensional interval. Such an interval is defined as the Cartesian product of n one-
dimensional closed intervals. If a = (a,, . . . , a,) and 6 = (b,,  . . . , b,) we write

b,bl=b,,Ux---x  [a,,b,l={(x,,...,x,)Ix,E[a,,b,l,...,x,Eta,,b,l}.

For example, when n = 2 the Cartesian product [a, b] is a rectangle.
The proof of the extreme-value theorem parallels the proof given in Volume I for the

l-dimensional case. First we prove that continuity offimplies boundedness, then we prove
thatfactually attains its maximum and minimum values somewhere in [a, b].

THEOREM 9.8. BOUNDEDNESS THEOREM FOR CONTINUOUS SCALAR FIELDS. Zf fis a scaZar
jield continuous at each point of a closed interval [a, b] in R”, then f is bounded on [a, b].
That is, there is a number C > 0 such that If(x)1 < Cfor all x in [a, b].

Proof. We argue by contradiction, using the method of successive bisection. Figure
9.11 illustrates the method for the case n = 2.

Assumefis unbounded on [a, b]. Let 1”) = [a, b] and let 12’  = [a,, b,],  so that

p = I(l) x  . . . x  p
1 n .

Bisect each one-dimensional interval Zk(l) to form two subintervals, a left half 1:‘: and a
’right half Z,$ . Now consider all possible Cartesian pr0duct.s  of the form

I;‘;, x . . . x p.n,3n ’

FIGURE 9.11 Illustrating the method of successive bisection in the plane.
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where cachj,  = I or 2. There are exactly 2” such products. Each product is an n-dimen-
sional subinterval of [a, b], and their union is equal to [a, h]. The functionf’is unbounded
in at least one of these subintervals (if it were bounded in each of them it would also be
bounded on [a, b]). One of these we denote by It2’  which we express as

where each I;,’ is one of the one-dimensional subintervals of 1;“) of length h(h,  - al,).
We now proceed with I”’ as we did with I(“, bisecting each one-dimensional component

interval I,:,’  and arriving at an n-dimensional interval 1t3’  in which f’ is unbounded. We
continue the process, obtaining an infinite set of n-dimensional intervals

in each of whichj’is unbounded. The n’th interval Pm’ can be expressed in the form

Since each one-dimensional interval 1;“’ is obtained by m - 1 successive bisections of
[a,, /I,], if we write IL””  = [a:“‘, hj;‘n’] we have

(9.42) b(m) _ a(m) b,  -  ak
k k

=-
y-1 ’

for k=l,2  ,...,  n.

For each fixed k, the supremum of all left endpoints u:.“~’ (m = 1,2, . . ) must therefore be
equal to the infimum of all right endpoints hkm’ (m = 1, 2, . . . ), and their common value
we denote by t,. The point t = (tl, .  . . , t,) lies in [a, b]. By continuity off’at t there is an
n-ball B(t; r) in which we have

for all x in B(t; r) n [a, b]  .

This inequality implies

IfWl < 1 + I./w for all x in B(t; r) f? [a, 61,

so f’is bounded on the set B(t; r) n [a, b] . But this set contains the entire interval ZCm’

when m is large enough so that each of the n numbers in (9.42) is less than r/x/n. Therefore
for such m the function f is bounded on Itm’, contradicting the fact that f is unbounded on
Ifm’. This contradiction completes the proof.

If f is bounded on [a, b], the set of all function values f’(x) is a set of real numbers
bounded above and below. Therefore this set has a supremum and an infimum which we
denote by sup f and inff, respectively. That is, we write

supf  = sup (f(x) 1 x E [a,  61)) inff’= inf (f(x) 1 x t [u, b]).
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Now we prove that a continuous function takes on both values inff’and supfsomewhere
in [a, 61.

THEOREM 9.9 EXTREMFVALUE  THEOREM FOR CONTINUOUS  SCALAR FIELDS. Iff is con-
tinuous on a closed interval [a, b] in R”, then there exist points c and d in [a, b] such that

f(c) = supf and ,f(d)  = inff.

Proof. It suffices to prove that f attains its supremum in [a, b] .  The result for the
infimum then follows as a consequence because the infimum off is the supremum of -f.

Let M = sup f. We shall assume that there is no x in [la, b] for which ,f(x) = M and
obtain a contradiction. Let g(x) = M - .f’(x).  Then g(x) > 0 for all x in [a, b] so the
reciprocal l/g is continuous on [a, b]. By the boundedness theorem, l/g is bounded on
[a, b], say l/g(x) < C for all x in [a, b], where C > 0. This implies M -f(x) > l/C, so
thatf(x) < A4 - l/C for all x in [a, b]. This contradicts the fact that M is the least upper
bound off on [a, b]. Hence f(x) = M for at least one x in [a, b].

9.17 The small-span theorem for continuous scalar fields (uniform continuity)

Let f be continuous on a bounded closed interval [a, b] in R”,  and let M(f) and m(f)
denote, respectively, the maximum and minimum values off on [a, b]. The difference

M(f) -m(f)

is called the span off on [a, b]. As in the one-dimensional case we have a small-span
theorem for continuous functions which tells us that the interval [a, b] can be partitioned so
that the span off in each subinterval is arbitrarily small.

Write [a, b] = [a,, b,] x . . . x [a,, 6,],  and let P, be a partition of the interval
[a,, bk].  That is, Pr,  is a set of points

such that ak = x0  < x1  <I  * * . < xrP1  5 x, = b,. The Cartesian product

P = P, x * * * x P,

is called a partition of the interval [a, b]. The small-span theorem, also called the theorem
on uniform continuity, now takes the following form.

THEOREM 9.10. Let f be a scalarfield  continuous on a closed interval [a, b] in R”.  Then
for every E > 0 there is a partition of [a, b] into afinite  number of subintervals such that the
span off in every subintercal is less than 6.

Proof. The proof is entirely analogous to the one-dimensional case so we only outline
the principal steps. We argue by contradiction, using the method of successive bisection.
We assume the theorem is false; that is, we assume that for some E,,  the interval [a, b]



3 2 2 Applications of diferential  calculus

cannot be partitioned into a finite number of subintervals in each of which the span off is
less than Q. By successive bisection we obtain an infinite set of subintervals I(‘),  I@),  . . . ,
in each of which the span off is at least E,,. By considering the least upper bound of the
leftmost endpoints of the component intervals of Z(l), Z@),  . . . we obtain a point t in [a, b]
lying in all these intervals. By continuity off at t there is an n-ball B(t; Y)  such that the span
off is less than $x0  in B(t; r) r\ [a, b] . But, when m is sufficiently large, the interval Zfrn)
lies in the set B(t; r) n [a, b] , so the span off is no larger than &E,, in Ztrn),  contradicting the
fact that the span off is at least q, in Pm).
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LINE INTEGRALS

10.1 Introduction

In Volume I we discussed the integral js f(x) dx, first for real-valued functions defined
and bounded on finite intervals, and then for unbounded functions and infinite intervals.
The concept was later extended to vector-valued functions and, in Chapter 7 of Volume II,
to matrix functions.

This chapter extends the notion of integral in another direction. The interval [a, b] is
replaced by a curve in n-space described by a vector-valued function a, and the integrand
is a vector fieldfdefined and bounded on this curve. The resulting integral is called a line
integral, a curvilinear integral, or a contour integral, and is denoted by j’ f * da or by some
similar symbol. The dot is used purposely to suggest an inner product of two vectors. The
curve is called a path of integration.

Line integrals are of fundamental importance in both pure and applied mathematics.
They occur in connection with work, potential energy, heat flow, change in entropy,
circulation of a fluid, and other physical situations in which the behavior of a vector or
scalar field is studied along a curve.

10.2 Paths and line integrals

Before defining line integrals we recall the definition of curve given in Volume 1. Let a
be a vector-valued function defined on a finite closed interval J = [a, b] As t runs through
J, the function values a(t) trace out a set of points in n-space called thegruph of the function.
If a is continuous on J the graph is called a curve; more specifically, the curve described
by a.

In our study of curves in Volume I we found that different functions can trace out the
same curve in different ways, for example, in different directions or with different velocities.
In the study of line integrals we are concerned not only with the set of points on a curve but
with the actual manner in which the curve is traced out, that is, with the function a itself.
Such a function will be called a continuous path.

DEFINITION. Let J = [a, b] be ajnite  closed interval in R1. A function a: JA R”  which
is continuous on J is called a continuous path in n-space. The path is called smooth if the
derivative a’ exists and is continuous in the open interval (a, 6). The path is calledpiecewise
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smooth if the interval [a, b] can be partitioned into ajinite  number of subintervals in each of
which the path is smooth.

Figure 10.1 shows the graph of a piecewise smooth path. In this example the curve has a
tangent line at all but a finite number of its points. These exceptional points subdivide the
curve into arcs, along each of which the tangent line turns continuously.

FIGURE 10.1 The graph of a piecewise smooth path in the plane.

DEFINITION OF LINE INTEGRAL. Let a be a piecewise smooth path in n-space dejned  on an
interval [a, b], and let f be a vector field defined and bounded on the graph of a. The line
integral qf f along a is denoted by the symbol j” f.  da and is defined by the equation

(10.1) jf.  da = jabf[a(t)] . a’(t) dt,

whenever the integral on the right exists, either as a proper or improper integral.

Note: In most examples that occur in practice the dot productf[a(t)] - a’(t)is  bounded
on [a, 61  and continuous except possibly at a finite number of points, in which case the
integral exists as a proper integral.

10.3 Other notations for line integrals

If C denotes the graph of a, the line integral J f. da is also written as SC  f * da and is
called the integrat  off along C.

If a = a(a) and b = a(b) denote the end points of C, the line integral is sometimes
written as j: for as jf: f.  da and is called the line integral off from o to b along a. When
the notation Jt f is used it should be kept in mind that the integral depends not only on the
end points a and b but also on the path a joining them.

When u = b the path is said to be closed. The symbol 4 is often used to indicate integra-
tion along a closed path.

When f and a are expressed in terms of their components, say

f = (fi,. . . ,f,) and a = (a,,.  . . , a,),

the integral on the right of (10.1) becomes a sum of integrals,

In this case the line integral is also written as J fi  da, + * * * + f,  da,.
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In the two-dimensional case the path 01 is usually desc:ribed  by a pair of parametric
equations,

x = %(t>  3 y = @z(t) 3

and the line integral Jof* da is written as Jcfi dx +fi dy , or as Jcf,(x,y)  dx +fi(x,y) 4~.
In the three-dimensional case we use three parametric equations,

x = %(t>, y = az(t>  9 z = Q(t)

and write the line integral SC  f * da as Jo  fi dx + fZ dy + J;  dz , or as

I&(x,y,z)dx  +fi(x,y,z)dy  +fdx,y,z)dz.

EXAMPLE. Let f be a two-dimensional vector field given by

f(x, y) = Jy i + (x3 + Y)i

for all (x, y) withy 2 0. Calculate the line integral offfrom (0, 0) to (1, 1) along each of
the following paths :

(a) the line with parametric equations x = t , y = t , 0 < t 5 1;
(b) the path with parametric equations x = t2,  y = t3,  0 < t 5 1 .

Solution. For the path in part (a) we take a(t) = ti + f,i. Then a’(t) = i + i and

f[a(t)]  = &i  + (t3  + t)j. Therefore the dot product of f[a(t)]  and a’(t) is equal to

l/i + t3 + t and we find

fff. da = I’  (Ji + t3 + t) dt = E.

For the path in part (b) we take a(t) = t2i  + t3j. Then a’(t) = 2ti + 3ty and
f[a(t)]  = t?‘% + (t” + t3)j.  Therefore

so
f[a(r)]  * a’(t) = 2@ + 3t*  + 3f5,

[(l”‘f. da = J’ (2t52  + 3P  + 3t”)  dt  = 42  .SF/
. (0.0) 0

This example shows that the integral from one point to another may depend on the path
joining the two points.

Now let us carry out the calculation for part (b) once more, using the same curve but
with a different parametric representation. The same curve can be described by the
function

P(t)  = fi + t?sj, where 0 < f < 1.
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This leads to the relation

Line integrals

f[P(t)] . P’(t) = (txj + (t3  + ts)j) * (i +it!$j)  = t3/:  + $tpi  + $t2,

the integral of which from 0 to 1 is 59/42, as before. This calculation illustrates that the
value of the integral is independent of the parametric representation used to describe the
curve. This is a general property of line integrals which is proved in the next section.

10.4 Basic properties of line integrals

Since line integrals are defined in terms of ordinary integrals, it is not surprising to find
that they share many of the properties of ordinary integrals. For example, they have a
linearity property with respect to the integrand,

J(af+bg).da=aIf.da+bJg.da,

and an additiveproperty with respect to the path of integration:

Jc f’. da  = Jc, f. da  + 1^,,  J’.  da,

where the two curves C, and C, make up the curve C. That is, C is described by a function
a defined on an interval [a, b], and the curves C,  and C, are those traced out by a(t) as t
varies over subintervals [a, c] and. [c, b], respectively, for some c satisfying a < c < b.
The proofs of these properties follow immediately from the definition of the line integral;
they are left as exercises for the reader.

Next we examine the behavior of line integrals under a change of parameter. Let a be a
continuous path defined on an interval [a, b], let u be a real-valued function that is differen-
tiable, with U’ never zero on an interval [c, d], and such that the range of u is [a, b]. Then
the function (3 defined on [c, d] by the equation

P(t)  = ab(t)l

is a continuous path having the same graph as a. Two paths a and p so related are called
equivalent. They are said to provide different parametric representations of the same curve.
The function u is said to define a change of parameter.

Let C denote the common graph of two equivalent paths a and p. If the derivative of u
is always positive on [c, d] the function u is increasing and we say that the two paths a and f3
trace out C in the same direction. If the derivative of u is always negative we say that a
and p trace out C in opposite directions. In the first case the function u is said to be
orientation-preserving; in the second case u is said to be orientation-reversing. An example
is shown in Figure 10.2.

The next theorem shows that a line integral remains unchanged under a change of param-
eter that preserves orientation; it reverses its sign if the change of parameter reverses
orientation. We assume both intergals jf* da and Jf. df3 exist.
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FIGURE 10.2 A change of parameter defined by u = h(r). In (a), the function h

preserves orientation. In (b), the function h reverses the orientation.

THEOREM 10.1.  BEHAVIOR OF A LINE INTEGRAL UNDER A CHANGE OF PARAMETER. Let
a and p be equivalent piecewise smooth paths. Then we  have

s, f. da = Jo f. dB
if a and f3 trace out C in the same direction; and

if a and p trace out C in opposite directions.

Proof ,  I t  suffices to prove the theorem for smooth paths;  then we invoke
the additive property with respect to the path of integration to deduce the result for piece-
wise smooth paths.

The proof is a simple application of the chain rule. The paths a and p are related by an
equation of the form P(f) = a[u(t)],  where u is defined on an interval [c, d] and a is defined
on an interval [a, b]. From the chain rule we have

Therefore we find
p’(t)  = a’[u(t)]u’(t).

Jc f. dP  = J:f [P(t)1  . P’(t)  dt = j~f.(a[u(t)l)  . a’[u(t)lu’(t>  dt.

In the last integral we introduce the substitution v = u(t), dv = u’(t) dt to obtain

jc f. dp  = j~~‘p,‘f(a(v))  . a’(v) du = & j:f(a(v))  . a’(v) dv = hjc  f. day
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where the + sign is used if a = u(c)  and b = u(d), and the - sign is used if a = u(d) and
b = u(c). The first case occurs if a and p trace out C in the same direction, the second if
they trace out C in opposite directions.

10.5 Exercises

In each of Exercises 1 through 8 calculate the line integral of the vector fieldfalong  the path
described.

1. f(x,y) = (x2  - 2xy)i + (y” - 2xy)j,  from (- 1,  1) to (1, 1) along the parabola y = x2.
2. f(x,y) = (2a -y)i  + xj, along the path described by a(r)  = a(f - sin f)i  + a(1 - cos t)j,

0 < I 2 2ir.
3. f(x, y, z) = (y” - z2)i  + 2yzj - x*k,  along the path described by a(t) = ti + r? + t3k,

o<t_<1.
4. f(x,  y) = (x2  + y*)i  + (x2  - 2y )j, from (0,O)  to (2,0) along the curve y = 1 - 11 - XI  .
5. f(x, u) = (x + y)i  + (x - v)j, once around the ellipse b2x2  + u2r2  = a262  in a counterclock-

wise direction.
6. f(x,y, z) = 2xyi + (x2  + z)j + yk, from (1, 0,2)  to (3,4,  1) along a line segment.
7. f(x, y, z) = xi + rj + (xz - y)k,  from (0, 0,O)  to (1,2,4) along a line segment.
8. f(x, y, z) = xi + yj + (xz - y)k,  along the path described by a(t) = t2i  + 2tj  + 4t3k,

o<t<1.

In each of Exercises 9 through 12, compute the value of the given line integral.

9. Jc (x2 - 2xy)  dx + (y” - 2xy) dy , where C is a path from (-2,4)  to (1, 1) along the parabola
y =x2.

- (x +y)dx  - (x -y) dy
10. c

!
, where C is the circle x2 + y 2 -

x2 + y*
- n 2, traversed once in a counter-

clockwise direction.
dx + dy

ll.  Lx,  + lyl ’
where C is the square with vertices (1, 0), (0, l), (- 1 , 0), and (0, -l), traversed

once in a counterclockwise direction.
12. Jcydx  + zdy + xdz, where

(a) C is the curve of intersection of the two surfaces x + y = 2 and x2 + y2 + z2 = 2(x + y) .
The curve is to be traversed once in a direction that appears clockwise when viewed from the
origin.
(b) C is the intersection of the two surfaces z = xy and x2 + y2 = 1,  traversed once in a
direction that appears counterclockwise when viewed from high above the xy-plane.

10.6 The concept of work as a line intregal

Consider a particle which moves along a curve under the action of a force fieldf. If the
curve is the graph of a piecewise smooth path a, the work done by f is defined to be the line
integral J f * da. The following examples illustrate some fundamental properties of work.

EXAMPLE 1. Work done by a constantforce. If f is a constant force, say f = c, it can be
shown that the work done by f in moving a particle from a point a to a point b along any
piecewise smooth path joining a and b is c * (b - a), the dot product of the force and the
displacement vector b - a. We shall prove this in a special case.

We let a = (CQ,  . . . , IX,)  be a path joining a and 6, say a(a) = a and a(b) = b, and we
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write c = (c,, . . . , c,). Assume a’ is continuous on [a, b]. Then the work done by f is
equal to

sf. da = ick  Jab LX;(~)  dt = icJ~(b)  - a,(a)] = c . [a(b) - a(a)] = c . (b - a).
K=l k=l

For this force field the work depends only on the end points a and b and not on the curve
joining them. Not all force fields have this property. Those which do are called conservative.
The example on p. 325 is a nonconservative force field. In a later section we shall determine
all conservative force fields.

EXAMPLE 2. The principle of work and energy. A particle of mass m moves along a curve
under the action of a force field f. If the speed of the particle at time t is v(t), its kinetic
energy is defined to be &mu”(t).  Prove that the change in kinetic energy in any time interval
is equal to the work done by f during this time interval.

Solution. Let r(t) denote the position of the particle at time t. The work done by f
during a time interval [a, b] is J:c’,  f * dr . We wish to prove that

sRyan  f. dr = $mv2(b)  - &mu”(a).

From Newton’s second law of motion we have

f [r(t)] = mr”(t) = mu’(t),

where u(t) denotes the velocity vector at time t. The speed is the length of the velocity
vector, v(t) = Ilu(t . Therefore

f [r(t)] * r’(t) = f [r(t)] . u(t) = mu’(t) f u(t) = irn $ (u(t) f u(t)) = $m  i (v”(t)),

Integrating from a to b we obtain

jr::;  f * dr = i,”  f [r(t)] * r’(t) dt = &mv2(t)ll  = +mv2(b)  - imu”(

as required.

10.7 Line integrals with respect to arc length

Let a be a path with a’ continuous on an interval [a, b]. The graph of a is a rectifiable
curve. In Volume I we proved that the corresponding arc-length function s is given by the
integral

40  = s,’ I I a’(u>II  du  .

The derivative of arc length is given by

s’(t)  = IIa’(Oll  .



330 Line integrals

Let y be a scalar field defined and bounded on C, the graph of a. The line integral of y
with respect to arc length along C is denoted by the symbol SC  9 ds and is defined by the
equation

sc p ds = s,” da(Ols’(O  dt,

whenever the integral on the right exists.
Now consider a scalar field q given by q[a(t)]  =f[a(t)]  * T(t), the dot product of a

vector fieldfdefined on C and the unit tangent vector T(t) = (da/ds)  . In this case the line
integral SC  y ds is the same as the line integral Jcf* da because

f[a(t)l . a’(t) = f[a(t)l * 2 2 = f[a(t)]  * T(t)s’(t)  = q[a(t)]s’(t)  .

When f denotes a velocity field, the dot product f. T is the tangential component of
velocity, and the line integral SC  f * T ds is called thejow  integral off along C. When C is a
closed curve the flow integral is called the circulation off along C. These terms are commonly
used in the theory of fluid flow.

10.8 Further applications of line integrals

Line integrals with respect to arc length also occur in problems cmcerned with mass
distribution along a curve. For example, think of a curve C in 3-space as a wire made of a
thin material of varying density. Assume the density is described by a scalar field M,  where
CJJ(X,  y,  z) is the massper  unit length at the point (x, y, z) of C. Then the total mass M of
the wire is defined to be the line integral of ~1  with respect to arc length:

i’vf = jc dx, Y, z> ds.
The center of mass of the wire is defined to be the point (Z,?,  Z) whose coordinates are

’ determined by the equations

ifM = sc X&G  Y, z> ds, JTM  = sc IT@,  Y, z> ds 9 zM  = sc zdx,  Y, z> ds.

A wire of constant density is called uniform. In this case the center of mass is also called the
centroid.

EXAMPLE 1. Compute the mass M of one coil of a spring having the shape of the helix
whose vector equation is

a(t)=acosti+asintj+btk

if the density at (x, y, z) is x2 + y2 + z2.

Solution. The integral for A4 is

M = jc  (x2  + y2 + z”) ds = j02r  (a” cos2  t + a2  sin2 t + b2t2)s’(t) dt .
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Since s’(t) = ~la’(t)~~  and a’(f) = -a sin t i + a cos tj + bk, we have s’(t) = da2 + b2
and hence

M = Ja2  + bZ
S2’

(a’ + b2t’) dt = da2 + b2 .o
i

2na2  + i r3b’

In this example the z-coordinate z of the center of mass is given by

ZM  = lC z(x” + y2 + z”) ds = Ja*  + b2 .r,?”  bt(a*  + b’t’) df

= bJa*  + b”  (2r2a2  + 4rr4b2).

The coordinates R and jj are requested in Exercise 15 of Section 10.9.

Line integrals can be used to define the moment of inertia of a wire with respect to an
axis. If 6(x,  y, z) represents the perpendicular distance from a point (x, y, z) of C to an
axis L, the moment of inertia IL is defined to be the line integral

1, = i, 6*(x,  Y, Mx, Y, z>  ds,
where ~(x, y, z) is the density at (x, y, z). The moments of inertia about the coordinate
axes are denoted by I,, I,, and I,.

EXAMPLE 2. Compute the moment of inertia Z, of the spring coil in Example 1.

Solution. Here 6*(x, y, z) = x2 + y* = a2  and ~(x, y, z) = x2 + y2 + z*, so we have

I, = Jc (x2 + y”)(x*  + y2 + z”) ds = a2 IC (x2 + y2 + z”) ds = Ma*,

where M is the mass, as computed in Example 1.

10.9 Exercises

1. A force field f in 3-space  is given by f(x, y, z) = xi + yj + (xz - y)k . Compute the work
done by this force in moving a particle from (0, 0,O)  to (1, 2,4)  along the line segment joining
these two points.

2. Find the amount of work done by the forcef(x, y) = (x2  - y2)i  + 2xyj in moving a particle
(in a counterclockwise direction) once around the square bounded by the coordinate axes and
thelinesx =aandy =u,u  > O .

3. A two-dimensional force fieldfis given by the equationf(x, y) = cxyi + x”yy, where c is a
positive constant. This force acts on a particle which must move from (0, 0) to the line x = 1
along a curve of the form

y = axb, where a > 0 and b >O.

Find a value of a (in terms of c) such that the work done by this force is independent of b.
4. A force fieldfin 3-space  is given by the formulaf(x, y, z) = yzi + xzj + x0,  + 1)k.  Calculate

the work done by fin moving a particle once around the triangle with vertices (0, 0, 0), (1, 1, l),
(-1, 1, -1) in that order.
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5. Calculate the work done by the force fieldf(x,  y,  .z)  = (y - z)i  + (z - x)j  + (x - y)k  along
the curve of intersection of the sphere x2 + y2 + z2 = 4 and the plane z = y tan 0, where
0 < 0 < v/2.  The path is transversed in a direction that appears counterclockwise when
viewed from high above the xy-plane.

6. Calculate the work done by the force field f(x,  I’,  z) = y2i + z? + x2k  along the curve of
intersection of the sphere x2 + y2 + z2 = u2 and the cylinder x2 + y2 = ax, where z 2 0 and
a > 0. The path is traversed in a direction that appears clockwise when viewed from high
above the xy-plane.

Calculate the line integral with respect to arc length in each of Exercises 7 through IO.

7. SC  (x + r)  ds,  where C is the triangle with vertices (0, 0), (1, 0), and (0, l),  traversed in a
counterclockwise direction.

8. Joy2  ds, where C has the vector equation

a(t) = a(t  - sin t)i  + a(1 - cos t).j, 0 <t  <2?7.

9. Jo (x2  + y2) ds,  where C has the vector equation

a(t) = a(cos  t + t sin t)i + u(sin  t - I cos t)j, 0 It  127r.

10. Jo z ds, where C has the vector equation

a(t) = tcosti + tsintj + tk, 0 <t II,.

11. Consider a uniform semicircular wire of radius u.
(a) Show that the centroid lies on the axis of symmetry at a distance 2u/a from the center.
(b) Show that the moment of inertia about the diameter through the end points of the wire
is @Zu2,  where M is the mass of the wire.

12. A wire has the shape of the circle x2 + y2 = u2. Determine its mass and moment of inertia
about a diameter if the density at (x, v) is 1x1 + lyl .

13. Find the mass of a wire whose shape is that of the curve of intersection of the sphere x2 + y2 +
z2 = 1 and the plane x + y + z = 0 if the density of the wire at (x, y,  z) is x2.

14. A uniform wire has the shape of that portion of the curve of intersection of the two surfaces

x2 +y2  = z2andY2 = x connecting the points (0, 0,O)  and (1, 1, &).  Find the z-coordinate
of its centroid.

15. Determine the coordinates 2 andJ of the center of mass of the spring coil described in Example
1 of Section 10.8.

16. For the spring coil described in Example 1 of Section 10.8, compute the moments of inertia I,
and Z, .

10.10 Open connected sets. Independence of the path

Let S be an open set in R”. The set S is called connected if every pair of points in S can be
joined by a piecewise smooth path whose graph lies in S. That is, for every pair of points a
and b in S there is a piecewise smooth path a defined on an interval [a, b] such that a(t) E S
for each t in [a, b], with a(a) = a and a(b) = b.

Three examples of open connected sets in the plane are shown in Figure 10.3. Examples
in 3-space analogous to these would be (a) a solid ellipsoid, (b) a solid polyhedron, and (c)
a solid torus; in each case only the interior points are considered.
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An open set S is said to be disconnected if S is the union of two or more disjoint non-
empty open sets. An example is shown in Figure 10.4. It can be shown that the class of
open connected sets is identical with the class of open sets that are not disconnected.?

Now let f be a vector field that is continuous on an open connected set S. Choose two
points u and B  in S and consider the line integral off from a to b along some piecewise
smooth path in S. The value of the integral depends, in general, on the path joining a to b.
For some vector fields, the integral depends only on the end points a and b and not on the
path which joins them. In this case we say the integral is independent of thepath  from (I to 6.
We say the line integral off is independent of thepath  in S if it is independent of the path from
a to b for every pair of points a and b in S.

S

S

s’
;-I L

-i

(4
FIGURE 10.3

(b) (4
FIGURE 10.4 A disconnected set S, the

union of two disjoint circular disks.
Examples of open connected sets.

Which vectorflelds  have line integrals independent of the path? To answer this question
we extend the first and second fundamental theorems of calculus to line integrals.

10.11 The second fundamental theorem of calculus for line integrals

The second fundamental theorem for real functions, as proved in Volume I (Theorem
5.3), states that

s,” p’(t)  dt = P@)  - da> 9

provided that 9’ is continuous on some open interval containing both a and b. To extend
this result to line integrals we need a slightly stronger version of the theorem in which
continuity of q’ is assumed only in the open interval (a, b).

THEOREM 10.2. Let 9 be a realfunction that is continuous on a closed interval [a, b] and
assume that the integral ji  y’(t) dt exists. If q~’  is continuous on the open interval (a, b), we
have

i,”  ~‘(0  dt = p(b)  - da>.

Proof. For each x in [a, b] define f(x) = Jz v’(t)  dt . We wish to prove that

(10.2) f(b)  = v(b)  - Ha>.

t For a further discussion of connectedness, see Chapter 8 of the author’s Mafhenxdcnl  Analysis, Addison-
Wesley, Reading, Mass., 1957.
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By Theorem 3.4 of Volume I,Sis continuous on the closed interval [a, b]. By Theorem 5.1
of Volume 1,fis differentiable on the open interval (a, b), withy’(x)  = q’(x)  for each x
in (a, b). Therefore, by the zero-derivative theorem (Theorem 5.2 of Volume I), the
difference f - v is constant on the open interval (a, b). By continuity, f - y is also
constant on the closed interval [a, b]. In particular, f(b) - q(b)  =f(a) - v(a).  But
sincef(a)  = 0, this proves (10.2).

THEOREM 10.3. SECOND FUNDAMENTAL THEOREM OF CALCULUS FOR LINE INTEGRALS.

Let ~1 be a d@erentiable  scalarJield with a continuous gradient Ve,  on an open connected set
S in R". Then for any two points a and b joined by a piecewise smooth path a in S we have

J,”  VP,.  da = v(b)  - v(a).

Proof. Choose any two points a and b in S and join them by a piecewise smooth path a
in S defined on an interval [a, b]. Assume first that a is smooth on [a, b]. Then the line
integral of Vpl  from a to b along a is given by

jab  Vpl  * da = s,”  Vv[a(t)]  * a’(t) dt

By the chain rule we have

Vp,[a(t)l  * a’(t)  = g’(t),

where g is the composite function defined on [a, b] by the formula

g(t)  = da(t)1 .

The derivative g’ is continuous on the open interval (a, b) because Vg, is continuous on S
and a is smooth. Therefore we can apply Theorem 10.2 to g to obtain

f VP,  * da = s,” g’(t)  dt = g(b)  - s(a)  = da(b)1 - Ma>1  = db) - da>.

This proves the theorem if a is smooth.
When a is piecewise smooth we partition the interval [a, b] into a finite number (say r)

of subintervals [tkpl  , tk], in each of which a is smooth, and we apply the result just proved
to each subinterval. This gives us

VP = i bb(td  - vb(LI)l)  = v(b)  - &I,

as required.

As a consequence of Theorem 10.3 we see that the line integral of a gradient is inde-
pendent of the path in any open connected set S in which the gradient is continuous. For a
closed path we have b = a, so v(b)  - q(a)  = 0. In other words, the line integral of a
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continuous gradient is zero around every piecewise smooth closed path in S. In Section 10.14
we shall prove (in Theorem 10.4) that gradients are the only continuous vector fields with
this property.

10.12 Applications to mechanics

If a vector field f is the gradient of a scalar field p, then y is called a potential function
forf. In 3-space, the level sets of q are called equipotential surfaces; in 2-space they are
called equipotential lines. (If p denotes temperature, the word “equipotential” is replaced
by “isothermal”; if p denotes pressure the word “isobaric” is used.)

EXAMPLE 1. In 3-space,  let ~(x, y, z) = P, where r = (x2 + y2 + z”)%. For every
integer n we have

V(P)  = nrne2r,

where r = xi + yi + zk. (See Exercise 8 of Section 8.14.) Therefore 9 is a potential of
the vector field

f(x,  y, z) = nr”-2r.

The equipotential surfaces of p are concentric spheres centered at the origin.

EXAMPLE 2. The Newtonian potential. Newton’s gravitation law states that the force f
which a particle of mass A4 exerts on another particle of mass m is a vector of length
GmMlr2, where G is a constant and r is the distance between the two particles. Place the
origin at the particle of mass M, and let r = xi + yj + zk be the position vector from the
origin to the particle of mass m. Then r = 11~11  and --Y/r is a unit vector with the same
direction as f, so Newton’s law becomes

f = -GmMr%  .

Taking n = - 1 in Example 1 we see that the gravitational force f is the gradient of the
scalar field given by

~(x,  y,  z) = GmMr-l.

This is called the Newtonian potential.
The work done by the gravitational force in moving the particle of mass m from

(x1, yly zl> to (x2,  y2, z2>  is

T&Y  Yl?  Zl>  - v(x2,y2,z2)=GmM

where rl = (~4 + yl + .+)‘A and r2 = (xi + yi + ~3”. If the two points lie on the same
equipotential surface then rl = r2 and no work is done.

EXAMPLE 3. Theprinciple of conservation of mechanical energy. Let f be a continuous force
field having a potential v in an open connected set S. Theorem 10.3 tells us that the work
done by fin moving a particle from u to x along any piecewise smooth path in S is
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q(x) - ~(a), the change in the potential function. In Example 2 of Section 10.6 we proved
that this work is also equal to the change in kinetic energy of the particle, k(x) - k(a)
where k(x) denotes the kinetic energy of the particle when it is located at x. Thus, we have

or

(10.3) k(x)  - v(x)  = w - fP(u>*
The scalar - p(x) is called the potential energy?  of the particle.

If a is kept fixed and n is allowed to vary over the set S, Equation (10.3) tells us that the
sum of k(x) and -v(x) is constant. In other words, if a forcefield  is a gradient, the sum
of the kinetic andpotential energies of aparticle moving in thisfield  is constant. In mechanics
this is called the principle of conservation of (mechanical) energy. A force field with a
potential function is said to be conservative because the total energy, kinetic plus potential,
is conserved. In a conservative field, no net work is done in moving a particle around a
closed curve back to its starting point. A force field will not be conservative if friction or
viscosity exists in the system, since these tend to convert mechanical energy into heat
energy.

10.13 Exercises

1. Determine which of the following open sets S in R2  are connected. For each connected set,
choose two arbitrary distinct points in S and explain how you would  find a piecewise  smooth

curve in S connecting the two points.
(a) S=~(x,y)Ix2+y220). (cl s = {(x, y) I x2 + y2 < 1)  .
(b) S = {(x,y) I x2 +y2 > O}. (4 S = {(x, y) I 1 < x2 + y2 < 2).
(e) S={(x,y)Ix2+y2>1  a n d  (~-3)~+y”>l}.
(f) S={(x,y)Ix2+y2<1  o r  (~-3)~+y~<l}.

2. Given a two-dimensional vector field

f(x, y) = P(x,  y)i + Q(x,  y)i,

where the partial derivatives aPlay  and aQ/ax are continuous on an open set S. If f is the
gradient of some potential v, prove that

at each point of S.

ap aQ-=-
ay ax

3. For each of the following vector fields, use the result of Exercise 2 to prove that f is not a
gradient. Then find a closed path C such that $c f # 0.
(a>  f(x, y) = yi - xi.
(b) fb, y) = yi + by - x>i.

4. Given a three-dimensional vector field

f(x,  y, z>  = P(x,  y,  z)i + Qk y, z)i  + Nx,  y,  z)k,

t Some authors refer to --9,  as the potential function offso  that the potential energy at x will be equal to the
value of the potential function Q, at x.
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where the partial derivatives
ap ap aQ aQ aR  aR
ay’ T$i ‘dx  ‘dz  ’ ax  ‘7; ’

are continuous on an open set S. Iffis the gradient of some potential function ~7,  prove that

at each point of S.

ap aQ ap aR aQ aR
ay=y$  dz=z’ a,; = -q

5. For each of the following vector fields, use the result of Exercise 4 to prove that f is not a
gradient. Then find a closed path C such that $o f # 0.
(a)f(x,y,z) =yi  +xj + x k .
(b) f(x, y, z) = xyi + (x2  + 1)j  + z2k.

6. A force field f is defined in 3-space  by the equation

f(x,y,z)  =yi + zj +yzli.

(a) Determine whether or not fis conservative.
(b) Calculate the work done in moving a particle along the curve described by

as t runs from 0 to X.

a(t) = cos ti + sin ~j  + etk

7. A two-dimensional force field F is described by the equation

F(x, y) = (x + y)i  + (x - u)i.

(a) Show that the work done by this force in moving a particle along a curve

a(t)  = f(t>i  + g(t>i, a<tI:b,

depends  only  onfb),  f(b),  g(a),  g (b).
(b) Find the amount of work done whenf(a) = 1, f(b) = 2, g(a) = 3, g(b) = 4.

8. A force field is given in polar coordinates by the equation

F(r,O)  = -4 sin 0 i + 4 sin Bj.

Compute the work done in moving a particle from the point (1,O)  to the origin along the spiral
whose polar equation is r = epe.

9. A radial or “central” force field F in the plane can be written in the form F(x,  y) =f(r)r,
where r = xi + vj and r = llrll . Show that such a force field is conservative.

10. Find the work done by force F(x,  JJ) = (3y2 + 2)i + 16xj. in moving a particle from (- 1 , 0)
to (1, 0) along the upper half of the ellipse b2x2  + y2 = b2.  Which ellipse (that is, which
value of b) makes the work a minimum?

10.14 The first fundamental theorem of calculus for line integrals

Section 10.11 extended the second fundamental theorem of calculus to line integrals.
This section extends the first fundamental theorem. We recall that the first fundamental
theorem states that every indefinite integral of a continuous function J has a derivative
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equal to f. That is, if

~(4 = J,“J-(tl  dt  ,

then at the points of continuity off we have

9+(x> = f (4.

To extend this theorem to line integrals we begin with a vector fieldf, continuous on an
open connected set S, and integrate it along a piecewise smooth curve C from a fixed
point a in S to an arbitrary point x. Then we let 9 denote the scalar field defined by the line
integral

&> = /;f  * da,

where a describes C. Since S is connected, each point x in S can be reached by such a
curve. For this definition of gj(x) to be unambiguous, we need to know that the integral
depends only on x and not on the particular path used to join a to x. Therefore, it is natural
to require the line integral off to be independent of the path in S. Under these conditions,
the extension of the first fundamental theorem takes the following form:

THEOREM 10.4. FIRST FUNDAMENTAL THEOREM FOR LINE INTEGRALS. Let f be a vector
jieId  that is continuous on an open connected set S in R", and assume that the line integral off
is independent of the path in S. Let a be aJixedpoint  of S and dejne  a scalarJieId  q on S by
the equation

&I = /Jf * da,

where a is any piecewise smooth path in S joining a to x. Then the gradient of y exists and is
equal to f; that is,

VT(X) = f(x) for every x in S.

Proof, We shall prove that the partial derivative DAv(x)  exists and is equal to fk(x),
the kth component of f(x), for each k = 1, 2, . . . , n and each x in S.

Let B(x; r) be an n-ball with center at x and radius r lying in S. If y is a unit vector, the
point x + hu also lies in S for every real h satisfying 0 < Ihl  < r, and we can form the
difference quotient

dx  + h.v) - ~(4

Because of the additive property of line integrals, the numerator of this quotient can be
written as

rp(x + hu) - v(x)  = Ji+“‘f.  da,

and the path joining x to x + hu can be any piecewise smooth path lying in S. In particular,
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we can use the line segment described by

a(t) = x + thy, where 0 5 t < 1.

Since a’(t) = hy , the difference quotient becomes

(10.4) dx  + hY)  - v(x)
h

=  ‘f(x +  thy).ydt.
s0

Now we take y = eL, the kth unit coordinate vector, and note that the integrand becomes
f(x + thy) . y = f,(x + the,). Then we make the change (of variable u = ht , du = h dt ,
and we write (10.4) in the form

(10.5)
& + he,)  - y(x) 1=-

h
h + uek)  du =: g(h)  i g(o)  ,

where g is the function defined on the open interval (-r, r) by the equation

At> = S,:XCx  + ueJ du .

Since each component ,f, is continuous on S, the first fundamental theorem for ordinary
integrals tells us that g’(t) exists for each t in (-r, r) and that

g’(t) =.fk(x  + te,)  .

In particular, g’(0) =,fk(x).  Therefore, if we let h + 0 in (10.5) we find that

lirn dx  + heA - dx> = lim g(h)  - g(O)
h+O h h

=:  g’(0) = f&x).
h +  0

This proves that the partial derivative L&&x)  exists and equalsf,(x),  as asserted.

10.15 Necessary and sufficient conditions for a vector field to be a gradient

The first and second fundamental theorems for line integrals together tell us that a
necessary and sufficient condition for a continuous vector field to be a gradient on an open
connected set is for its line integral between any two points to be independent of the path.
We shall prove now that this condition is equivalent to the lstatement  that the line integral
is zero around every piecewise smooth closed path. All these conditions are summarized in
the following theorem.

THEOREM 10.5.  NECESSARY AND SUFFICIENT CONDITIONS FOR A VECTOR FIELD TO BE A
G R A D I E N T . Let f be a vector$eld  continuous on an open connected set S in R”. Then the
jollowing  three statements are equivalent.

(a) f is the gradient of somepotentialfinction in S.
(b) The line integral off is independent of the path in S.
(c) The line integral off is zero around every piecewise smooth closedpath in S.
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ProoJ  We shall prove that (b) implies (a), (a) implies (c), and (c) implies (b). State-
ment (b) implies (a) because of the first fundamental theorem. The second fundamental
theorem shows that (a) implies (c).

To complete the proof we show that (c) implies (b). Assume (c) holds and let C, and C,
be any two piecewise smooth curves in S with the same end points. Let C1  be the graph of a
function a defined on an interval [a, b], and let C, be the graph of a function f3  defined on

[c,  4.
Define a new function y as follows:

y(t)  =
a(t) i f  altlb,

P(b + d - t) i f  b<t<b+d-c.

Then y describes a closed curve C such that

Since SC  f. dy = 0 because of (c), we have SC, f * da = SC, f * dp,  so the integral off is
independent of the path. This proves (b). Thus, (a), (b), and (c) are equivalent.

Note: If $c f # 0 for a particular  closed curve C, then f is not a gradient. However,
if a line integral & f is zero for a particular closed curve C or even for infinitely many
closed curves, it does not necessarily follow that f is a gradient. For example, the reader
can easily verify that the line integral of the vector field f(x, y) = xi + xyj is zero for every
circle C with center at the origin. Nevertheless, this particular vector field is not a
gradient.

10.16 Necessary conditions for a vector field to be a gradient

The first fundamental theorem can be used to determine whether or not a given vector
field is a gradient on an open connected set S. If the line integral off is independent of the
path in S, we simply define a scalar field q~  by integrating f from some fixed point to an
arbitrary point x in S along a convenient path in S. Then we compute the partial derivatives
of ~1  and compare D,g, withy,,  the kth component off. If D&x)  = fk(r)  for every x in
S and every k, then f is a gradient on S and 9 is a potential. If D,p(x)  #f,(x)  for some k
and some x, then f is not a gradient on S.

The next theorem gives another test for determining when a vector field f is not a gradient.
This test is especially useful in practice because it does not require any integration.

THEOREM 10.6. NECESSARY CONDITIONS FOR A VECTOR FIELD TO BE A GRADIENT. Let

f=<f1,*. . , f,) be a continuously difSerentiable vector field on an open set S in R”. Iff is a
gradient on S, then the partial derivatives of the components off are related by the equations

(10.6) Difj(4 = D&(x)

for i, j = 1,2, . . . , n and every x in S.
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Proof. Iffis a gradient, then f = Vg, for some potential function q~.  This means that

“fj = D,P,

foreachj= I,2 ,...,  n. Differentiating both members of this equation with respect to xi
we find

Difj  = DiD,p, .

Similarly, we have

DJ = D*Di~.

Since the partial derivatives D&  and D&  are continuous on S, the two mixed partial
derivatives DiD,p  and DjD,pl must be equal on S. This proves (10.6).

EXAMPLE 1. Determine whether or not the vector field

f(x,  y) = 3x2yi + x3yj

is a gradient on any open subset of R2.

Solution. Here we have

fi(x,  y>  = 3x2y, fi(x, y) = xy.

The partial derivatives D2fi  and Dlf2  are given by

4fky)  = 3x2, D&(x, y) = 3x2y.

Since  D2flb,y)  # D&G,  y) except when x = 0 or y = 1, this vector field is not a
gradient on any open subset of R2.

The next example shows that the conditions of Theorem 10.6 are not always sufficient
for a vector field to be a gradient.

EXAMPLE 2. Let S be the set of all (x, y) # (0,O) in R2,  and let f be the vector field
defined on S by the equation

f’(x,y)  = e2i+ k2j.

Show that Dlf2  = D2fi  everywhere on S but that, nevertheless, f is not a gradient on S.

Solution. The reader can easily verify that DIf2(x,  y) = D,f,(x,  y) for all (x, y) in S.
(See Exercise 17 in Section 10.18.)

To prove thatfis not a gradient on S we compute the line integral offaround the unit
circle given by

cr(t)=costi+sintj, o<t<;2n.
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We obtain

if* da = j,2'f[a(t)]  * a'(t) dt = jo2”  (sin2 t + cos2 t) dt = 2n.

Since the line integral around this closed path is not zero, f is not a gradient on S. Further
properties of this vector field are discussed in Exercise 18 of Section 10.18.

At the end of this chapter we shall prove that the necessary conditions of Theorem 10.6
are also sufficient if they are satisfied on an open comex  set. (See Theorem 10.9.)

10.17 Special methods for constructing potential functions

The first fundamental theorem for line integrals also gives us a method for constructing
potential functions. If f is a continuous gradient on an open connected set S, the line
integral off is independent of the path in S. Therefore we can find a potential 9 simply by
integrating f from some fixed point a to an arbitrary point x in S, using any piecewise
smooth path lying in S. The scalar field so obtained depends on the choice of the initial
point a. If we start from another initial point, say b, we obtain a new potential y. But,
because of the additive property of line integrals, q and q~ can differ only by a constant,
this constant being the integral off from a to b.

The following examples illustrate the use of different choices of the path of integration.

(x, b)

FIGURE 10.5 Two polygonal paths from (a, b) to (x, u).

EXAMPLE 1. Construction of a potential on an open rectangle. If f is a continuous gradient
on an open rectangle in R”, a potential q~ can be constructed by integrating from a fixed
point to an arbitrary point along a set of line segments parallel to the coordinate axes.
A two-dimensional example is shown in Figure 10.5. We can integrate first from (a, b) to
(x, b) along a horizontal segment, then from (x, b) to (x, v) along a vertical segment.
Along the horizontal segment we use the parametric representation

a(t) = ti + bj, a<t<x,
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and along the vertical segment we use the representation

a(t) = xi + tj, b 5 t ‘-=-y.

Iff(x, y) = fi(x, y)i + fi(x, y)j, the resulting formula for a potential 9(x,  y) is

We could also integrate first from (a, b) to (a, y) along a vertical segment and then from
(a, y) to (x, y) along a horizontal segment as indicated by the dotted lines in Figure 10.5.
This gives us another formula for 9(x,  y),

(10.8) dx> Y) = jr fk 0 dt + j; fdt, Y)  dt .

Both formulas (10.7) and (10.8) give the same value fair ~(x, y) because the line integral
of a gradient is independent of the path.

EXAMPLE 2. Construction of a potentialfunction by the use of indefkite  integrals. The use
of indefinite integrals often helps to simplify the calculation of potential functions. For
example, suppose a three-dimensional vector field f = (fi ,fi ,.f3)  is the gradient of a
potential function 97 on an open set S in R3.  Then we ha.ve

?Lf
ax  ”

a3 = fi)
ay

a%?  = f
a2 3

everywhere on S. Using indefinite integrals and integrating the first of these equations with
respect to x (holding y and z constant) we find

dx, Y, z) = s fib Y, z>  dx  + 4y, z>  ,

where A(y,  z) is a “constant of integration” to be determined. Similarly, if we integrate the
equation apl/ay  = fi with respect to y and the equation acp/az = f3 with respect to z we
obtain the further relations

and

dx, Y, z) = j f3k  Y, z>  dz  + Cyx,  Y> ,

where B(x, z) and C(x,  y) are functions to be determined. Finding 9; means finding three
functions A(y,  z), B(x, z), and C(x,  y) such that all three equations for &x,  y, z) agree in
their right-hand members. In many cases this can be done by inspection, as illustrated by
the following example.
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EXAMPLE 3. Find a potential function v for the vector field defined on R3 by the equation

f(x, y, 4 = (2xyz + z2  - 2y2  + 1)i + (X2Z  - 4xy)j + (x2y + 2xz - 2)k.

Solution. Without knowing in advance whether or not f has a potential function v, we
try to construct a potential as outlined in Example 2, assuming that a potential q exists.

Integrating the componentf,  with respect to x we find

&, y,  z) = i (2xyz + z2 - 2y2  + 1) dx + A(y,  z) = x2yz  + xz2 - 2xy2  + x + A(y,  z).

Integrating f2 with respect to y, and thenf, with respect to z, we find

cp(x,  Y, z> = I(x2z - 4xy) dy + B(x, z) = x2yz  - 2xy2  + B(X,  z),

~6,  Y, z>  = s (x2y  + 2xz  - 2) dz + C(x, y) = x2yz  + xz2 - 22 + c(x, y),

By inspection we see that the choices A(y, z) = -2z, B(x, z) = xz2 + x - 2z, and
C(x,  y) = x - 2xy2 will make all three equations agree; hence the function 9 given by the
equation

fp(x,  y, 2) = x2yz  + xz2 - 2xy2  + x - 2z

is a potential for f on R3.

EXAMPLE 4. Construction of a potential on a convex set. A set S in R” is called convex
if every pair of points in S can be joined by a line segment, all of whose points lie in S.
An example is shown in Figure 10.6. Every open convex set is connected.

Iff is a continuous gradient on an open convex set, then a potential q~  can be constructed
by integratingf from a fixed point u in S to an arbitrary point x along the line segment
joining II  to X. The line segment can be parametrized by the function

a(t) = a + t(x - a), where 0 5 t 5 1.

This gives us a’(t) = x - a, so the corresponding potential is given by the integral

(10.9) p(x) = Jb’f(u  + t(x  - a)) * (x - a) dt.

a/

S

Convex

FIGURE 10.6 In a convex set S, the segment joining a and b is in S for all points a and
b in S.
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If S contains the origin we can take a = 0 and write (10.9) more simply as

345

(10.10) p,(x) = S,ff(tx) - x dt.

10.18 Exercises

In each of Exercises 1 through 12, a vector fieldfis defined by the formulas given. In each case
determine whether or not f is the gradient of a scalar field. When f is a gradient, find a correspond-
ing potential function p.

1. f(x,y)  = xi +yj.
2. f(x,  y) = 3x2yi + x”j.
3. f(x, y) = (2xe” + y)i  + (x2eu  + x - 2y)j.
4. f(x,y)  = (siny -ysinx  + x)i + (cosx  + xcosy +v)j.
5. f(x, y) = [sin (xy) + xy cos (xy)]i  + x2 cos (xy)j.
6. f(x,y,z)  = xi +yj + zk.
7..f(x,y,z)=(x+z)i-((y+z)j+(x--)k.
8. f(x,  y, z) = 2xy3i + x2z3j + 3x2yz2k.
9. f(x,  y, z) = 3y4z2i + 4x3z2j - 3x2y2k.

10. f(x,y,  z) = (2x2  + 8xy2)i + (3x3y - 3xy)j  - (4y2z2 + 2x3z)k.
11. f(x,  y,  z) = 01” cos x + z3)i - (4 - 2~ sin x)j  + (3xz2 + 2)k.
12. f(x,  y,  z) = (4xy - 3x2z2  + 1)i  + 2(x2 + 1)j - (2x32  + 3z”)k.

13. A fluid flows in the xy-plane, each particle moving directly away from the origin. If a particle
is at a distance r from the origin its speed is am, where a and n are constants.
(a) Determine those values of a and n for which the velocity vector field is the gradient of
some scalar field.
(b) Find a potential function of the velocity whenever the velocity is a gradient. The case
n = -1 should be treated separately.

14. If both q and w are potential functions for a continuous vector field f on an open connected
set S in R”, prove that q - YJ is constant on S.

15. Let S be the set of all x # 0 in Rn. Let r = /1x(1  , and let f be the vector field defined on S by

the equation

f(x) = rpx,

where p is a real constant. Find a potential function for f on S. The case p = -2 should be
treated separately.

16. Solve Exercise 15 for the vector field defined by the equation

f(x)  2Xx,
r

where g is a real function with a continuous derivative everywhere on R’.

The following exercises deal with the vector field f defined on the set S of all points (x, y) # (0,O)
in R2  by the equation

f(x,y>  = -h2i  +$$j.
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In Example 2 of Section 10.16 we showed that f is not a gradient on S, even though DLfi = Dzfi
everywhere on S.

17. Verify that for every point (x, y) in S we have

2 2
4./‘&,y) = ~./-I(x~Y) = (z2 +-2,2  .

18. This exercise shows that f is a gradient on the set

T=R2--{(x,y)ly=o,  x50},

consisting of all points-in the xy-plane except those on the nonpositive x-axis.
(a) If (x, y) E  T, express x and y in polar coordinates,

x =rcosO, y = r sin e,

wherer > Oand -m < 0 < r. Prove that 0 is given by the formulas

i

Yarctan  - if x > 0,
X

e= g
2

i f  x=0,

Yarctan;  + n if x < 0.

[Recall the definition of the arc tangent function: For any real t, arctan  t is the unique real
number p which satisfies the two conditions tan q = t and -n/2  < q < 42. ]
(b) Deduce that

ae Y ae x
ax=
-- -=-

~2 +y2  3 ay x2 + y2

for all (x, y) in T. This proves that 0 is a potential function for f on the set T.
This exercise illustrates that the existence of a potential function depends not only on the

vector field f but also on the set in which the vector field is defined.

10.19 Applications to exact differential equations of first order

Some differential equations of the first order can be solved with the aid of potential
functions. Suppose we have a first-order differential equation of the form

Y’ = fb, y> .

If we multiply both sides by a nonvanishing factor Q(x,  y) we transform this equation
to the form Q(x,  y)y’  - f(x, y)Q(x, y) = 0. If we then write P(x, y) for -f(x, y)Q(x, y)
and use the Leibniz notation for derivatives, writing dy/dx  for y’, the differential equation
takes the form

(10.11) P(x,  y) dx + Q(x,  y> dy = 0.
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We assume that P and Q are continuous on some open connected set S in the plane.
With each such differential equation we can associate a vector field V, where

JW y> = P(x, y)i  + Qk y:)i.

The components P and Q are the coefficients of dx and dy in Equation (10.11). The differ-
ential equation in (10.11) is said to be exact in S if the vector field V is the gradient of a
potential; that is, if V(x,  y) = Vv(x,  y) for each point (x, y) in S, where p is some scalar
field. When such a 91 exists we have ayllax = P and ay/ay = Q, and the differential
equation in (10.11) becomes

We shall prove now that each solution of this differenti,al  equation satisfies the relation
m(x, y) = C, where C is a constant. More precisely, assume there is a solution Y of the
differential equation (10.11) defined on an open interval (a, b) such that the point (x, Y(x))
is in S for each x in (a, b). We shall prove that

vb,  Y(x)1  = c

for some constant C. For this purpose we introduce the composite function g defined on
(a, b) by the equation

g(x) = pl[x,  Y(x)1  -

By the chain rule, the derivative of g is given by

(10.12) g’(x)  = &Y’[x,  Y(x)1  + &v[x, Y(x)1  Y’(x)  = P(x, y) + Q<x, y)y’,

where y = Y(x) and y’ = Y’(x). If y satisfies (lO.ll),  then P(x,  y) + Q(x, y)y’  = 0, so
g’(x) = 0 for each x in (a, b) and, therefore, g is constant on (a, b). This proves that every
solution y satisfies the equation ~(x, y) = C.

Now we may turn this argument around to find a solution of the differential equation.
Suppose the equation

(10.13) hY> = c

defines y as a differentiable function of x, say y = Y(x) for x in an interval (a, b), and
let g(x) = pl[x,  Y(x)]. Equation (10.13) implies that g is constant on (a, b). Hence, by
(10.12),  P(x,  y) + Q(x,  y)y’  = 0, so y is a solution. Therefore, we have proved the
following theorem :

THEOREM 10.7. Assume that the dl&%erential  equation

(10.14) P(x, y>  dx + Q(x, y)  dy  =: 0
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is exact in an open connected set S, and let 9 be a scalarjeld  satisfying

!?2 = p and aY
ax -Q

iij-

everywhere in S. Then every solution y = Y(x) of (10.14) whose graph lies in S satisjes the
equation ~[x,  Y(x)] = C for some constant C. Conversely, if the equation

dejnes  y implicitly as a differentiable function of x, then this function is a solution of the
dzrerential  equation (10.14).

The foregoing theorem provides a straightforward method for solving exact differential
equations of the first order. We simply construct a potential function q and then write
the equation. ~(x, y) = C, where C is a constant. Whenever this equation defines y
implicitly as a function of x, the corresponding y satisfies (10.14). Therefore we can use
Equation (10.13) as a representation of a one-parameter family of integral curves. Of
course, the only admissible values of C are those for which ~(x,,  y,,)  = C for some (x,,  , yO)
in S.

EXAMPLE 1. Consider the differential equation

dy 3x2 + 6xy2

TX=- 6x’y + 4y3 *

Clearing the fractions we may write the equation as

(3x2  + 6xy2)  dx + (6x2y  + 4~3)  dy = 0.

This is now a special case of (10.14) with P(x,  y) = 3x2  + 6xy2  and Q(x, y) = 6x2y  + 4y3.
Integrating P with respect to x and Q with respect toy and comparing results, we find that
a potential function q~  is given by the formula

y(x,  y) = x3 + 3x2y2  + y4.

By Theorem 10.7, each solution of the differential equation satisfies

x3 + 3x2y2  + y4 =  c

for some C. This provides an implicit representation of a family of integral curves. In
this particular case the equation is quadratic in y2 and can be solved to give an explicit
formula for y in terms of x and C.

EXAMPLE 2. Consider the first-order differential equation

(10.15) ydx+2xdy=O.



Show that the differential equations in Exercises 1 through 5 are exact, and in each case find a
one-parameter family of integral curves.

1.
2 .
3 .
4 .
5 .

6 .

(x + 2y) dx + (2x + y) dy = 0.
2xydx  + x”dy = 0.
(x2  -y)dx  - (x + siGy)dy = 0.
4sinxsin3ycosxdx -3cos3ycos2xdy  = O .
(3x2y  + 8xy2)  dx + (x3  + 8x2y  + 12yeY)  dy = 0.

Show that a linear first-order equation, y’ + P(x)y  = Q(x)i, has the integrating factor p(x)  =
elPtz)dz. Use this to solve the equation.
Let ~(x,  y) be an integrating factor of the differential equation P(x, y) dx + Q(x, y) dy = 0.
Show that

ap aQ- - -
ay ax = Qfxlogl/I -P;logl/4.

Use this equation to deduce the following rules for finding integrating factors:
(a) If (aP/ay - aQ/ax)/Q is a function of x alone, say j”(x), then e’ft2)d2:  is an integrating
factor.
(b) If (aQ/  ax - aP/  ay)/P  is a function ofy alone, sayg(y),  then elg(y)dy is an integrating factor.
Use Exercise 7 to find integrating factors for the following equations, and determine a one-
parameter family of integral curves.
(a) y dx - (2x + y) dy = 0.
(b) (x3  + y3) dx - xy2  dy = 0.
If aP/ay  - aQ/ax =f(x)Q(x,  y) - g(y>P(x,  y),  show thait exp {Jf(x>  dx + Jg(y)  dy} is an
integrating factor of the differential equation P(x,  y) dx + Q(x,  y) dy = 0. Find such an
integrating factor for each of the following equations and obtain a one-parameter family of
integral curves.
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Here P(x, y) = y and Q(x,  y) = 2x. Since lIPlay = 1 a.nd aQ/ax  = 2, this differential
equation is not exact. However, if we multiply both sides by y we obtain an equation
that is exact:

(10.16) y2dx  + 2xydy = 0.

A potential of the vector field y2i + 2xyj is 9(x,  y) = xy2, and every solution of (10.16)
satisfies the relation xy2 = C. This relation also represents a family of integral curves for
Equation (10.15).

The multiplier y which converted (10.15) into an exact equation is called an integrating
factor. In general, if multiplication of a first-order 1inea.r  equation by a nonzero factor
~(x, y) results in an exact equation, the multiplier ~(x, y) is called an integrating factor of
the original equation. A differential equation may have more than one integrating factor.
For example, /~(x, y) = 2xy3 is another integrating factor of (10.15). Some special differ-
ential equations for which integrating factors can easily be found are discussed in the
following set of exercises.

10.20 Exercises

(a) (2x2y  + y2) dx + (2x3  - xy) dy = 0.
(b) (e”secy  - tany)dx +dy = 0.
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10. The following differential equations have an integrating factor in common. Find such an
integrating factor and obtain a one-parameter family of integral curves for each equation.

(3y + 4xy2) dx + (4x + 5x2y)  dy = 0,

(6y  + x”y”) dx + (8x + x”y) dy = 0.

10.21 Potential functions on convex sets

In Theorem 10.6 we proved that the conditions

are necessary for a continuously differentiable vector fieldf = (fi , . . . ,f,) to be a gradient
on an open set S in R”. We then showed, by an example, that these conditions are not
always sufficient. In this section we prove that the conditions are sufficient whenever the
set S is convex. The proof will make use of the following theorem concerning differentiation
under the integral sign.

THEOREM 10.8. Let S be a closed interval in Rn  with nonempty interior and let J = [a, b]
be a closed interval in R1.  Let Jn+l be the closed interval S x J in Rn+l. Write each point in
J,+l as (x, t), where x E  S and t E  J,

Assume that y is a scalarjeld dejned  on J,+l such that the partial derivative D,v is continuous

on  J,+l  p wherekisoneof 1,2,..., n. De$ne  a scalarjeld p on S by the equation

~(4 = j-,” Y(X,  0 dt .

Then the partial derivative D,q exists at each interior point of S and is given by the formula

In other words, we have

4cp?W  = Jab  D,w(x,  0 dt.

D, Jab  14x, 0 dt = s,” &,4x,  0 dt .

Note: This theorem is usually described by saying that we can differentiate under the
integral sign.

Proof. Choose any x in the interior of S. Since int S is open, there is an r > 0 such that
x + he, E int S for all h satisfying 0 < Ihl  < r. Here ek  is the kth unit coordinate vector
in R”. For such h we have

(10.17) P(X + bed  - dx> = 1,” {y<x  + he,, t) - y(x,  t)} dt .
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Applying the mean value theorem to the integrand we have

Y(X + he,,  t> - Y(X,  t) = h &AZ,  t>,

where z lies on the line segment joining x and x + he,. Hence (10.17) becomes

Therefore

dx + he,) - ~(4 = s b
h

D,Y(Z, 0 dt *
a

‘@ + hek) - &)  -
h s

bD,y(w,  t) dt = b{D,y(z,  t) - D,y(x,  t)} dt.
a sa

The last integral has absolute value not exceeding

.r,” I~Y,(z,  0 - QY(x, 0 I dt I (b - a>  max  IQ&z, 0 - &,4x, 01

where the maximum is taken for all z on the segment joining x to x + he,, and all t in
[a, b]. Now we invoke the uniform continuity of D, on S :K J (Theorem 9.10) to conclude
that for every E > 0 there is a 6 > 0 such that this maximum is <~/(b  - a), whenever
0 < Ihl  < 6. Therefore

dx + bed  - ~(4 s b
h -a

D,y(x,  t) dt < E wlhenever 0 < Ihl < 6.

This proves that I&Q)(X)  exists and equals Ji D,y(x,  t) dt, as required.

Now we shall use this theorem to give the following necessary and sufficient condition for
a vector field to be a gradient on a convex set.

THEOREM 10.9. Let f = (fl, . . . , f,J  be a continuously dlyerentiable  vector jield on an
open convex set S in R”. Then f is a gradient on S if and only if we have

(10.18) wx;.(x) = WC(x)

foreachxinSandallk,j=  1,2 ,..., n.

Proof. We know, from Theorem 10.6, that the conditions are necessary. To prove
sufficiency, we assume (10.18) and construct a potential v on S.

For simplicity, we assume that S contains the origin. Let v(x) be the integral offalong
the line segment from 0 to an arbitrary point x in S. As shown earlier in Equation (10.10)
we have

P(X)  = j,‘f(tx)  * x dt = JO1 y(x,  t) dt,
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where y(x, t) = f(tx) * x . There is a closed n-dimensional subinterval T of S with non-
empty interior such that y satisfies the hypotheses of Theorem 10.8 in T x  J, where
J = [0, I]. Therefore the partial derivative D,pl(x)  exists for each k = 1, 2, . . . , n and
can be computed by differentiating under the integral sign,

To compute D,+v(x, t), we differentiate the dot productf(tx)  . x and obtain

D,y(x,  t) =f(tx) * D,x  + Dk{fW>}  * x
=  f(k)  - ek  +  t(Dkfi(tx>,  *  .  .  ,  Dkfn(rX))  *  x

=f,(tx)  +  t(&fk(f.r),  .  .  .  ,  D&(tX))  *  x,

where in the last step we used the relation (10.18). Therefore we have

D,y(X,  t )  =fk(tX)  +  tvfk(tX)  .  X.

Now let g(t)  = f,(tx)  . By the chain rule we have

g’(t) = Vfk(tx)  * x

so the last formula for D,y(x,  t) becomes

D,Y(&  t> = g(t)  + tg’(t)  .

Integrating this from 0 to 1 we find

(10.19) &V(x)  = j;  D,y(x,  t> = j,’ g(t)  dt + j;  Q’(t) dt .

We integrate by parts in the last integral to obtain

jol  Q’(t) dt = Q(t)  I;- j,’ g(t)  dt = g(l) - j; g(t) dt.

Therefore (10.19) becomes

h?‘(X)  =  g(l) =  fk(x).

This shows that VP,  = f on S, which completes the proof.
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MULTIPLE INTEGRALS

11.1 Introduction

Volume I discussed integrals jP, ,f(x)  dx, first for functions defined and bounded on finite
intervals, and later for unbounded functions and infinite intervals. Chapter 10 of Volume
II generalized the concept by introducing line integrals. This chapter extends the concept in
yet another direction. The one-dimensional interval [a, b] is replaced by a two-dimensional
set Q, called the region of integration. First we consider rectangular regions; later we
consider more general regions with curvilinear boundaries. The integrand is a scalar field f
defined and bounded on Q. The resulting integral is called a double integral and is denoted
by the symbol

SI f9 or by SJ‘ f(x, Y> dx &.
Q Q

As in the one-dimensional case, the symbols dx and dy play no role in the definition of the
double integral; however, they are useful in computations and transformations of integrals.

The program in this chapter consists of several stages. First we discuss the definition of
the double integral. The approach here is analogous to the one-dimensional case treated in
Volume I. The integral is defined first for step functions and then for more general
functions. As in the one-dimensional case, the definition does not provide a useful
procedure for actual computation of integrals. We shall find that most double integrals
occurring in practice can be computed by repeated one-dimensional integration. We shall
also find a connection between double integrals and line integrals. Applications of double
integrals to problems involving area, volume, mass, center of mass, and related concepts
are also given. Finally, we indicate how the concepts can be extended to n-space.

11.2 Partitions of rectangles. Step functions

Let Q be a rectangle, the Cartesian product of two closed intervals [a, b] and [c, d],

Q = b, bl x k, 4 = 1(x,  y) 1 x E [a, bl and  y E [c,  4).

An example is shown in Figure 11 .I. Consider two partitions P,  and P, of [a, b] and [c, d],

3 5 3
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FIGURE 11.1 A rectangle Q, the Cartesian FIGURE  11.2 A partition of a rectangle Q.
product of two intervals.

respectively, say

P~={Xo,X1,...,Xn-l,Xn} and pz = {Y”~Yl, * * * ~Yrn-l&J?

where x,,  = a, x,  = b, yO  = c, ym = d. The Cartesian product P, x P, is said to be a
partition of Q.  Since P, decomposes [a, b] into n subintervals and P, decomposes [c, d] into
m subintervals, the partition P = P, x P, decomposes Q into mn subrectangles. Figure
11.2 illustrates an example of a partition of Q into 30 subrectangles. A partition P’ of Q
is said to be finer than P if P c P’, that is, if every point in P is also in P’.

The Cartesian product of two open subintervals of P, and P, is a subrectangle with its
edges missing. This is called an open subrectangle of P or of Q.

DEFINITION OF STEP FUNCTION. A function f dejined on a rectangle Q is said to be a step
function if a partition P of Q exists such that f is constant on each of the open subrectangles
OfP.

The graph of an example is shown in Figure 11.3. Most of the graph consists of horizontal
rectangular patches. A step function also has well-defined values at each of the boundary

FIGURE 1 I .3 The graph of a step function defined on a rectangle Q.



The double integral of a step function 355

points of the subrectangles, but the actual values at these points are not relevant to integra-
tion theory.

Iff and g are two step functions defined on a given rectangle Q, then the linear combina-
tion cJ + czg is also a step function. In fact, if P and P’ are partitions of Q such that f is
constant on the open subrectangles of P and g is constant on the open subrectangles of P’,
then qf + czg is constant on the open subrectangles of the union P U P’  (which we may
call a common refinement of P and P’). Thus, the set of step functions defined on Q forms
a linear space.

11.3 The double integral of a step function

Let P = P, x P, be a partition of a rectangle Q into mn subrectangles and letfbe a step
function that is constant on the open subrectangles of Q. Let the subrectangle determined
by [xi-r, xi] and [Y~+~,  yj]  be denoted by Qij and let cij denote the constant value that f
takes at the interior points of Qij.  Iffis positive, the volume of the rectangular box with
base Qij and altitude Cij is the product

Gj ’ Cxi  - xi-l>(Yj  - yj-1).

For any step functionf, positive or not, the sum of all these products is defined to be the
double integral off over Q. Thus, we have the following definition.

DEFINITION OF THE DOUBLE INTEGRAL OF A STEP FUNCTION. Let f be a step function which
takes the constant value cij on the open subrectangle (xieI,  xi) x (yjpl,  yj) @a  rectangle Q.
The double integral off over Q is dejined by the formula

(11.1) j j f = i: $ c*j ' Cxi - xi-l)(Yj  - Yj-1).

Q z=lj=l

As in the one-dimensional case, the value of the integral does not change if the partition
P is replaced by any finer partition P’. Thus, the value of the integral is independent of the
choice of P so long as f is constant on the open subrectangles of Q.

For brevity, we sometimes write Axi  instead of (xi - xi-r) and Ayj instead of (yj - yjP1),
and the sum in (11.1) becomes

To remind ourselves how this sum is formed, we write the symbol for the integral as

This symbol is merely an alternative notation for JjJ

Note that if f is constant on the interior of Qy say f(x,  y) = k when a < x < b and
c < y < d, we have

(11.2) SJ’ f = k(b - a)(d - c),
Q



356 Multiple integrals

regardless of the values off on the edges of Q. Since we have

b - a = 1,” dx and d - c = s,“dyt

formula (11.2) can also be written as

(11.3) ij f = j; [jab  fk Y> dx] dy = j,”  [ jzf(x, Y> dy] dx .

The integrals which appear on the right are one-dimensional integrals, and the formula
is said to provide an evaluation of the double integral by repeated or iterated integration.
In particular, when f is a step function of the type described above, we can write

fk Y) dx] dy = jzml[ j::-, Ax, Y> dy] dx.

Summing on i and i and using (11. l), we find that (11.3) holds for step functions.
The following further properties of the double integral of a step function are generaliza-

tions of the corresponding one-dimensional theorems. They may be proved as direct
consequences of the definition in (11.1) or by use of formula (11.3) and the companion
theorems for one-dimensional integrals. In the following theorems the symbols s and t
denote step functions defined on a rectangle Q. To avoid trivial special cases we assume
that Q is a nondegenerate rectangle; in other words, that Q is not merely a single point
or a line segment.

THEOREM 11.1. LINEARITY PROPERTY. For every real c1  and c2  we have

j j k&, Y)  + 4x, Y)I dx dy = ~1  j j s(x, Y) dx 4v + cz  j j t(x,  Y) dx dye
Q Q Q

THEOREM 11.2. ADDITIVE PROPERTY. If Q is subdivided into two rectangles Q, and Q2,
then

j j s(x, y) dx 4v = j j 4x,  Y> dx dy + j j 6 Y> dx dy .
Q Ql QZ

THEOREM  11.3 COMPARISON THEOREM. Zfs(x,y)  5 t(x,y)for  every(x,y)in  Q, wehave

j j 4x, Y) dx dy I j j t(x, Y> dx dy .
Q Q

In particular, if t(x,  y) 2 0 for every (x, y) in Q, then

SI t(x,y)dxdy>O.
Q

The proofs of these theorems are left as exercises.
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11.4 The definition of the double integral of a function defined and bounded on a rectangle

Let f be a function that is defined  and bounded on a rectangle Q;  specifically, suppose
that

If(X~Y>I  I fv if (x,y)~Q.

Then f may be surrounded from above and from below by two constant step functions s
and t, where s(x, y) = --M  and t(x,  y) = M for all (x, y) in Q. Now consider any two
step functions s and t, defined on Q, such that

(11.4) 4x3 y) is fk y> I t(x, y) for every point (x, u) in Q .

DEFINITION OF THE INTEGRAL OF A BOUNDED FUNCTION OVER A RECTANGLE. If there is one
and only one number Z such that

(11.5) s.i s<Ij tSI
Q Q

for every pair of step functions satisfying the inequalities in (I 1.4),  this number I is called
the double integral off over Q and is denoted by the symbol

IS f or i s f(x, Y) dx dy.
Q Q

When such an I exists the function f is said to be integrable on Q.

11.5 Upper and lower double integrals

The definition of the double integral is entirely analogous to the one-dimensional case.
Upper and lower double integrals can also be defined as was done in the one-dimensional
case.

Assume f is bounded on a rectangle Q and let s and t be step functions satisfying (11.4).
We say that s is below f, and t is above f, and we write s < f < t . Let S denote the set of all
numbers jj s obtained ass runs through all step functions below f, and let T be the set of

all numbek jj t obtained as t runs through all step functions above f. Both sets S and T
Q

are nonempty  since f is bounded. Also, jj s 2 jj t ifs 5 f 5 t, so every number in S is

less than every number in T. Therefore S hQas  a su&emum, and T has an infimum, and they
satisfy the inequalities

jjsIsupS<infT</jt
Q Q

for all s and t satisfying s < f 5 t . This shows that both numbers sup S and inf T satisfy
(11.5). Therefore, f is integrable on Q if and only if sup S = inf T, in which case we have

SI f = sup S = inf T.
Q
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The number sup S is called the lower integral off and is denoted by J(f  ). The number
inf T is called the upper integral off and is denoted by r(f).  Thus, we have

J(f)=sup([jJIsI/], l(f)=inf[[jtlf”‘).

The foregoing argument proves the following theorem.

THEOREM 11.4. Every function f which is bounded on a rectangle Q has a lower integral
J(f)  and an upper integral i(f) satisfying the inequalities

j j s I i(f) s R(f)  5 j j t
Q Q

,for  all step functions s and t with s If 5 t . The function f is integrable on Q if and only if
its upper and lower integrals are equal, in which case we have

I’! f = m = i(f).
Q

Since the foregoing definitions are entirely analogous to the one-dimensional case, it is
not surprising to learn that the linearity property, the additive property, and the comparison
theorem as stated for step functions in Section 11.3, also hold for double integrals in general.
The proofs of these statements are analogous to those in the one-dimensional case and will
be omitted.

11.6 Evaluation of a double integral by repeated one-dimensional integration

In one-dimensional integration theory, the second fundamental theorem of calculus
provides a practical method for calculating integrals. The next theorem accomplishes the
same result in the two-dimensional theory; it enables us to evaluate certain double integrals
by means of two successive one-dimensional integrations. The result is an extension of
formula (11.3), which we have already proved for step functions.

THEOREM 11.5. Let f be defined and bounded on a rectangle Q = [a, b] x [c, d] , and
assume that f is integrable on Q. For each$xed  y in [c, d] assume that the one-dimensional
integral ji  f(x,  y) dx exists, and denote its value by A(y). If the integral jf  A(y) dy exists it
is equal to the double integral jj  f.  In other words, we have the formula

Q

(11.6) ?l?^f(x,  Y> dx dy = s,” [[;lk Y> dx] dy.

Proof. Choose any two step functions s and t satisfying s If < t on Q. Integrating
with respect to x over the interval [a, b] we have

jab s(x, Y)  dx I A(Y)  I jab  t(x,  Y> dx.
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Since the integral Jf A(y) dy exists, we can integrate both these inequalities with respect to
y over [c, d] and use Equation (11.3) to obtain

Therefore jz A(y) dy is a number which lies between Jj s and jj t for all step functions s
Q Q

and t approximating f from below and from above, respectively. Since f is integrable on
Q, the only number with this property is the double integral off over Q.  Therefore
ji A(y) dy = vf,  which proves Equation (11.6).

Formula (11.6) is said to provide an evaluation of the double integral by repeated or
iterated integration. The process is described by saying that first we integrate f with respect
to x from a to b (holding y fixed), and then we integrate the result with respect to y from
c to d. If we interchange the order of integration, we have a similar formula, namely,

(11.7) [j fb, Y) dx dy = jab [ jedf(x,  Y> dy] dx ,

which holds if we assume that jzf(x,  y) dy exists for each fixed x in [a, b] and is integrable
on [a, b].

11.7 Geometric interpretation of the double integral as a volume

Theorem 11.5 has a simple geometric interpretation, illustrated in Figure 11.4. If f is
nonnegative, the set S of points (x, y, z) in 3-space with (x, y) in Q and 0 5 z 5 f(x,  y)  is

The ordinate set S of f’over Q Cross section with area A(y)=

(a) 0-J)

FIGURE 11.4 The volume of S is the integral of the cross-sectional area:
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called the ordinate set off over Q. It consists of those points between the rectangle Q and
the surface z = f (x, y) . (See Figure 11.4(a).) For each y in the interval [c, d], the integral

is the area of the cross section of S cut by a plane parallel to the xz-plane (the shaded region
in Figure 11.4(b)). Since the cross-sectional area A(y) is integrable on [c, d], Theorem 2.7
of Volume 1 tells us that the integral j: A(y) dy is equal to v(S), the volume of S. Thus, for
nonnegative integrands, Theorem 11.5 shows that the volume of the ordinate set off over Q
is equal to the double integral JjJ

Equation (11.7) gives anothe: way of computing the volume of the ordinate set. This
time we integrate the area of the cross sections cut by planes parallel to the yz-plane.

11.8 Worked examples

In this section we illustrate Theorem 11.5 with two numerical examples.

EXAMPLE 1. If Q = [-1, 1] X [O,?‘r/2], evaluate Jj (x sin y - ye”) dx dy, given that

the integral exists. The region of integration is showr?in Figure 11.5.

Solution. Integrating first with respect to x and calling the result A(y), we have

2
NY) = s l( x sin y - ye”) dx = x sin y

X=1

-1 2
- y e ”  = - e y + y / e .)I x=-l

FIGURE 11.5 The region of integration for FIGURE 11.6 The region of integration for
Example 1. Example 2.
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Applying Theorem 11.5 we find

Ii (x sin y - ye”) dx dy = ji”4~)  dy = ji’” (- ey + y/e) dy
Q

= (l/e - e) i:” y dy = (l/e - e)r2/8.

As a check on the calculations we may integrate first with respect to y:

SI (x sin y - ye”) dx dy = l:, [ Jf” (x sin y - .ye”>  dy] dx
Q

= J‘‘J-x cos y - $y2ez) IrII’” dx

= s‘, (- 2e”/8  + x) dx = (l/e - e).rr2/8  .

EXAMPLE 2. If Q = [- 1, l] x [0,2],  evaluate the double integral jj Jly i x21  dx dy ,
given that it exists. Q

Solution. If we integrate first with respect toy and call the result H(x), we have H(x) =
jz  Jly - x21  dy . The region of integration is the rectangle shown in Figure 11.6. The
parabola y = x2 is also shown because of the presence of ly - x21  in the integrand. Above
this parabola we have y > x2 and below it we have y < x2. This suggests that we split the
integral for H(x) as follows:

We remember that x is treated as a constant in each of these integrals. In the first integral
we make the change of variable t = x2 - y and in the second we put t = y - x2.  This
gives us

H(X)  = s,” Jly - x21  dy = -&& dt + j,‘-=‘Jt dt = +x3  + $(2  - ~‘)~“a

Applying Theorem 11.5 we find

ss JIY - x”l dx dy =
Q s: C%

ir

x3 + 4 (2 - x2)3/21  dx = +
s

’ (2 - x2)3’2dx
0

’*=-
x(2

-
x2)3/2

+ 3xJ2 - x2 + 6 arcsin = 4 + T .
3 0 3 2

The same result may be obtained by integrating first with respect to x, but the calculations
are more complicated.



362 Multiple integrals

11.9 Exercises

Evaluate the double integrals in Exercises 1 through 8 by repeated integration, given that each
integral exists.

1.
1s xy(x  + y) dx dy , where Q = [0, l] x [0, 11.
Q

2. II (x3  + 3x5~  + y3>  dx dy  , where Q = [O,  11  x CO,  11.
Q

3. ij (JV + x - 3xy2)  dx dy , where Q = [0, 11  x 11,  31.

4 !j
sin2 x sin2 y dx dy , where Q = 10,  ~1  X [O,  ~1.

5 .
i s

sin(x +y)dxdy, where Q = 10,  n/2] X 10,  p/2].
Q

6. lj lcos  (x + y)l dx dy , where Q = 10,  ~1  X 10,  ~1.

7. j jf(x + y) dx  dy, where Q = [0,2]  x [0,2],  and f(t) denotes the greatest integer 5 t.
Q

8. jj yp3  etrJy  dx dy, where Q = [O,t]  x [l,t],t >O.
Q

9. If Q is a rectangle, show that a double integral of the form jjf(x)g(y) dx dy is equal to the

product of two one-dimensional integrals. State the assumpti%is  about existence that you are
using.

10. Letfbe defined on the rectangle Q = [0, l] x [0, l] as follows:

j-(x,  y> =
1  - x - y i f  x+yll,
o

otherwise.

Make a sketch of the ordinate set off over Q and compute the volume of this ordinate set by
double integration. (Assume the integral exists.)

11. Solve Exercise 10 when

i f  x2 ly <2x2,

otherwise.

12. Solve Exercise 10 when Q = [ -1, l] x [ -1, l] and

f(X,Y) = f’ + y2
(

if x2 + y2 i; 1,
otherwise
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13. Let f be defined on the rectangle Q = [l, 21 x [l, 41 as follows:

(x
f(x, y) =

+ yv2 i f  x<y52x,
o

otherwise.

Indicate, by means of a sketch, the portion of Q in which f is nonzero  and compute the value
of the double integral jjf, given that the integral exists.

14. Let f be defined on the:ectangle Q = [0, 11  x [0, l] as follows:

f(x,y)=i  if xzy
(

i f  x=y,

Prove that the double integral Lj j-exists  and equals 0.

11.10 Integrability of continuous functions

The small-span theorem (Theorem 9.10) can be used to prove integrability of a function
which is continuous on a rectangle.

THEOREM 11.6. INTEGRABILITY OF CONTINUOUS FUNCTIONS. Ifafinction f is continuous
on a rectangle Q = [a, b] x [c, d], then f is integrable on Q. Moreover, the value of the
integral can be obtained by iterated integration,

‘Ijf  = j,” [Is,”  0, Y>  dx] dy  = j; [s:‘f(x,  Y>  dy] dx.

Proof. Theorem 9.8 shows that f is bounded on Q, so f has an upper integral and a
lower integral. We shall prove that -I(f) = I(f). Choose E > 0. By the small-span
theorem, for this choice of E there is a partition P of Q into a finite number (say n) of sub-
rectangles QI, . . . , Q, such that the span offin every subrectangle is less than E. Denote

by Mdf)  and  m,(f), respectively, the absolute maximum and minimum values off in
Q,.  Then we have

Mrdf>  - we(f)  < 6

foreachk=1,2,..., n. Now let s and t be two step functions defined on the interior of
each Qk as follows:

44 = m,(f), t(x) = WSf) i f  xEintQ,.

At the boundary points we define s(x) = m and t(x) = M, where m and Mare, respectively,
the absolute minimum and maximum values off on Q.  Then we have s If < t for all x
in Q.  Also, we have

and jj t =$lMi,(f)a(Qk) 9
Q .
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where a@,) is the area of rectangle Q, . The difference of these two integrals is

ff  t  - f/  S = i {Mk(.f)  - mk(f))a(Qk>  < l i a(Qk) = es(Q),
Q Q k=l .k=l

where a(Q) is the area of Q.  Since Jj s < I(f) < r(f) I jj t, we obtain the inequality
Q Q

0 5 1C.f)  - I(f) II 4Q>.

Letting E -+ 0 we see that I(f) = I(f), so f is integrable on Q.
Next we prove that the double integral is equal to the first iterated integral in (11.8).

For each fixed y in [c, d]  the one-dimensional integral ji f (x, JJ)  4x exists since the integrand
is continuous on Q. Let A(y) = Ji f (x, y) dx . We shall prove that A is continuous on
[c, d]. Ify andyI  are any two points in [c, d] we have

A(Y)  - &YI) = s,”  {f(x,  Y>  - fk Y,>>  dx

from which we find.

IA(Y) - A( I (b  - a~,~~~,Ifb,  Y>  - f(x,  ydl  = @ - a) If(xly  Y>  - f(xlp  YJI

where x1  is a point in [a, b]  where ]f(x,  y)  - f (x, u,)]  attains its maximum. This inequality
shows that A(y) -+ A&) as y -+yl,  so A is continuous at yl. Therefore the integral
j% A(y) dy exists and, by Theorem 11.5, it is equal to JjJ A similar argument works when
the iteration is taken in the reverse order. 0

11.11 Integrability of bounded functions with discontinuities

Let f be defined and bounded on a rectangle Q.  In Theorem 11.6 we proved that the
double integral off over Q exists if f is continuous everywhere on Q.  In this section we
prove that the integral also exists if f has discontinuities in Q,  provided the set of dis-
continuities is not too large. To measure the size of the set of discontinuities we introduce
the following concept.

DEFINITION OF A BOUNDED SET OF CONTENT ZERO. Let A be a bounded subset of the plane.
The set A is said to have content zero $for every E > 0 there is ajnite  set of rectangles whose
union contains A and the sum of whose areas does not exceed E.

In other words, a bounded plane set of content zero can be enclosed in a union of rec-
tangles whose total area is arbitrarily small.

The following statements about bounded sets of content zero are easy consequences of
this definition. Proofs are left as exercises for the reader.

(a) Any finite set of points in the plane has content zero.
(b) The union of a finite number of bounded sets of content zero is also of content zero.
(c) Every subset of a set of content zero has content zero.
(d) Every line segment has content zero.
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THEOREM 11.7. Let f be dejned  and bounded on a rectangle Q = [a, b] x [c, d]. If the
set of discontinuities off in Q is a set of content zero then the double integral JJ f exists.

Q

Proof. Let M > 0 be such that If 1 < M on Q. Let D denote the set of discontinuities
off in Q. Given 6 > 0, let P be a partition of Q such that the sum of the areas of all the
subrectangles of P which contain points of D is less than S. (This is possible since D has
content zero.) On these subrectangles define step functions s and t as follows:

s (x )  =  -M, t(x) = M.

On the remaining subrectangles of P define s and t as was done in the proof of Theorem 11.6.
Then we have s If 5 t throughout Q. By arguing as in the proof of Theorem 11.6 we
obtain the inequality

(11.9) b-ss s < es(Q) + 2M6.
Q Q

The first term, Es(Q),  comes from estimating the integral of t - s over the subrectangles
containing only points of continuity off; the second term, 2M6, comes from estimating
the integral of t - s over the subrectangles which contain points of D. From (11.9) we
obtain the inequality

0 I r(f) - I(f) I a(Q)  + 246.

Letting E + 0 we find 0 5 i(f) - r(S) < 2M6.  Since 6 is arbitrary this implies i(f) =
J(f), so f is integrable on Q.

11.12 Double integrals extended over more general regions

Up to this point the double integral has been defined only for rectangular regions of
integration. However, it is not difficult to extend the concept to more general regions.

Let S be a bounded region, and enclose S in a rectangle Q. Let f be defined and bounded
on S. Define a new function p on Q as follows :

(11.10) Rx  y) = if (x,y>  ES,3
i f  (x,y)~Q - S .

In other words, extend the definition off to the whole rectangle Q by making the function
values equal to 0 outside S. Now ask whether or not the extended function f is integrable
on Q. If so, we say that f is integrable on S and that, by dejinition,

First we consider sets of points S in the xy-plane described as follows:

S = {(x,y) 1 a I x I b and Q)~(x)  2 y 2 C&C)>,
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where ql and p2  are functions continuous on a closed interval [a, 61  and satisfying ~ZJ~  < qZ.
An example of such a region, which we call a region of Type I, is shown in Figure 11.7.
In a region of Type I, for each point t in [a, 61  the vertical line x = t intersects S in a line
segment joining the curve y = vl(x) to y = qZ(x). Such a region is bounded because q1
and p2 are continuous and hence bounded on [a, h].

Another type of region T (Type II) can be described as follows:

T={(x,y)Iclyld and Y~(.Y>  5 x I Ye>,

where y1 and yZ are continuous on an interval [c, d] with w1 5 wZ. An example is shown
in Figure 11.8. In this case horizontal lines intersect T in line segments. Regions of Type
II are also bounded. All the regions we shall consider are either of one of these two types or
can be split into a finite number of pieces, each of which is of one of these two types.

-

FIGURE 11.7 A region S of Type I FIGURE 11.8 A region T of Type 11.

Let f be defined and bounded on a region S of Type I. Enclose S in a rectangle Q and
definefon Q as indicated in Equation (11.10). The discontinuities offin Q will consist of
the discontinuities off in S plus those points on the boundary of S at which f is nonzero.
The boundary of S consists of the graph of cpl, the graph of pjp, and two vertical line
segments joining these graphs. Each of the line segments has content zero. The next
theorem shows that each of the graphs also has content zero.

THEOREM 11.8. Let p be a real-valued function that is continuous on an interval [a, b].
Then the graph of v has content zero.

Proof. Let A denote the graph of ~j,  that is, let

~={(x,y)ly=rp(x)  and alxlb).
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Choose any E > 0. We apply the small-span theorem (Theorem 3.13 of Volume I) to
obtain a partition P of [a, b] into a finite number of subintervals such that the span of q in
every subinterval of P is less than c/(b  - a). Therefore, above each subinterval of P the
graph of p lies inside a rectangle of height E/(b  - a). Hence the entire of graph v lies
within a finite union of rectangles, the sum of whose areas is E. (An example is shown in
Figure 11.9.) This proves that the graph of CJI has content zero.

b

FIGURE 11.9 Proof that the graph of a continuous function p has content zero.

The next theorem shows that the double integral JJf exists iffis continuous on int S, the
interior of S. This is the set s

int S = {G-c,  y) 1 a < x < b and Q)~(x)  < y < q+,<x>>  .

THEOREM 11.9. Let S be a region of Type I, between the graphs of q1 and p2. Assume that
f is dejned  and bounded on S and that f is continuous on the interior of S. Then the double

integral jj  f exists and can be evaluated by repeated one-dimensional integration,
27

(11.11)

Proof. Let Q = [a, b] x [c, d] be a rectangle which contains S, and let y be defined by
(11.10). The only possible points of discontinuity offare the boundary points of S. Since
the boundary of S has content zero,fis integrable on Q. For each fixed x in (a, 6) the one-
dimensional integral Jty(x, JJ)  dy exists since the integrand has at most two discontinuities
on [c, d]. Applying the version of Theorem 11.5 given by Equation (11.7) we have

(11.12)
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Now.%, y) = f(x, y> if Q)~(x)  < y I d-4, andfl(x,  y) = 0 for the remaining values of y
in [c, d]. Therefore

jcd3k  Y> dy = j;;~',x,  Y>  dy

so Equation (11.12) implies (11.11).

There is, of course, an analogous theorem for a region T of Type II. Iffis defined and
bounded on T and continuous on the interior of T, then f is integrable on T and the formula
for repeated integration becomes

[j fk Y>  dx dy = s,” [j;;(r)’  j-(x,  y) dx] dy .

Some regions are of both Type I and Type II. (Regions bounded by circles and ellipses
are examples.) In this case the order of integration is immaterial and we may write

s,”  [ j;l:,  f(x,  Y> dy] dx = j," [ s,",i::'fCx,  Y> dx] dy.

In some cases one of these integrals may be much easier to compute than the other; it is
usually worthwhile to examine both before attempting the actual evaluation of a double
integral.

11.13 Applications to area and volume

Let S be a region of Type I given by

s = {(x, y) 1 a I x 5 b and pll(xl  I Y  I R(X)).

Applying Theorem 11.9 with f (x, y) = 1 for all (x, v) in S we obtain

j j dx dy = jab [vz(x>  - dx)l  dx.
S

By Theorem 2.1 of Volume I, the integral on the right is equal to the area of the region S.
Thus, double integrals can be used to compute areas.

If f is nonnegative, the set of points (x, y, z) in 3-space such that (x, y) E S and
0 5 z 5 f (x, u) is called the ordinate set off over S. An example is shown in Figure 11.10.
Iff is nonnegative and continuous on S, the integral

represents the area of a cross-section of the ordinate set cut by a plane parallel to the
yz-plane (the shaded region in Figure Il. 10). Formula (11.11) of Theorem 11.9 shows that
the double integral off over S is equal to the integral of the cross-sectional area. Hence
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X

section =

FIGURE 11.10 The integral
I~~~~‘.f(x,  y) dy is th e area of a cross section of the ordinate

set. The iterated integral dx is the volume of the ordinate set.

the double integral jjfis  equal to the volume of the ordinate set offover  S. (See Theorem

2.7 of Volume I, p.sll3.)
More generally, if f and g are both continuous on S with f I g , then the double integral

s,J’  (g - f) is equal to the volume of the solid lying between the graphs of the functions f

and g. Similar remarks apply, of course, to regions of Type II.

11.14 Worked examples

EXAMPLE 1. Compute the volume of the solid enclosed by the ellipsoid

Solution. The solid in question lies between the graphs of two functions f and g, where

g(X,  y) = cd - x2/u2  - y2/b2 and f-(x, y> = -g(x,  y>.

Here (x, y) E S, where S is the elliptical region given by

s = (x, y) f + ;I  I 1 .
( I I

Applying Theorem 11.9 and using the symmetry we find that the volume V of the ellipsoidal
solid is given by

V = JJ (g -f) = 2 /i g = 8c 1: [~~‘/‘-‘“”  Jrxx2/a2  - y2/b2  dy] dx.
S S
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-___
Let A = Jl - x2/a”. Then the inner integral is

jb”” JA2  - ye/b2  tiy = A jb”” Ji-y?lo2  dy .

Using the change of variable y = Ab sin t, dy = Ab cos t dt , we find that the last integral
is equal to

A2b

Therefore

In the special case a = b = c the solid is a sphere of radius a and the volume is +na3.

EXAMPLE 2. The double integral of a positive function f, jjf(x,  y) dx dy,  reduces to the
repeated integral S

j,' [j; j(x, Y) dy] dx.

Determine the region S and interchange the order of integration.

Solution. For each fixed x between 0 and 1, the integration with respect to y is over
the interval from x2 to x. This means that the region is of Type I and lies between the two
curves y = x2 andy = x. The region S is the set of points between these two curves and
above the interval [0, I]. (See Figure 11 .l 1.) Since S is also of Type II we may interchange

FIGURE 11.11 Example 2. FIGURE  11.12 Example 3.
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EXAMPLE 3. A double integral of a positive function f, jJ.f(x,  y) dx dy,  reduces to the
repeated integral : s

- -
3

s [10
4;;5--%x,  Y> dx] dy .

Determine the region S and interchange the order of integration.

Solution. For each fixed y between 0 and 3, the integration with respect to x is over

the interval from 4y/3 to 425 - y2. Therefore region S is of Type II and lies between

the two curves x = 4y/3 and x = J25  - y2. This region, shown in Figure 11.12, is a
sector of a circle. When the order of integration is reversed the region must be split into
two regions of Type I; the result is the sum of two integrals:

jo4  [jo3”“f(x>  Y>  dy] dx  + J^,j  [jod25-zzf(~,  y) dy] dx.

11.15 Exercises

In Exercises 1 through 5, make a sketch of the region of integration and evaluate the double
integral.

1.
J-s

x cos (x + y) dx dy , where S is the triangular region whose vertices are (0, 0), (TT,  0), (x, x).
s

2 .
s.i

(1 + x) siny dx dy, where S is the trapezoid with vertices (0, 0), (1, 0), (1,2),  (0, 1).
S

3 .
ss

e5+y dx dy, where S = {(x, y) I 1x1  + lyl I l} .
S
n n

4 .
JJ

xzy2dxdy,  where S is the bounded portion of the first quadrant lying between the two

hsyperbolas  xy = 1 and xy = 2 and the two straight lines y = x and y = 4x.

5 . (x” - y2) dx dy , where S is bounded by the curve y = sin x and the interval [0, ~1.
S

6. A pyramid is bounded by the three coordinate planes and the plane x + 2y + 32  = 6. Make
a sketch of the solid and compute its volume by double integration.

7. A solid is bounded by the surface z = x2 - y2, the xy-plane, and the planes x = 1 and x = 3.
Make a sketch of the solid and compute its volume by double integration.

8. Compute, by double integration, the volume of the ordinate set offover  S if:
(a) f(x, y>  = x2 + y2 and s = {<x,  y)  1 1x1  I 1,  lyl 5 1).
(b) fk y) = 3x  + y and S={(x,y)~4~~+9y~136,x>O,y>0}.
Cc)  f(x,y)  = y  + 2 x  +20 and S =((x,y))x2 +y2 516).
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In Exercises 9 through 18 assume that the double integral of a positive function f extended over
a region S reduces to the given repeated integral. In each case, make a sketch of the region S and
interchange the order of integration.

9. j;[j~fk,d~]  4.

10. j; [ j;:m Y)  d-g  dY *

11. I,”  [ j:; f(X? Y)  dY]  dx *

12.  j;[j2~f(x,y)dy]  dx.
213* -6s [I;;lalj4  l-(X, Y) dY]  dx *

1/14.  J;“[jFzf(x,y)dy]  d x .

15. f,
I [i1-2 f(xt y) dy]  dx .

16. j; [j= f(x, y> dy]  dx .

17. j; [ j:s;r:(z,z)  J-k  Y) du]  dx *

‘48. j; [ j:;  f(x,  y> dx] dy .

19. When a double integral was set up for the volume Yof the solid under the paraboloid z = x2 +
y2 and above a region S of the xy-plane, the following sum of iterated integrals was obtained:

v = j; [ so” (x2 + y2) dx] dy + j; [j;-’  (x2 + y2) dx] dy .

Sketch the region S and express V as an iterated integral in which the order of integration is
reversed. Also, carry out the integration and compute V.

20. When a double integral was set up for the volume V of the solid under the surface z = f(x, y)
and above a region S of the xy-plane, the following sum of iterated integrals was obtained:

V= j;“inc[j~f(x,y)dx]  dy + jI:;;:[j,‘zf(x,y)dx]  dy.

Given that 0 < a < b and 0 < c < ~12,  sketch the region S, giving the equations of all curves
which form its boundary.

21. When a double integral was set up for the volume V of the solid under the surface z = f(x, y)
and above a region S of the xy-plane, the following sum of iterated integrals was obtained:

v = I," [j:" J-(X, y)  dy]  dx  + j; [ j," fk Y) du]  dx.

(a) Sketch the region S and express V as an iterated integral in which the order of integration
is reversed.
(b) Carry out the integration and compute V whenf(x, y) = e’(x/~)‘~‘.

22. Let A = JA e-@  dt and B = Jy  e-@  dt . Evaluate the iterated integral

in terms of A and B. These are positive integers 1’72 and n such that

Z = mA - nB + ,e-’  - ew1i4.

Use this fact to check your answer.
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23. A solid cone is obtained by connecting every point of a plane region S with a vertex not in the
plane of S. Let A denote the area of S,  and let h denote the altitude of the cone. Prove that:
(a) The cross-sectional area cut by a plane parallel to the base and at a distance t from the
vertex is (t/h)2A,  if 0 < f < h .
(b) The volume of the cone is &Ah.

24. Reverse the order of integration to derive the formula

as u’ em(a--x)f(x)  dx] dy  = s,”  (a - x)emcaFr)f(x)  dx,0 0
where a and m are constants, a > 0.

11.16 Further applications of double integrals

We have already seen that double integrals can be used to compute volumes of solids
and areas of plane regions. Many other concepts such as mass, center of mass, and moment
of inertia can be defined and computed with the aid of double integrals. This section
contains a brief discussion of these topics. They are of special importance in physics and
engineering.

Let P denote the vector from the origin to an arbitrary point in 3-space. If n positive
masses m,,  m2, . . . , m,  are located at points P, , P2,  . . . * P,,  respectively, the center of
mass of the system is defined to be the point C determined by the vector equation

The denominator, z mk, is called the total mass of the system.
If each mass m, is translated by a given vector A to a new point Q, where Qk  = Pk + A,

the center of mass is also translated by A, since we have

2 mkQk _ z mk(Pk  +  A)  _ 2 mkPk  I ti  = c +  A

zmk Irnk  Irnk

This may also be described by saying that the location of the center of mass depends only
OnthepointsP,,  P2,.  . . , P, and the masses, and not on the origin. The center of mass is
a theoretically computed quantity which represents, so to speak, a fictitious “balance
point” of the system.

If the masses lie in a plane at points with coordinates (x1  ,~r),  . . . , (x,, y,),  and if the
center of mass has coordinates (5, j), the vector relation which defines C can be expressed
as two scalar equations

and p= 1 mkyk

2 *lk

In the numerator of the quotient defining R, the kth term of the sum, mkxk,  is called the
moment of the mass mk  about the y-axis. If a mass m equal to the total mass of the system
were placed at the center of mass, its moment about the y-axis would be equal to the
moment of the system,

II

m2 =C mkxk.
k=l
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When we deal with a system whose total mass is distributed throughout some region
in the plane rather than at a finite number of discrete points, the concepts of mass, center
of mass, and moment are defined by means of integrals rather than sums. For example,
consider a thin plate having the shape of a plane region S. Assume that matter is
distributed over this plate with a known density (mass per unit area). By this we mean
that there is a nonnegative function j- defined on S and that f (x, y)  represents the mass
per unit area at the point (x, y). If the plate is made of a homogeneous material the density
is constant. In this case the total mass of the plate is defined to be the product of the density
and the area of the plate.

When the density varies from point to point we use the double integral of the density as
the definition of the total mass. In other words, if the density function f is integrable over
S, we define the total mass m(S) of the plate by the equation

m(S) = J-s f(x,  Y)  dx dy .
s

The quotient
maSS $‘fCx,  Y> dx dy
-=
area s,s  dx dY

is called the average density of the plate. If S is thought of as a geometric configuration
rather than as a thin plate, this quotient is called the average or mean value of the function
f over the region S. In this case we do not require f to be nonnegative.

By analogy with the finite case, we define the center of mass of the plate to be the point
(a,?)  determined by the equations

(11.14) Zm(s> = if xf(x, Y>  dx dy and .WS> = s] yf(x,  Y>  dx dy .
s s

The integrals on the right are called the moments of the plate about the y-axis and the
x-axis, respectively. When the density is constant, say f(x,  y) = c, a factor c cancels in
each of Equations (11.14) and we obtain

Ta(S) = s] x dx dy and ya(S) = jj y dx dy ,
s s

where a(S) is the area of S. In this case the point (2,  j) is called the centroid of the plate
(or of the region S).

If L is a line in the plane of the plate, let 6(x,  y)  denote the perpendicular distance from
a point (x, y) in S to the line L. Then the number IL  defined by the equation

I, = j-j. @b, YMX,  Y>  dx  dy
s

is called the moment of inertia of the plate about L. When f(x, y) = 1, I, is called the
moment of inertia or second moment of the region S about L. The moments of inertia
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about the x- and y-axes are denoted by Z, and I,, respectively, and they are given by the
integrals

1, = j j ~7-k  Y> dx dy and I, = j j x7(x,  y) dx dye
s S

The sum of these two integrals is called the polar moment of inertia I,, about the origin :

zo = I, + Z, = j j (x2 + y2)f(x,  Y> dx dy .
s

Note: The mass and center of mass of a plate areproperties of the body and are inde-
pendent ofthe location of the origin and of the directions chosen for the coordinates axes.
The polar moment of inertia depends on the location of the origin but not on the directions
chosen for the axes. The moments and the moments of inertia about the x- and y-axes
depend on the location of the origin and on the directions chosen for the axes. If a plate of
constant density has an axis of symmetry, its centroid will lie on this axis. If there are two
axes of symmetry, the centroid will lie on their intersection. These facts, which can be
proven from the foregoing definitions, often help to simplify calculations involving center
of mass and moment of inertia.

EXAMPLE 1. A thin plate of constant density c is bounded by two concentric circles with
radii a and b and center at the origin, where 0 < b < a. Compute the polar moment of
inertia.

Solution. The integral for I0 is

I, = css (x2 + y”) dx  dy ,
S

where S = {(x, y) ) b2  < x2 + y2 < a”} . TO simplify the computations we write the integral
as a difference of two integrals,

I,=cjj(x2+y2)dxdy-cjj(x2+y2)dxdy:
S(a) El(b)

where S(a) and S(b) are circular disks with radii a and b, respectively. We can use iterated
integration to evaluate the integral over S(a), and we find

a(x2 + y”) dx dy = 4
s cs

‘= (x2 + y”) dy
0 0 I

dx = $.

S(a)

(We have omitted the details of the computation because this integral can be evaluated
more easily with the use of polar coordinates, to be discussed in Section 11.27.) Therefore

1,  = y (a4 - b4)  = n4a2 _ b2)  (‘” z b2)  = m !I?$!,

.where  m = rc(a”  - b2), the mass of the plate.
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EXAMPLE 2. Determine the centroid of the plane region bounded by one arch of a sine
curve.

Solution. We take the region S bounded by the curve y = sin x and the interval
O~x~n. By symmetry, the x-coordinate of the centroid is R = 3712.  The y-coordinate,
j, is given by

Ljydxdy  S;[Jf”“ydy]dx  jg&sin2xdx  ~

’ = Ljdx  d y  = jg s i n x  dx-  = 2 = i*

11.17 Two theorems of Pappus

Pappus  of Alexandria, who lived around 300 A.D., was one of the last geometers of the
Alexandrian school of Greek mathematics. He wrote a compendium of eight books
summarizing much of the mathematical knowledge of his time. (The last six and a part of
the second are extant.) Pappus  discovered a number of interesting properties of centroids,
two of which are described in this section. The first relates the centroid of a plane region
with the volume of the solid of revolution obtained by rotating the region about a line in
its plane.

Consider a plane region Q lying between the graphs of two continuous functions f and g
over an interval [a, b], where 0 < g <f. Let S be the solid of revolution generated by
rotating Q about the x-axis. Let a(Q) denote the area of Q, v(S)  the volume of S, and j the
y-coordinate of the centroid of Q. As Q is rotated to generate S, the centroid travels along a
circle of radius j. Pappus’  theorem states that the volume of S is equal to the circumference
of this circle multiplied by the area of Q; that is,

(11.15) u(S) = 2rja(Q)

To prove this formula we simply note that the volume is given by the integral
.

4s)  = r jab  [f2(x>  - g2Cd1  dx

and that J is given by the formula

XQ) = jjy dy dx = s,” [ i:,‘:,’ y dy] dx = 5,”  ;[f’(x) - g2(x)]  dx.
Q

Comparing these two formulas we immediately obtain (11.15).

EXAMPLE 1. Volume of a torus. Let S be the torus generated by rotating a circular disk Q
of radius R about an axis at a distance b > R from the center of Q. The volume of S is
easily calculated by Pappus’  theorem. We have ,j = b and a(Q) = .rrR2,  so

u(S) = 27rjja(Q)  = 2.rr2R2b.

The next example shows that Pappus’  theorem can also be used to calculate centroids.
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EXAMPLE 2. Centroid of a semicircular disk. Let j denote the y-coordinate of the centroid
of the semicircular disk

The area of Q is &R2.  When Q is rotated about the x-axis it generates a solid sphere of
volume QrrR3. By Pappus’  formula we have

&rR3 = ~~TJ~(&TR~),
4 R

soJ=-.
37r

The next theorem of Pappus  states that the centroid of  the union of two disjoint plane
regions A and B lies on the line segment joining the centroid of A and the centroid of B.
More generally, let A and B be two thin plates that are either disjoint or intersect in a set of
content zero. Let m(A) and m(B) denote their masses and let C,  and C,  denote vectors
from an origin to their respective centers of mass. Then the union A u B has mass
m(A) + m(B) and its center of mass is determined by the vector C, where

(11.16) c = m(A)G  + m(WB
*m(A) + m(B)

The quotient for C is a linear combination of the form aC,  + bC,,  where a and b are
nonnegative scalars with sum 1. A linear combination of this form is called a convex
combination of C,  and C, . The endpoint of C lies on the line segment joining the endpoints
of C,  and C, .

Pappus’  formula (11.16) follows at once from the definition of center of mass given in
(11.14). The proof is left as an exercise for the reader. The theorem can be extended in an
obvious way to the union of three or more regions. It is especially useful in practice when a
plate of constant density is made up of several pieces, each of which has geometric symmetry.
We determine the centroid of each piece and then form a suitable convex combination to
find the centroid of the union. Examples are given in Exercise 21 of the next section.

11.18 Exercises

In Exercises 1 through 8 a region S is bounded by one or more curves described by the given
equations. In each case sketch the region S and determine the coordinates 1 and 7 of the centroid.

1. y = x2, x+y=2.
2. y2=x  +3, y2=5  - x .
3. x -2y +8 =o, x+3y+5=0, x = -2 9 x =4.
4. y = sin2x, y =o, o<x<?r.

5. y = sinx, y = cosx, O<x<$.

6. y =logx,
7. & + Jj = 1’: = “; = 0: ‘,x_‘,p*
8. xs +yg = 1, x = 0, y = 0, in tirst  quadrant.
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-9.  #A  thin plate is bounded by an arc of the parabola y = 2x - x2 and the interval 0 5 x < 2.
Determine its mass if the density at each point (x, ,y) is (1 - y)/(l + x) .

10. Find the center of mass of a thin plate in the shape of a rectangle ABCD  if the density at any
point is the product of the distances of the point from two adjacent sides AB and AD.

In Exercises 11 through 16, compute the moments of inertia Z, and I,, of a thin plate S in the
xy-plane bounded by the one or more curves described by the given equations. In each case f(x, y)
denotes the density at an arbitrary point (x, y) of S.

11. y = sinsx, y= -sin2x,  -n<x<r; f(x, y) = 1.

12.;+;=1, ;+;=1, y =o, O<c<a, b >O; f(x,  y) = 1 *

13. (x - r)2 + (y - r)2 = r2, x =o, y =o, O<x<r, 0 ly 5 r; f<x,y>  = 1.
14. xy = 1, xy =2, x =2y, y  =2x , x >o, y >o; fky) = 1.
15. y = ez2 y=o, O<x<a; j-c&y)  = xy-
16. y = 42x, y =o, 01x12; f(x,  y) = Ix - yl .

17. Let S be a thin plate of mass m, and let L,,  and L be two parallel lines in the plane of S, where
L, passes through the center of mass of S. Prove the parallel-axis theorem:

Z, = ILo + mh2,

where h is the perpendicular distance between the two lines L and L,  . [Hint: A careful choice
of coordinates axes will simplify the work.]

18. The boundary of a thin plate is an ellipse with semiaxes a and b. Let L denote a line in the
plane of the plate passing through the center of the ellipse and making an angle a with the axis
of length 2a. If the density is constant and if the mass of the plate is m, show that the moment
of inertia IL is equal to am(a2  sin2 c( + b2  cos2  a).

19. Find the average distance from one comer of a square of side h to points inside the square.
20. Let 6 denote the distance from an arbitrary point P inside a circle of radius r to a fixed point

P,, whose distance from the center of the circle is h. Find the average of the function fi2 over
the region enclosed by the circle.

21. Let A, B, C denote the following rectangles in the xy-plane:

A = PA41  x 10,  11, B = t&31  x U,31, C = [2,4] x [3,4].

Use a theorem of Pappus  to determine the centroid of each of the following figures:
(a) A u B. (c) B u C.
(b) A u C. (d) A uB UC.

22. An isosceles triangle T has base 1 and altitude h. The base of T coincides with one edge of a
rectangle R of base 1 and altitude 2. Find a value of h so that the centroid of R u Twill lie
on the edge common to R and T.

23. An isosceles triangle T has base 2r and altitude h. The base of T coincides with one edge of a
semicircular disk D of radius r. Determine the relation that must hold between r and h so that
the centroid of T U D will lie inside the triangle.

11.19 Green’s theorem in the plane

The second fundamental theorem of calculus for line integrals states that the line integral
of a gradient Vf along a path joining two points a and b may be expressed in terms of the
function values f (a) and f (b). There is a two-dimensional analog of the second fundamental
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theorem which expresses a double integral over a plane region R as a line integral taken
along a closed curve forming the boundary of R. This theorem is usually referred to as
Green’s theorem.? It can be stated in several ways; the most common is in the form of the
identity :

(11.17)

The curve C which appears on the right is the boundary of the region R, and the integra-

tion symbol $ indicates that the curve is to be traversed in the counterclockwise direction,

as suggested by the example shown in Figure 11.13.

FIGURE 11.13 The curve C is the boundary of R, traversed in a counterclockwise
direction.

Two types of assumptions are required for the validity of this identity. First, conditions
are imposed on the functions P and Q to ensure the existence of the integrals. The usual
assumptions are that P and Q are continuously differentiable on an open set S containing
the region R. This implies continuity of P and Q on C as well as continuity of aPlay and
aQ/ax  on R, although the theorem is also valid under less stringent hypotheses. Second,
there are conditions of a geometric nature that are imposed on the region R and its boundary
curve C. The curve C may be any rectijable  simple closed curve. The term “rectifiable”
means, of course, that C has a finite arc length. To explain what is meant by a simple
closed curve, we refer to the vector-valued function which describes the curve.

Suppose C is described by a continuous vector-valued function a defined on an interval
[a, b]. If a(a) = a(b), the curve is closed. A closed curve such that a(tl)  # a(&) for every
pair of values t, # t, in the half-open interval (a, b] is called a simple closed curve. This
means that, except for the end points of the interval [a, b], distinct values of t lead to
distinct points on the curve. A circle is the prototype of a simple closed curve.

Simple closed curves that lie in a plane are usually called Jordan curves in honor of
Camille Jordan (1838-1922),  a famous French mathematician who did much of the pioneer-
ing work on such concepts as simple closed curves and arc length. Every Jordan curve C

t In honor of George Green (1793-1841),  an English mathematician who wrote on the applications of
mathematics to electricity and magnetism, fluid flow, and the reflection and refraction of light and sound.
The theorem which bears Green’s name appeared earlier in the researches of Gauss and Lagrange.
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decomposes the plane into two disjoint open connected sets having the curve C as their
common boundary. One of these regions is bounded and is called the interior (or inner
region) of C. (An example is the shaded region in Figure 11.13.) The other is unbounded
and is called the exterior (or outer region) of C. For some familiar Jordan curves such as
circles, ellipses, or elementary polygons, it is intuitively evident that the curve divides
the plane into an inner and an outer region, but to prove that this is true for an arbitrary
Jordan curve is not easy. Jordan was the first to point out that this statement requires
proof; the result is now known as the Jordan curve theorem. Toward the end of the 19th
century Jordan and others published incomplete proofs. In 1905 the American mathe-
matician Oswald Veblen (1880-1960) gave the first complete proof of this theorem.
Green’s theorem is valid whenever C is a rectifiable Jordan curve, and the region R is the
union of C and its interior.? Since we have not defined line integrals along arbitrary
rectifiable curves, we restrict our discussion here to piecewise smooth curves.

There is another technical difficulty associated with the formulation of Green’s theorem.
We have already remarked that, for the validity of the identity in (11.17), the curve C
must be traversed in the counterclockwise direction. Intuitively, this means that a man
walking along the curve in this direction always has the region R to his left. Again, for
some familiar Jordan curves, such as those mentioned earlier, the meaning of the expression
“traversing a curve in the counterclockwise direction” is intuitively evident. However, in a
strictly rigorous treatment of Green’s theorem one would have to define this expression in
completely analytic terms, that is, in terms of the vector-valued function a that describes
the curve. One possible definition is outlined in Section 11.24.

Having pointed out some of the difficulties associated with the formulation of Green’s
theorem, we shall state the theorem in a rather general form and then indicate briefly why
it is true for certain special regions. In this discussion the meaning of “counterclockwise”
will be intuitive, so the treatment is not completely rigorous.

THEOREM 11.10. GREEN’S THEOREM FOR PLANE REGIONS BOUNDED BY PIECEWISE SMOOTH
JORDAN CURVES. Let P and Q be scalar fields that are continuously differentiable on an
open set S in the xy-plane. Let C be apiecewise smooth Jordan curve, and let R denote the
union of C and its interior. Assume R is u subset of S. Then we have the identity

(11.18) jji~-~~dxdg=~~~Pdx+Qd,,

R

where the line integral is taken around C in the counterclockwise direction.

Note: The identity in (11.18) is equivalent to the two formulas

(11.19)
JJ

gdxdy =

R

t A proof of Green’s theorem for regions of this generality can be found in Chapter 10 of the author’s
Mathematical Analysis.
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and

(11.20)

In fact, if both of these are true, (11.18) follows by addition. Conversely, if (I 1.18) is true
we may obtain (11.19) and (11.20) as special cases by taking P = 0 and Q = 0, respectively.

Proof for special regions. We shall prove (1 I .20)  for a region R of Type I. Such a region
has the form

R = {(x3  y) 1 a I x I b and .fW I y I g(411

where f and g are continuous on [a, b] with f 5 g. The boundary C of R consists of four
parts, a lower arc C,  (the graph of,f), an upper arc C, (the graph ofg), and two vertical line
segments, traversed in the directions indicated in Figure 11.14.

Y
, G:Y = g(x)

c’

1
t

7 ;

c,:y  = f(x) /

FIGURE  11.14 Proof of Green’s theorem for a
special region.

V

FIGURE  11.15 Proof of Green’s theorem for
a more general region.

First we evaluate the double integral -Lj (aPlay)  dx 4~ by iterated integration. Integrat-
ing first with respect to y we have

= Jab Pb,f(x>l  dx - j-abPb,  s(x>l  dx.

On the other hand, the line integral SC  P dx can be written as follows:

jcPdx  = ?;,Pdx  + j-c,Pdx,
since the line integral along each vertical segment is zero. To evaluate the integral along
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C,  we use the vector representation a(t) = ti + ,f’(t).j  and obtain

To evaluate the integral along C,  we use the representation a(t) = ti + g(t)j and take into
account the reversal in direction to obtain

Jcz  P dx = -1;  P[t,  g(t)] dt.

Therefore we have

.r, I’  dx = /:’  P[t,f(t)]  dt -- f P[t,  g(t)] dt.

Comparing this equation with the formula in (11.21) we obtain (11.20).
A similar argument can be used to prove (11.19) for regions of Type II. In this way a

proof of Green’s theorem is obtained for regions that are of both Type I and Type II.
Once this is done, the theorem can be proved for those regions R that can be decomposed
into a finite number of regions that are of both types. “Crosscuts” are introduced as shown
in Figure 11.15, the theorem is applied to each subregion, and the results are added
together. The line integrals along the crosscuts cancel in pairs, as suggested in the figure,
and the sum of the line integrals along the boundaries of the subregions is equal to the line
integral along the boundary of R.

11.20 Some applications of Green’s theorem

The following examples illustrate some applications of Green’s theorem.

EXAMPLE 1. Use Green’s theorem to compute the work done by the force field
f(x, y) = (y + 3x)i + (2-y  - x)j in moving a particle once around the ellipse 4x2  + y2 = 4
in the counterclockwise direction.

Solution. TheworkisequaltoS,Pdx+Qd,v,whereP=y+3x,Q=2y-xx,and
C is the ellipse. Since aQ/ax  - aP/ay  = -2, Green’s theorem gives us

s, P dx + Q dy = s.r  (-2) dx dy = -2a(R),
R

where a(R) is the area of the region enclosed by the ellipse. Since this ellipse has semiaxes
a = 1 and b = 2, its area is nab  = 2n and the value of the line integral is -44~.

EXAMPLE 2. Evaluate the line integral j, (5 - xy - y”) dx - (2xy - x2) dy , where C is
the square with vertices (0, 0), (1, 0), (1, l), (0, l), traversed counterclockwise.

Solution. Here P = 5 - xy - y2,  Q = x2 - 2.x~)  and aQ/ax  - aP/+  = 3x. Hence,
by Green’s theorem, we have

JcPdx+Qdy=3j?‘xdxdy=3Z,
R
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where X is the x-coordinate of the centroid of the square. Since f is obviously i, the value
of the line integral is $.

EXAMPLE 3. Area expressed as a line integral. The double integral for the area a(R) of a
region R can be expressed in the form

a(R)=jJdxdy=/jg-$)dkdy,

R R

where P and Q are such that aQ/ax  - aP/ay  = 1. For example, we can take Q(x,  y) = -hx
and P(x,  y) = --$y  . If R is the region enclosed by a Jordan curve C we can apply Green’s
theorem to express a(R) as a line integral,

a(R) =
s

Pdx+Qdy=I
s2c

-yddx+ xdy.
c

If the boundary curve C is described by parametric equations, say

x = X(t), y  =  w>, a<tlb,

the line integral for area becomes

a(R) = 5 Sb  {-Y(t)X’(t)  + X(t)Y’(t)}  dt = 2 ab  z:))
a SI

:(I:,  dt.

11.21 A necessary and sufficient condition for a two-dimensional vector field to be a
gradient

Let f(x, y) = P(x,  y)i + Q(x,  y)j be a vector field that is continuously differentiable on
an open set S in the plane. Iff is a gradient on S we have

(11.22)
ap  aQ
ay=ax

everywhere on S. In other words, the condition (11.22) is necessary for f to be a gradient.
As we have already noted, this condition is not sufficient. For example, the vector field

f(x,  Y> = --IL  i + g-$
x2 + y2

satisfies (11.22) everywhere on the set S = R2  - ((0,  O)}, but f is not a gradient on S.
In Theorem 10.9 we proved that condition (11.22) is both necessary and sufficient for f
to be a gradient on S if the set S is convex. With the help of Green’s theorem we can extend
this result to a more general class of plane sets known as simpZy  connected sets. They are
defined as follows.
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DEFINITION OF A SIMPLY CONNECTED PLANE SET. Let S be an open connected set in the
plane. Then S is called simply connected {f,  for every Jordan curve C which lies in S, the inner
region of C is also a subset of S.

An annulus (the set of points lying between two concentric circles) is not simply connected
because the inner region of a circle concentric with the bounding circles and of radius
between theirs is not a subset of the annulus. Intuitively speaking, we say that S is simply
connected when it has no “holes.” Another way to describe simple connectedness is to say
that a curve C, in S connecting any two points may be continuously deformed into any
other curve Cz in S joining these two points, with all intermediate curves during the
deformation lying completely in S. An alternative definition, which can be shown to be
equivalent to the one given here, states that an open connected set S is simply connected if
its complement (relative to the whole plane) is connected. For example, an annulus is not
simply connected because its complement is disconnected. An open connected set that is
not simply connected is called multiply connected.

THEOREM 11.11. Letf(x,  y) = P(x,  y)i + Q(x,  y)j be a vectorjeld that is continuously
differentiable on an open simply connected set S in the plane. Then f is a gradient on S if and
only if we have

(11.23)
aP aQ-=-
ay ax

everywhere on S .

Proof. As already noted, condition (11.23) is necessary for f to be a gradient. We shall
prove now that it is also sufficient.

It can be shown that in any open connected plane set S, every pair of points a and x
can be joined by a simple step-polygon, that is, by a polygon whose edges are parallel to
the coordinate axes and which has no self-intersections. If the line integral offfrom a to x
has the same value for every simple step-polygon in S joining a to x, then exactly the same
argument used to prove Theorem 10.4 shows that f is a gradient on S. Therefore, we need
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FIGURE  11.16 Independence of the path in a simply connected region.
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only verify that the line integral off from II to x has the same value for every simple step-
polygon in S joining a to x.

Let C,  and C, be two simple step-polygons in S joining a to x. Portions of these polygons
may coincide along certain line segments. The remaining portions will intersect at most a
finite number of times, and will form the boundaries of a finite number of polygonal
regions, say RI,  . . . , R,. Since S is assumed to be simply connected, each of the regions
R, is a subset of S. An example is shown in Figure 11.16. The solid line represents C, ,
the dotted line represents C,, and the shaded regions represent RI, . . . , R,  . (These two
particular polygons coincide along the segment pq.)

We observe next that the line integral off from a to x along C, plus the integral from x
back to a along C, is zero because the integral along the closed path is a sum of integrals
taken over the line segments common to C, and C, plus a sum of integrals taken around
the boundaries of the regions R,. The integrals over the common segments cancel in pairs,
since each common segment is traversed twice, in opposite directions, and their sum is
zero. The integral over the boundary lJk of each region R, is also zero because, by Green’s
theorem we may write

and the integrand of the double integral is zero because of the hypothesis aQ/ax  = aPlay.
It follows that the integral from a to x along C, is equal to that along C,.  As we have
already noted, this implies that f is a gradient in S.

11.22 Exercises

Use Green’s theorem to evaluate the line integral c y2 dx + x dy when

(a) C is the square with vertices (0, 0), (2,0),  (2,2),  (0,2).
(b) C is the square with vertices ( f 1, f 1).
(c) C is the square with vertices (f2,0), (0, f2).
(d) C is the circle of radius 2 and center at the origin.
(e) C has the vector equation a(t) = 2 cos3 t i + 2 sin3 t j, 0 5 t 5 27.

If P(x, y) = xe+’  and Q(x,  y) = -x2y  e- Y2 + 1/(x2  + y2), evaluate the line integral Pdx +

Q dy around the boundary of the square of side 2a  determined by the inequalities 1x1  < a and
lyl I a.
Let C be a simple closed curve in the xy-plane and let Z, denote the moment of inertia (about
the z-axis) of the region enclosed by C. Show that an integer n exists such that

nz,  = Cx3dy  -y3dx.

Given two scalar fields u and v that are continuously differentiable on an open set containing
the circular disk R whose boundary is the circle x2 + y2 = 1 . Define two vector fieldsfand g
as follows:

f(x, y) = 4x, y)i  + 4x, y)i, g(x.yl=(G--JJi+(g-$)j.

Find the value of the double integral JJf. g dx dy if it is known that on the boundary of R we
have u(x,  y) = 1 and u(x, y) = y . IL
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5. If f and g are continuously differentiable in an open connected set S in the plane, show that

+$c  fVg’da  = -$,gVf.d a for every piecewise smooth Jordan curve C in S.
6. Let u and v be scalar fields having continuous first- and second-order partial derivatives in an

open connected set Sin the plane. Let R be a region in S bounded by a piecewise smooth Jordan
curve C. Show that:

(a) 4? .vdx+.vdy=~~(v(~-;)  +u(&;))dxdy.

~b++(v~-a$x+(a;-v;)dy  =jj(a+$v~)dxdy.

R

Normalderivatives. In Section 10.7 we defined line integrals with respect to arc length in such a
way that the following equation holds:

lcPdx  + Qdy = J,-f. Tds,i

where f = Pi + Qj and T is the unit tangent.vector  to C. (The dot product f T is called the
tangential component off along C.) If C is a Jordan curve described by a continuously differ-
entiable function a, say a(t) = X(t)i  + Y(t)j, the unit outer normal n of C is defined by the
equation

n(t)  = \~a’:tj~~- (Y’(t)i  - X’(t)j)

whenever \la’(t)l\  # 0. If p is a scalar field with gradient VP on C, the normalderivative aq/an  is
defined on C by the equation

ap7
- = Vq2.n.
an

This is, of course, the directional derivative of p in the direction of n. These concepts occur in the
remaining exercises of this section.

If f = Qi - Pj, show that

cPdx + Qdy = .c, f.nds.r

(The dot product f.  n is called the normal component off along C.)
Let f and g be scalar fields with continuous first- and second-order partial derivatives on an
open set S in the plane. Let R denote a region (in S) whose boundary is a piecewise smooth
Jordan curve C. Prove the following identities, where V%  = a2u/ax2  + a2u/aY2.

(a) $o  z ds = j/V’gdXdY.

(b) $)fj+ = jj" (fv2g + Vf . Vg) dx dy .

cc)  i(f; -g$ ds = //(f”ze -gV2f)dx+.

R
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The identity in (c) is known as Green’s formula; it shows that

whenever f and g are both harmonic on R (that is, when V2f  = V2g  = 0 on R).
9. Suppose the differential equation

P(x,  y) dx + Q(x,  y) dy = 0

has an integrating factor ,u(x, y) which leads to a one-parameter family of solutions of the form
~(x,  y) = C. If the slope of the curve ~(x,  y) = C at (x, y) is tan 0, the unit normal vector n is
taken to mean

n =sin0i -cosej.

There is a scalar field g(x, y) such that the normal derivative of v is given by the formula

- = b4-T  y>g(x,  y) 3an

where aq/ an  = V q . n . Find an explicit formula for g(x, y) in terms of P(x, u) and Q(x,  y).

k11.23  Green’s theorem for multiply connected regions

Green’s theorem can be generalized to apply to certain multiply connected regions.

THEOREM 11.12. GREEN’S THEOREM FOR MULTIPLY CONNECTED REGIONS. Let C1,  . . . , C,
be n piecewise smooth Jordan curves having the following properties:

(a) No two qf the curves intersect.
(b) The curves C,,  . . . , C,  all lie in the interior of C, ,
(c) Curve Ci lies in the exterior of curve Cj for each i # j, i > 1, j > 1 .

Let R denote the region which consists of the union of C, with that portion of the interior of C,
that is not inside any of the curves C, , C,,  . . . , C,  . (An example of such a region is shown
in Figure 11 .17.)  Let P and Q be continuously diflerentiable  on an open set S containing R.
Then we have the,following  identity.

(11.24)
~!~-~)dxdy=  $,.
R

(Pdx+Qdy)-~2~~!Pdx+Qdv,.
.

The theorem can be proved  by introducing crosscuts which transform R into a union
of a finite number of simply connected regions bounded by Jordan curves. Green’s theorem
is applied to each part separately, and the results are added together. We shall illustrate
how this proof may be carried out when n = 2. The more general case may be dealt with
by using induction on the number n of curves.

The idea of the proof when n = 2 is illustrated by the example shown in Figure 1 I .18,
where C, and C, are two circles, C, being the larger circle. Introduce the crosscuts AB
and CD, as shown in the figure. Let KI  denote the Jordan curve consisting of the upper
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FIGURE  11.17 A multiply connected region. FIGURE 11.18 Proof of Green’s theorem
for a multiply connected region.

half of C,,  the upper half of C, , and the segments AB and CD. Let K, denote the Jordan
curve consisting of the lower half of Cr,  the lower half of C,,  and the two segments AB
and CD. Now apply Green’s theorem to each of the regions bounded by K; and K, and
add the two identities so obtained. The line integrals along the crosscuts cancel (since each
crosscut is traversed once in each direction), resulting in the equation

(Pdx+Qdy)-

The minus sign appears because of the direction in which C, is traversed. This is Equation
(11.24) when n = 2.

For a simply connected region, the condition aP/ay  = aQ/ax  implies that the line
integral j P dx + Q dy is independent of the path (Theorem 11. II). As we have already
noted, if S is not simply connected, the condition aP/ay  = aQ/ax  does not necessarily
imply independence of the path. However, in this case there is a substitute for inde-
pendence that can be deduced from Theorem 11.12.

THEOREM 11.13. INVARIANCE OF A LINE INTEGRAL UNDER DEFORMATION OF THE PATH.

Let P and Q be continuously diflerentiable  on an open connected set S in the plane, and assume
that aqay  = aQ/a x everywhere on S. Let C, and C, be two piecewise smooth Jordan curves
lying in S and satisfying the following conditions:

(a) C, lies in the interior of C, .
(b) Those points inside C, which lie outside C, are in S. (Figure 11.19 shows an example.)

Then we have

(11.25)

where both curves are traversed in the same direction.

Proof. Under the conditions stated, Equation (11.24) is applicable when n = 2. The
region R consists of those points lying between the two curves C, and C, and the curves
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FIGURE  11.19. Invariance of a line integral under deformation of the path.

themselves. Since aP/ay  = aQ/a x in S, the left member of Equation (11.24) is zero and
we obtain (11.25).

Theorem 11.13 is sometimes described by saying that if 3P/~?y = aQ/ax  in S the value of
a line integral along a piecewise smooth simple closed curve in S is unaltered if the path is
deformed to any other piecewise smooth simple closed curve in S, provided all intermediate
curves remain within the set S during the deformation. The set S is assumed to be open
and connected-it need not be simply connected.

*11.24  The winding number

We have seen that the value of a line integral often depends both on the curve along
which the integration takes place and on the direction in which the curve is traversed.
For example, the identity in Green’s theorem requires the line integral to be taken in the
counterclockwise direction. In a completely rigorous treatment of Green’s theorem it
would be necessary to describe analytically what it means to traverse a closed curve in
the “counterclockwise direction.” For some special curves this can be done by making
specific statements about the vector-valued function a which describes the curve. For
example, the vector-valued function a defined on the interval [0,27r] by the equation

(11.26) a ( t )  = (a COS  t + x,)i + (a sin t + yJj

describes a circle of radius a with center at (x,, y,,). This particular function is said to
describe the circle in a positive or counterclockwise direction. On the other hand, if we
replace t by -t on the right of (11.26) we obtain a new function which is said to describe
the circle in a negative or clockwise direction. In this way we have given a completely
analytical description of “clockwise” and “counterclockwise” for a circle. However, it
is not so simple to describe the same idea for an arbitrary closed curve. For piecewise
smooth curves this may be done by introducing the concept of the winding number, an
analytic device which gives us a mathematically precise way of counting the number of
times a radius vector a “winds around” a given point as it traces out a given closed curve.
In this section we shall describe briefly one method for introducing the winding number.
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Then we shall indicate how it can be used to assign positive and negative directions to
closed curves.

Let C be a piecewise smooth closed curve in the plane described by a vector-valued
function u defined on an interval [a, b], say

u(t) = X(t)i  + Y(t)j i f  a<t<b.

Let P, = (x,,  , yO)  be a point which does not lie on the curve C. Then the winding number
of a with respect to the point P,  is denoted by W(a;  PO); it is defined to be the value of the
following integral :

(11.27) b [x(t) - %ly’(o - W(t)  - yolX’(t)  dt
[X(l) - &II” + w(t) - Y,12 .

This is the same as the line integral

(11.28)
1

Lb -(Y - YCJ dx + (x - x0>  dY
zic (x - .J2  + (Y - YA2 *

It can be shown that the value of this integral is always an integer, positive, negative, or
zero. Moreover, if C is a Jordan curve (simple closed curve) this integer is 0 if PO  is outside
C and has the value + 1 or - 1 if P,, is inside C. (See Figure 11.20.) Furthermore, W(a; P,,)

Winding number + 1 Winding number - I Winding number 0

FIGURE 11.20 Illustrating the possible values of the winding number of a Jordan
curve C with respect to PO.

is either + 1 for every point P, inside C or it is - 1 for every such point. This enables us
to define positive and negative orientations for C as follows: If the winding number
W(u;  P,) is + 1 for every point PO inside C we say that a traces out C in the positive or
counterclockwise direction. If the winding number is -1 we say that a traces out C in
the negative or clockwise direction. [An example of the integral in (11.28) with x,,  = y,, = 0
was encountered earlier in Example 2 of Section 10.16.1

To prove that the integral for the winding number is always +l or - 1 for a simple
closed curve enclosing (x0, yO)  we use Theorem 11.13. Let S denote the open connected
region consisting of all points in the plane except (x,,  , y,). Then the line integral in (11.28)
may be written as jc P dx + Q dy , and it is easy to verify that aP/?ly  = aQ/ax  every-
where in S.  Therefore, if (x,,  , y,,) is inside C, Theorem 11.13 tells us that we may replace
the curve C by a circle with center at (x,, yO)  without changing the value of the integral.
Now we verify that for a circle the integral for the winding number is either + 1 or - 1,
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depending on whether the circle is positively or negatively oriented. For a positively
oriented circle we may use the representation in Equation (11.26). In this case we have

X(t) = aces  t + x0, Y(t) = a sin t + yo,

and the integrand in (11.27) is identically equal to 1. Therefore we obtain

W(a;P,) = -!-
s

2n
ldt = 1.

27? 0

By a similar argument we find that the intergal is -1 when C is negatively oriented. This
proves that the winding number is either +l or -1 for a simple closed curve enclosing
the point (x0,  yo).

k11.25  Exercises

1. Let S = {(x,y) 1x2 + y2 > O},  and let

Yw, y) = -x2 +y2’ Q(x,  y> = s2

if (x, y) E  S . Let C be a piecewise smooth Jordan curve lying in S.
(a) If (0,O)  is inside C, show that the line integral SC P dx + Q dy has the value f25r,  and
explain when the plus sign occurs.
(b) Compute the value of the line integral Jo  P dx + Q dy when (0,O)  is outside C.

2. If r = xi + yj and r = ljrl) , let

Wg  r) .
fky)  =-g - Wag  r) .

ax J

for r > 0. Let C be a piecewise smooth Jordan curve lying in the annulus  1 < x2 + y2 < 25,
and find all possible values of the line integral offalong  C.

3. A connected plane region with exactly one “hole” is called doubly connected. (The annulus
1 < x2 + y2 < 2 is an example.) If P and Q are continuously differentiable on an open doubly
connected region R, and if aP/ay  = aQ/ax everywhere in R, how many distinct values are
possible for line integrals so P dx + Q dy taken around piecewise smooth Jordan curves in R?

4. Solve Exercise 3 for triply connected regions, that is, for connected plane regions with exactly
two holes.

5. Let P and Q be two scalar fields which have continuous derivatives satisfying aP/  ay = aQ/ ax
everywhere in the plane except at three points. Let C, , C,  , C, be three nonintersecting circles

having centers at these three points, as shown in Figure 11.21, and let Zk =
Assume that Z, = 12, I2  = 10, Z, = 15.

Tfc, P dx + Q dy .
li

(a) Find the value of SC P dx + Q dy , where C is the figure-eight curve shown.
(b) Draw another closed curve JY  along which S P dx + Q dy = 1 . Indicate on your drawing
the direction in which I is traversed.
(c) If Z, = 12, Z, = 9, and Z3 = 15, show that there is no closed curve I along which 5 P dx +
Qdy = 1.
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FIGURE  11.21 Exercise 5. FIGURE 11.22 Exercise 6.

6. Let Zk  =
f-Ck

Pdx + Qdy, wheie

1 1 1
P(x,u)= - Y

[
(x-1)2+y2+x2+Y2+ 1(x + 1Y  + y2

and
x - l X x+1

Q(x,Y)  = (x _ 1>2  + y 2  + x2  + y 2  + (x + 112 + y2’

In Figure 11.22, C, is the smallest circle, x2 + y2 = 4 (traced counterclockwise), C, is the largest
circle, x2 + y2 = 4 (traced counterclockwise), and C, is the curve made up of the three inter-
mediate circles (x - 1)2  + y2 = a, x2 + y2 = $, and (x + 1)2  + y2 = $ traced out as shown.
If I2 = 6n and 1s = 277,  find the value of Z1.

11.26 Change of variables in a double integral

In one-dimensional integration theory the method of substitution often enables us to
evaluate complicated integrals by transforming them into simpler ones or into types that
can be more easily recognized. The method is based on the formula

where a = g(c) and b = g(d). We proved this formula (in Volume I) under the assumptions
that g has a continuous derivative on an interval [c, d] and that f is continuous on the set
of values taken by g(t) as t runs through the interval [c, d].

There is a two-dimensional analogue of (11.29) called the formula for making a change of
variables in a double integral. It transforms an integral of the form jj f(x, y) dx dy,

extended over a region S in the xy-plane, into another double integral ;J F(u, v) du  dv,

extended over a new region Tin the uv-plane. The exact relationship bet;een  the regions
S and T and the integrands f (x, y) and F(u, v) will be discussed presently. The method of
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V

A

J u = constantx = x(u,u)

1: = Y(u,u)
-

CM  -

\ -

v, = “’
i’ u

u-curve

FIGURE  11.24 A u-curve and a corresponding velocity vector.

with respect to u and v, respectively. That is, define

and

These vectors may be interpreted geometrically as follows: Consider a horizontal line
segment in the uv-plane (v is constant on such a segment). The vector function r maps this
segment onto a curve (called a u-curve) in the xy-plane,  as suggested in Figure 11.24. If we
think of u as a parameter representing time, the vector V, represents the velocity of the
position r and is therefore tangent to the curve traced out by the tip of r. In the same way,
each vector V,  represents the velocity vector of a v-curve obtained by setting u = constant.
A u-curve and a v-curve pass through each point of the region 5’.

Consider now a small rectangle with dimensions Au and Au, as shown in Figure 11.25.
If Au is the length of a small time interval, then in time Au a point of a u-curve moves
along the curve a distance approximately equal to the product 11 V, 11 Au (since /I V, /I  repre-
sents the speed and Au the time). Similarly, in time Au a point on a v-curve moves a

FIGURE  11.25 The image of a rectangular region in the uv-plane is a
curvilinear parallelogram in the x),-plane.
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distance nearly equal to II  V,ll  Au. Hence the rectangular region with dimensions Au and
Au in the uv-plane  is traced onto a portion of the xy-plane that is nearly a parallelogram,
whose sides are the vectors VI  Au and V,  AU, as suggested by Figure 11.25. The area of
this parallelogram is the magnitude of the cross product of the two vectors V,  Au and
V,  Au; this is equal to

llV,W x V’,Wll = IIV,  x V,ll  AuAv.

If we compute the cross product VI  x V,  in terms of the components of V, and V,  we find

i

ax
au
ax
7%

j

ar

au

ar
av

k
a x

0 au

= ax-
0 au

ay
au

ay
k = J(u,  u)k.

-
au

Therefore the magnitude of VI  x V,  is exactly lJ(u, v)l and the area of the curvilinear
parallelogram in Figure 11.25 is nearly equal to lJ(u, v)l Au Au.

If J(u, V) = 1 for all points in T,  then the “parallelogram” has the same area as the
rectangle and the mapping preserves areas. Otherwise, to obtain the area of the parallelo-
gram we must multiply the area of the rectangle by lJ(u, u)l. This suggests that the Jacobian
may be thought of as a “magnification factor” for areas.

Now let P be a partition of a large rectangle R enclosing the entire region T and consider
a typical subrectangle of P of, say, dimensions Au and AU. If Au and Au are small, the
Jacobian function J is nearly constant on the subrectangle and hence J acts somewhat like a
step function on R. (We define J to be zero outside T.) If we think of J as an actual step
function, then the double integral of IJI  over R (and hence over T) is a sum of products
of the form IJ(u, v)l Au Au and the above remarks suggest that this sum is nearly equal to
the area of S, which we know to be the double integral js dx dy.

This geometric discussion, which merely suggests why’we  might expect an equation like
(11.33) to hold, can be made the basis of a rigorous proof, but the details are lengthy and
rather intricate. As mentioned above, a proof of (11.33), based on an entirely different
approach, will be given in a later section.

If J(u, v) = 0 at a particular point (u, v), the two vectors VI  and V,  are parallel (since
their cross product is the zero vector) and the parallelogram degenerates into a line segment.
Such points are called singular points of the mapping. As we have already mentioned,
transformation formula (11.32) is also valid whenever there are only a finite number of such
singular points or, more generally, when the singular points form a set of content zero.
This is the case for all the mappings we shall use. In the next section we illustrate the use of
formula (11.32) in two important examples.

11.27 Special cases of the transformation formula

EXAMPLE 1. Polar coordinates. In this case we write r and 0 instead of u and v and
describe the mapping by the two equations:

x = rcose, y = r sin e ,
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That is, X(r,  0)  = r cos 6’  and Y(r,  0) = r sin 0. To obtain a one-to-one mapping we
keep r > 0 and restrict 0 to lie in an interval of the form I!& 5 8 < 19~  + 2~.  For example,
the mapping is one-to-one on any subset of the rectangle (0, a] x [0, 2~)  in the r0-plane.
The Jacobian determinant of this mapping is

ax ay
arar cos 8 sin e

J(r, e) =
ax ay = -rsinO  rcose = r(cos”  e + sin2 e) = r .

asae

Hence the transformation formula in (11.32) becomes

ljf(x,  y) dx dy = sjj(r cos 0, r sin 0)  r dr de.
T

The r-curves are straight lines through the origin and the &curves  are circles centered at the
origin. The image of a rectangle in the r&plane is a “parallelogram” in the xy-plane

I9

I I
e = constant

Y

x = rcose

y = r sin e
c

.____  -___
, 1I II
I III + r = constant

I

0
I cr -

0

r-curve (0 = constant)

FIGURE 11.26 Transformation by polar coordinates.

bounded by two radial lines and two circular arcs, as shown in Figure 11.26. The Jacobian
determinant vanishes when r = 0, but this does not affect the validity of the transformation
formula because the set of points with r = 0 has content zero.

Since V,  = cos 8 i + sin ej, we have II VI  II  = 1, so there is no distortion of distances along
the r-curves. On the other hand, we have

V,=  -rsin8i+rcosBj, IIV211  = r,

so distances along the e-curves  are multiplied by the factor r.
Polar coordinates are particularly suitable when the region of integration has boundaries

along which r or 0 is constant. For example, consider the integral for the volume of one
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octant of a sphere of radius a,

0-Ja2 - x2 - y”dx dy,
s

where the region S is the first quadrant of the circular disk x2 + y2 < a2. In polar co-
ordinates the integral becomes

JP a2 - r2 r dr d&i,
T

where the region of integration T is now a rectangle [0, a] x [0, in]. Integrating first with
respect to 8 and then with respect to r we obtain

Ja2 - r2 r dr d0  = i
I

T

Oa  rJ= dr = f . (a”  T:‘% /a-  7;’ .
0

The same result can be obtained by integrating in rectangular coordinates but the calculation
is more complicated.

EXAMPLE 2. Linear transformations. Consider a linear transformation defined by a pair of
equations of the form

(11.34) x = Au + Bv, y=Cu+  Dv,

where A, B, C, D are given constants. The Jacobian determinant is

J(u, v) = AD - BC,

and in order to have an inverse we assume that AD - BC # 0. This assures us that the
two linear equations in (11.34) can be solved for u and v in terms of x and y.

Linear transformations carry parallel lines into parallel lines. Therefore the image of
a rectangle in the uv-plane  is a parallelogram in the xy-plane, and its area is that of the
rectangle multiplied by the factor ]J(u, v)]  = IAD  - BCI  . Transformation formula (11.32)
becomes

jjj(x,  y) dx dy = IAD  - BCI  jjf(At.4  + Bv, Cu + Dv) du dv.
S T

To illustrate an example in which a linear change of variables is useful, let us consider
the integral

ss
e(Y-X)/(Y+X)  dx dy ,

S

where S is the triangle bounded by the line x + y = 2 and the two coordinate axes. (See
Figure 11.27.) The presence of y - x and y + x in the integrand suggests the change of
variables

u=y-x, v = y + x .
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FIGURE 11.27 Mapping by a linear transformation.

Solving for x and y we find

U-U v+uXC- and
2

y=----
2 *

The Jacobian determinant is J(u, v) = -4.  To find the image T of S in the uu-plane we
note that the lines x = 0 and y = 0 map onto the lines u = v and u = -v, respectively;
the line x + y = 2 maps onto the line u = 2. Points inside S satisfy 0 < x + y < 2 and
these are carried into points of T satisfying 0 < v < 2. Therefore the new region of
integration T is a triangular region, as shown in Figure 11.27. The double integral in
question becomes

1e(~-X)/(%‘+X)  dx dy = _ e”” du dv .

Integrating first with respect to u we find

11.28 Exercises

In each of Exercises 1 through 5, make a sketch of the region S and express the double integral
.l/ f(x, y) dx dy as an iterated integral in polar coordinates.

1. s = {(x,y) ] x2 +y2 I a2}, where a>O.
2. s = ((x,y) 1 x2 +y2 2 2x).
3. s = {(x,y> Iu2 I x2 +y2 I b2}, where 0 <a <b.
4.S={(x,y)Joly~l-X,o~x~l}.
5. S={(x,y)~x2ly~l,  -1 Ixll}.
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In each of Exercises 6 through 9, transform the integral to polar coordinates and compute its
value. (The letter a denotes a positive constant.)

6. j~[jo~“““‘(xz  + y2)  dy] dx. 8. j;  [ j12  (x2  + y2)-”  dy] dx .

7. j;[  so”  ,/x2 + y2 dy] dx . 9. a
s IIS

d\/,2_1/1

0 0 (x2  f y2)  dx] dy .

In Exercises 10 through 13, transform each of the given integrals to one or more iterated integrals
in polar coordinates.

lo. j; [so’ f-(x,  y) dy] dx . 12. l
s [I0

-f(x, y) dy] dx.
1-X

11. j;[jf”fC~x’  + yz)dy]  dx. 13.  j;[j~'f(x,yWy]  dx.

14. Use a suitable linear transformation to evaluate the double integral

IS (x - y)” sin2 (x + y) dx dy
S

where S is the parallelogram with vertices (71,  0), (2~,  n), (r, 2~),  (0, n).
15.  A parallelogram S in the xy-plane has vertices (O,O),  (2, lo),  (3, 17),  and (1, 7).

(a) Find a linear transformation u = ax + by, u = cx + dy, which maps S onto a rectangle
R in the uu-plane with opposite vertices (0,O)  and (4,2).  The vertex (2, 10) should map onto
a point on the u-axis.
(b) Calculate the double integral IJ xy dx dy by transforming it into an equivalent integral
over the rectangle R of part (a). S

16. If r > 0, let Z(r) = j~7e-U2du.
(a) Show that Z2(r)  = s.f  e-rze+Y2)  dx dy , where R is the square R = [-r, r] x [-r, r].

R

(b) If C,  and C, are the circular disks inscribing and circumscribing R, show that

jj  e-(r2+v2)  dx dy < Z2(r)  < 11  e-@+@)  dx dy .

C l ca

(c) Express the integrals over C1  and C,  in polar coordinates and use (b) to deduce that
Z(r) + JG as r - 00 . This proves that j; e-u2 du  = ,/n/2.

(d) Use part (c) to deduce that I’($)  = &, where I is the gamma function.
17. Consider the mapping defined by the equations

x=u+u, y  = v  -2.

(a) Compute the Jacobian determinant J(u, a).
(b) A triangle T in the uv-plane  has vertices (0, 0), (2,0),  (0,2).  Describe, by means of a
sketch, its image S in the xy-plane.
(c) Calculate the area of S by a double integral extended over S and also by a double integral
extended over T.
(d) Evaluate 5 1 (x - y $ l)-* dx dy .

18. Consider the kapping defined by the two equations x = u2 - v2. y = 2uv.
(a) Compute the Jacobian determinant J(u, V) .
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(b) Let T denote the rectangle in the uu-plane with vertices (1, l), (2, I), (2, 3),  (1, 3). De-
scribe, by means of a sketch, the image S in the xy-plane.
(c) Evaluate the double integral JJ xy dx  dy by making the change of variables x = u2 - u*,

y=2uv,whereC={(x,y)/x2~y2<1}.
19. Evaluate the double integral

I@,  r) =
dx dy

(p” + x2 + y2)P
R

over the circular disk R = {(x, y) 1 x2 + y2  5 r”}  . Determine those values of p for which
I@, r) tends to a limit as r + + co.

In Exercises 20 through 22, establish the given equations by introducing a suitable change of
variables in each case.

20. jjfb +y)dxdy  = j-:lfWu, where S = {(x,  y) 1 I4 + lyl  5 1).
s

21. jjf(ax  + by + c) dx dy = 2 j-!1  ~~f(~&z”  + b2  + c) du,
s

where S = {(x, y) 1x2+y2j1}  a n d  a2+b2#0.

22. jjf(xy) dx dy = log 2 s,2f(u) du, where S is the region in the first quadrant bounded by
S

thecurvesxy = 1,xy  =2,y  =x,y =4x.

11.29 Proof of the transformation formula in a special case

As mentioned earlier, the transformation formula

(11.35) j jfk Y> dx dy = j j f[X(u, 01, Vu, @I  Mu, 91 du du
s T

can be deduced as a consequence of the special case in which S is a rectangle and f is
identically 1.  In this case the formula simplifies to

(11.36) jj dx  dy = jj IJ(u, u)l  du du.
R R*

Here R denotes a rectangle in the xy-plane and R*  denotes its image in the Mu-plane  (see
Figure 11.28) under a one-to-one mapping

u = Uky), 2,  = V(x,y).

The inverse mapping is given by

x = X(24,  u), y = Y(u,v),
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Y V
A

FIGURE 11.28 The transformation law for double integrals derived from Green’s theorem.

and J(u, v) denotes the Jacobian determinant,

.l(u, v) =

ax ax
Z-JaU
i3Y  aY
au-z

In this section we use Green’s theorem to prove (11.36), and in the next section we deduce
the more general formula (11.35) from the special case in (11.36).

For the proof we assume that the functions Xand Y have continuous second-order partial
derivatives and that the Jacobian is never 0 in R *. ThenJ(u,  v) is either positive everywhere
or negative everywhere. The significance of the sign of J(u, v) is that when a point (x, y)
traces out the boundary of R in the counterclockwise direction, the image point (u, v)
traces out the boundary of R* in the counterclockwise direction if J(u, v) is positive and in
the opposite direction if J(u, v) is negative. In the proof we shall assume that J(u, v) > 0.

The idea of the proof is to express each double integral in (11.36) as a line integral, using
Green’s theorem. Then we verify equality of the two line integrals by expressing each in
parametric form.

We begin with the double integral in the xy-plane, writing

j-1dxdy=j-Je--$) dxdy,

R R

where Q(x,  y) = x and P(x, y) = 0. By Green’s theorem this double integral is equal to
the line integral

Here C is the boundary of R traversed in a counterclockwise direction.
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Similarly, we transform the double integral in the uv-plane  into a line integral around the
boundary C* of R*. The integrand, J(u, o),  ean be written as follows:

axar  axar axar av
I(u,v)=------=--+x- -Xa2y_aXaU

au au au au au au avau au au

=@gg -gq).

Applying Green’s theorem to the double integral over R*  we find

J(u,  v) du dv =
R *

Therefore, to complete the proof of (11.36) we need only verify that

(11.37)

We introduce a parametrization of C* and use this to find a representation of C. Suppose
C* is described by a function a defined on an interval [a, b], say

Let
a(t) = U(t)i + V(t)j.

P(t)  = m-J(t),  v(w + m.J(t), I’(f>lj.

Then as t varies over the interval [a, b], the vector a(t) traces out the curve C* and g(t)
traces out C. By the chain rule, the derivative of @ is given by

Hence

P’(t)  =

Lxdy=L  (au )
X[U(t),  V(t)] !?-  U’(t) + $: V’(t) dt.

The last integral over [a, b] is also obtained by parametrizing the line integral over C* in
(11.37). Therefore the two line integrals in (11.37) are equal, which proves (11.36).

11.30 Proof of the transformation formula in the general case

In this section we deduce the general transformation formula

(11.38) j-j-Sk  Y)  dx dy = j-j-f[X(u,  v), Vu,  v>l  IJ(u,  VII du dv
s T
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from the special case treated in the foregoing section,

(11.39) j j  dx dy = j j  IJ(u, v>l du dv,
R R*

where R is a rectangle and R*  is its image in the Mu-plane.
First we prove that we have

(11.40) ss s(x,  y) dx dy = IS s[X(u, 4, Vu,  v>l  IJ(u, 4 du dv,
R R *

where s is any step function defined on R. For this purpose, let P be a partition of R into
mn subrectangles Rij of dimensions Axi  and Ayj,  and let cij be the constant value that s
takes on the open subrectangle Rij . Applying (11.39) to the rectangle Rij  we find

Axi Ayj = /I dx dy = /I IJ(Uy  V)l  du dv.
Ril Rij*

Multiplying both sides by ci, and summing on i and j we obtain

(11.41)

Since s is a step function, this is the same as

(11.42) izl  jzlci,  Axi Ayj = i 2 jj S[X(u>  V>,  Y(u,  v>I I J(u>  ‘)I du dv.
i=lj=l  Ri,*

Using the additive property of double integrals we see that (11.42) is the same as (11.40).
Thus, (11.40) is a consequence of (11.39).

Next we show that the step function s in (11.40) can be replaced by any function f for
which both sides of (11.40) exist. Let f be integrable over a rectangle R and choose step
functions s and t satisfying the inequalities

(11.43) 4x, Y> 5 f(x, y> < t(x, y),

for all points (x, y) in R. Then we also have

(11.44) SF-(%  u>,  Y(u,  UN <fW(% u>,  Y(u,  v>l  < W(u,  v),  Y(u,  u)l

for every point (u, u) in the image R*. For brevity, write S(u, v) for s[X(u, v), Y(u,  u)] and
define F(u, v) and T(u, v) similarly. Multiplying the inequalities in (11.44) by [J(u,  v)]
and integrating over R* we obtain

jj S(u, v>  IJ(u,  41 du dv I jJ F(u, 4 IJ(u,  v>l  du  dv I jj T(u,  u>  IJ(u,  v>l du du.
R * R * R *
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Because of (11.40), the foregoing inequalities are the same as

jj S(x,  d dx dy _<  jj Fk 4 LO,  u)l  du do  I 11  t(x, Y>  dx dy .
R R * R

Therefore jj P(u, u) ]J(u, II)]  du  dv is a number which lies between the integrals

jS s(x, y) dx cand j[ t(x,  y) dx dy  for all choices of step functions s and t satisfying (11.43).

&rce  f is integrable,?his  implies that

i/f@, Y) dx dy = j j F(u, u> Mu, 41 du du
R’

and hence (11.38) is valid for integrable functions defined over rectangles.
Once we know that (11.38) is valid for rectangles we can easily extend it to more general

regions S by the usual procedure of enclosing S in a rectangle R and extending the function
f to a new functionfwhich  agrees with f on S and has the value 0 outside S. Then we note
that

jjf= jjf= jjfLW v>, Y(u, 41 Mu, v>l du dv = jj F(u, v> IJ(u,  v>l du do
S R R* T

and this proves that (11.38) is, indeed, a consequence of (11.39).

11.31 Extensions to higher dimensions

The concept of multiple integral can be extended from 2-space to n-space for any n 2 3.

Since the development is entirely analogous to the case n = 2 we merely sketch the principal
results.

The integrand is a scalar field f defined and bounded on a set S in n-space. The integral
off over S, called an n-fold integral, is denoted by the symbols

s 1. . . f, or s I...  f(xl,...,xn:)dxl**.dx,,
9 S

with n integral signs, or more simply with one integral sign, Js f(x) dx,  where x =
(-%,***,x,). When n = 3 we write (x, y, 7)  instead of (x1, x2, x3)  and denote triple
integrals by

JJI f, or .Tf  l f(x, y,  z) dx dy  dz .
s S

First we define the n-fold integral for a step function defined on an n-dimensional interval.
We recall that an n-dimensional closed interval [a, b] is the Cartesian product of n closed
one-dimensional intervals [a,, bk],  where a = (a,, . . . , a,) and b = (b,, . . . , h,).  An
n-dimensional open interval (a, 6)  is the Cartesian product of n open intervals (ak, bk).
The volume of [a, b] or of (a, 6)  is defined to be the product of the lengths of the component
intervals,

(b, - a,) * * * (b, - a,).
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IfPI,.  . . , P,  are partitions of [a,, b,], . . . , [a,, b,],  respectively, the Cartesian product
P=P,  X”’ x P,  is called a partition of [e, b]. A functionfdefined on [a, b] is called a step
function if it is constant on each of the open subintervals determined by some partition P.
The n-fold integral of such a step function is defined by the formula

where ci is the constant value thatftakes on the ith open subinterval and vi is the volume of
the ith subinterval. The sum is a finite sum extended over all the subintervals of P.

Having defined the n-fold integral for step functions, we define the integral for more
general bounded functions defined on intervals, following the usual procedure. Let s and t
denote step functions such that s <f < t on [a, b]. If there is one and only one number Z
such that

s s. . .[+I [a,“]
for all choices of s and t satisfying s If 2 t, then f is said to be integrable on [a, b], and
the number Z is called the n-fold integral off,

As in the two-dimensional case, the integral exists if f is continuous on [a, 61.  It also
exists iff is bounded on [a, b] and if the set of discontinuities off has n-dimensional content
0 . A bounded set S has n-dimensional content 0 if for every E > 0 there is a finite collection
of n-dimensional intervals whose union includes S and the sum of whose volumes does not
exceed E.

To define the n-fold integral of a bounded function f over a more general bounded set S,
we extend f to a new functionfwhich  agrees with f on S and has the value zero outside S;
the integral off over S is defined to be the integral of -?  over some interval containing S.

Some multiple integrals can be calculated by using iterated integrals of lower dimension.
For example, suppose S is a set in 3-space described as follows:

(11.45) S = 1(x, y, 4 1 (x, r> E Q and R(-G Y> I z I pdx,  ~91,

where Q is a two-dimensional region, called the projection of S on the xy-plane, and pl,
Q;~  are continuous on S.  (An example is shown in Figure 11.29.) Sets of this type are bounded
by two surfaces with Cartesian equations z = ql(x,v), and z = qz(x,y) and (perhaps) a
portion of the cylinder generated by a line moving parallel to the z-axis along the boundary
of Q. Lines parallel to the z-axis intersect this set in line segments joining the lower surface
to the upper one. Iff is continuous on the interior of S we have the iteration formula

(11.46) j j j Rx, Y, z> dx dy dz = j j [j<;;;:;;;  Rx, Y, z> dz] dx dy .
S &



Change of variables in an n-fold integral 407

FIGURE 11.29 A solid S and its projection Q in the xy-plane.

That is, for fixed x andy,  the first integration is performed with respect to z from the lower
boundary surface to the upper one. This reduces the calculation to a double integral over the
projection Q, which can be treated by the methods discussed earlier.

There are two more types of sets analogous to those described by (11.45) in which the x-
‘and y-axes play the role of the z-axis, with the projections taken in the yz- or xz-planes,
respectively. Triple integrals over such sets can be computed by iteration, with formulas
analogous to (11.46). Most 3-dimensional sets that we shall encounter are either of one of
the three types just mentioned or they can be split into a finite number of pieces, each of
which is of one of these types.

Many iteration formulas exist for n-fold integrals when n > 3. For example, if Q is a
k-dimensional interval and R an m-dimensional interval, then an (m + ,$)-fold integral over
Q x R is the iteration of an m-fold integral with a k-fold integral,

j*-  jf  = j-s j [j-  jfdx,v.fx,]  dx,+l.--dx,+k,
QxR Q R

provided all the multiple integrals in question exist. Later in this chapter we illustrate the
use of iterated multiple integrals in computing the volume of an n-dimensional sphere.

11.32 Change of variables in an n-fold integral

The formula for making a change of variables in a double integral has a direct extension
for n-fold integrals. We introduce new variables ul, . . . , u, related to x1, . . . , x, by n
equations of the form

x,=X,(u,  ,...) UJ, . ..) x, = XJU,, . . . ) UJ.
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Let x = (-vi, . . . , .xn), u = (u,, . . . , un),  and X = (X,, . . . , X,,). Then these equations
define a vector-valued mapping

X: T-+S

from a set Tin n-space to another set S in n-space. We assume the mapping X is one-to-one
and continuously differentiable on T. The transformation formula for n-fold integrals
assumes the form

(11.47) /J(x)  dx = ~JLWN  ldet  DW4I du,

where DX(u)  = [D,X,(u)]  is the Jacobian matrix of the vector field X. In terms of com-
ponents we have

DX(u)  =

1:

* 1 I*&x&) &G(u) * * * ~,Uu)

As in the two-dimensional case, the transformation formula is valid if Xis one-to-one on
T and if the Jacobian determinant J(u) = det DX(u)  is never zero on T. It is also valid if
the mapping fails to be one-to-one on a subset of T having n-dimensional content zero, or if
the Jacobian determinant vanishes on such a subset.

For the three-dimensional case we write (x, y, z) for (xi, x2, xg), (u, u, w) for (ur , u2, us),
and (X, Y, Z) for (X1, X2,  X,).  The transformation formula for triple integrals takes the
form

(11.48) jjjfb,  Y, z> dx dy dz
S

=
Iss f[X(u, 0,  w>,  Y(u,  v, w),  Z(u,  v, $1  Mu,  v, w>l  du dv dw ,

T

where J(u, u, PC)  is the Jacobian determinant,

J(u,  v, w) =

ax au az
zauau
ax ar az
zauav
ax ay az
awawaw

In 3-space the Jacobian determinant can be thought of as a magnification factor for volumes.
In fact, if we introduce the vector-valued function r defined by the equation

r(z4, 2), w) = X(u,  u,  w)i + Y(u,  u,  w)j  + Z(u,  u,  w)k,
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and the vectors

pl =ar=ax;+auj+az,
2 au au au azl '

an argument similar to that given in Section 11.26 suggests that a rectangular parallelepiped
of dimensions Au, Au, Aw in uvw-space  is carried onto a solid which is nearly a curvilinear
“parallelepiped” in xyz-space determined by the three vectors VI Au, V,  Au, and V, Aw.
(See Figure 11.30.) The boundaries of this solid are surfaces obtained by setting u =
constant, v = constant, and w = constant, respectively. The volume of a parallelepiped
is equal to the absolute value of the scalar triple product of the three vectors which determine
it, so the volume of the curvilinear parallelepiped is nearly equal to

I(Vl Au). (V, Au)  x (V,Aw)l  = IV, - V, x V,I Au Au Aw = IJ(u,v, w)l Au Au Aw.

11.33 Worked examples

Two important special cases of (11.48) are discussed in the next two examples.

EXAMPLE 1. Cylindrical coordinates. Here we write r, 0,  z for u, v, w and define the
mapping by the equations

(11.49) x =rcos6, y = r sin 8, z = z.

;
A

z = constant
7---- ---____\_ /

x = r cos 0
‘A\ -.

y = r sin 0 ;;-;--  -__._  z ‘;:
z=z *.

‘L,
;;-r  = constant

e
p

/
y

0 = constant

r x

FIGURE 11.30 Transformation by cylindrical coordinates.
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In other words, we replace x and y by their polar coordinates in the xy-plane and leave
z unchanged. Again, to get a one-to-one mapping we must keep r > 0 and restrict e to
be in an interval of the form 8, 5 6 < 8, + 27~. Figure 11.30 shows what happens to a
rectangular parallelepiped in the r&-space.

The Jacobian determinant of the mapping in (11.49) is

cog 8 sin 8 0

J(r,  8, Z) = -r sin e r cos 8 0 = r(cosz  e + sin2 e) = r,

0 0 1

and therefore the transformation formula in (11.48) becomes

jij f(x,  y, z) dx dy dz = j/j f(r cos 0, r sin 8, z)r dr dt3  dz .
T

The Jacobian determinant vanishes when r = 0, but this does not affect the validity of the
transformation formula because the set of points with r = 0 has 3-dimensional content 0.

EXAMPLE 2. Spherical coordinates. In this case the symbols p, 8,  q are used instead of
u, v, w and the mapping is defined  by the equations

X= pcosesing,, y=psinesinq, z = pcos  q3.

The geometric meanings of p, 8,  and p are shown in Figure 11.31. To get a one-to-one
mapping we keep p > 0, 0 < 6 < 27r,  and 0 < pl < rr. The surfaces p = constant are
spheres centered at the origin, the surfaces 8 = constant are planes passing through the
z-axis, and the surfaces q = constant are circular cones with their axes along the z-axis.
Therefore a rectangular box in pQ-space  is mapped onto a solid of the type shown in
Figure 11.31.

P z

x = p sin Y cos R
y = p sin P sin 8
z = p cos cp

t

0 = constant
P = constant

kYY4
\*
11

i+

P),,,‘; /q

/’ I
II Q1=  constant

,’ I

/+
0 -.

/”

-p
)\, 1

cos (p

X p sin p \-,J

FIGURE  11.31 Transformation by spherical coordinates.
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The Jacobian determinant of the mapping is

cos 19 sin q2 sin 0 sin q2 cos fp

J(p,O,q)= -psin8sinp pcosesinp  0  =  -p2sing,.

p cos e cos qI psin8cospl  -psinpl

Since sin q 2 0 if 0 5 v < r, we have IJ(p,  8,  v)] = p2  sin pl and the formula for trans-
forming triple integrals becomes

jijf  (x, Y,  4 dx dy dz = jjj F(P,  0, Y)P’  sin P dp  do dp,,
T

where F(p,  9,  q) =f(p cos 8 sin q, p sin f3 sin q, p cos cp). Although the Jacobian deter-
minant vanishes when p = 0 the transformation formula is still valid because the set of
points with v = 0 has 3-dimensional content 0.

The concept of volume can be extended to certain classes of sets (called measurable sets)
in n-space in such a way that if S is measurable then its volume is equal to the integral of the
constant function 1 over S.  That is, if u(S)  denotes the volume of S, we have

v ( S )  =  ...  dxI...dx,.i s
s

We shall not attempt to describe the class of sets for which this formula is valid. Instead,
we illustrate how the integral can be calculated in some special cases.

EXAMPLE 3. Volume  of’ an n-dimensional interval. If S is an n-dimensional interval, say
S = [a1,hl  x 0.. x [a,, b,],  the multiple integral for c(S)  is the product of n one-
dimensional integrals,

v(S) = jGy dx, * . 1 ja:  dx, = (b, - a,). * * (b,  - a,).

This agrees with the formula given earlier for the volume of an n-dimensional interval.

EXAMPLE 4. The volume of an n-dimensional sphere. Let S,(a) denote the n-dimensional
solid sphere (or n-ball) of radius a given by

and let
S,(a) = {(x,, . . . , x,) 1 x”,  + . * * + x”,  5 a”},

V,(a) = j;
n
;;) 1 dx, * . * dx, ,

the volume of L?,(a).  We shall prove that

(11.50) V,(a)  =
~ n/2

r(+n  + 1) “”
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where I? is the gamma function. For n = 1 the formula gives V,(a) = 2a,  the length of the
interval [-a, a]. For n = 2 it gives V,(a) = vu2, the area of a circular disk of radius a.
We shall prove (11.50) for n 2 3.

First we prove that for every a > 0 we have

(11.51) V,(a)  = a”V,(I).

In other words, the volume of a sphere of radius a is an  times the volume of a sphere of
radius 1. To prove this we use the linear change of variable x = au to map S,(l) onto
S,(a). The mapping has Jacobian determinant an.  Hence

V,(a) = f . . . 1 dxI.  . . dx, = j . . 3 j an  du, . . . du, = a”V,(l).
S,(a) &fl)

This proves (11.51). Therefore, to prove (11.50) it suffices to prove that

(11.52) 1/,(l) =
$,piz

Iy+n + 1) .

First we note that x: + * . . + xz 5 1 if and only if

xf + . . * + xi-2  I 1 - x:-1  - xi and xi-1  + x: I 1.

Therefore we can write the integral for Vn(l) as the iteration of an (n - 2)-fold integral and
a double integral, as follows:

(11.53) V,(l)  = j j [ j . . . j dx, . . . dx,-;l  dx,hI  dx, .

z:-1+r2ni1
2 2

x*+.'.+z,-2"1--x~-1-~~

The inner integral is extended over the (n - 2)-dimensional sphere S,-,(R), where

R = X/I - xiP1 - xi, so it is equal to

K-,(R)  = 2R”-2V&1)  = (1 - x;dl - x,) n’2-1  V+,(l)  .

Now we write x for x,-~  and y for x, . Then (11.53) becomes

1/,(l)  = v,-2u> Ji (1
z=+Y2  5 1

- x2 - ~~)~“-l  dx dy .

We evaluate the double integral by transforming it to polar coordinates and obtain

2R1/,(l)  = V,-,(l)
ss

’ (1 - r2)n’2-1  Y dr d0  = V+,(l) e .
0 0 n

In other words, the numbers V,(l)  satisfy the recursion formula

Vn(l)  = h v,-2(l) ifn 2 3 .
n
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But the sequence of numbers {f(n)} defined by

413

f(n)  =
&2

Wn + 1)

satisfies the same recursion formula because I’(s + 1)  = SF(S). Also, I’(+) = Ji (see

Exercise 16, Section 11.28),  so I?(+)  = &J nandf(1) = V,(l) = 2. Also, f(2) = Vz(1)  = n,
hence we havef’(n) = I’,(l) for all n > 1. This proves (11.52).

11.34 Exercises

Evaluate each of the triple integrals in Exercises 1 through 5. Make a sketch of the region of
integration in each case. You may assume the existence of all the integrals encountered.

I. JJJxy2z3dxdydz,
s

where S is the solid bounded by the surface z = xy and the planes

y =x,x = 1,andz  = O .
2. JAJ  (1 +x + y + ~)-~dxdydz, where S is the solid bounded by the three coordinate

planes and the plane x + y + z = I.
3. JJJxyzdxdydz, where S = {(x, y, z) 1xz+yz+zzI1,x20,y20,z20}.

6
x2 2 22
a2  +$ +2 dxdydz, where S is the solid bounded by the ellipsoid

X2
a2+$+;=l.

5. JAJ  Jx”  + y2 dx dy dz, where S is the solid formed by the upper nappe of the cone

z2 =x2 +y2andtheplanez  = 1.

In Exercises 6,7,  and 8, a triple integral J J J f(x, y, z) dx dy dz of a positive function reduces

to the iterated integral given. In each caseSdescribe  the region of integration S by means of a
sketch, showing its projection on the xy-plane. Then express the triple integral as one or more
iterated integrals in which the first integration is with respect toy.

6. j;(j;-“[j;+“f(x,y,  z)dz]dy)  dx.

7. j‘l,(j~~~[j:,,f(x~~.z)dz]  dv)dx.

8. j:(  I,’ [ jr2 fb,  y, z> dz] dy)  dx .

9. Show that:

Evaluate the integrals in Exercises IO, 11,  and I2 by transforming to cylindrical coordinates. You
may assume the existence of all integrals encountered.

10. JJJ (x2  + y2) dx dy dz, where S is the solid bounded by the surface x2 + y2 = 2z and the

pfilanez = 2.
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11. jjjdxdydz, where S is the solid bounded by the three coordinate planes, the surface

:=x2+y2,andtheplanex  +y  = 1.
12. jjj (y” + r2)  dx dy dz, where S is a right circular cone of altitude h with its base, of radius

S
a, in the xy-plane and its axis along the z-axis.

Evaluate the integrals in Exercises 13, 14, and 15 by transforming to spherical coordinates.

13. jjj dx dy dz, where S is a solid sphere of radius a and center at the origin.

14. ;j dx dy dz, where S is the solid bounded by two concentric spheres of radii a and b,
S

where 0 < a < b, and the center is at the origin.
15. jjj [(x - a)2 + (y - b)2 + (z - c)~]-%  dx dy dz, where S is a solid sphere of radius R

s
and center at the origin, and (a, b, c) is a fixed point outside this sphere.

16. Generalized spherical coordinates may be defined by the following mapping:

x = ap cos”  0 sin” p, y = bp  sin” 0 sinn p, z = cp COP  qJ,

where a, b, c, m, and n are positive constants. Show that the Jacobian determinant is equal to

-abump  cos m--1  0 sin”-l 0 cos”-l  p sin2+l  pl.

Triple integrals can be used to compute volume, mass, center of mass, moment of inertia, and
other physical concepts associated with solids. If S is a solid, its volume V is given by the triple
integral

v =
SIS

dxdydz.
S

If the solid is assigned a densityf(x, y, z) at each of its points (x, y, z) (mass per unit volume), its
mass M is defined to be

&f= -
jisf(x,y,z)dxdydz,

s

and its center of mass the point (2, J, Z)  with coordinates

1
xc-

M xf(x,y,ddxdydz,

S

and so on. The moment of inertia ZXy  about the xy-plane is detined by the equation

L = SII z”f  (x, y,  z) dx dy dz
S

and similar formulas are used to define Zzlz and Z,,  . The moment of inertia IL about a line L is
detined to be

IL =
0-J S2(x,  y, df(x, y, z> dx dy dz,

S



Exercises 4 1 5

where 6(x, y, z) denotes the perpendicular distance from a general point (x, y,  z) of S to the line L.

17. Show that the moments of inertia about the coordinate axes are

4! = L + L 9 4!  = z,, + z,2, z, = zzz + z,, .
181 Find the volume of the solid bounded above by the sphere x2 + y2 + z2 = 5 and below by

the paraboloid x2 + y2 = 42.
19. Find the volume of the solid bounded by the xy-plane, the cylinder x2 + y2 = 2x, and the

cone z = J-x2 + y2.
20. Compute the mass of the solid lying between two concentric spheres of radii a and b , where

0 < a < b , if the density at each point is equal to the square of the distance of this point from
the center.

21. A homogeneous solid right circular cone has altitude h. Prove that the distance of its centroid
from the base is h/4.

22. Determine the center of mass of a right circular cone of altitude h if its density at each point
is proportional to the distance of this point from the base.

23. Determine the center of mass of a right circular cone of altitude h if i.ts density at each point is
proportional to the distance of this point from the axis of the cone.

24. A solid is bounded by two concentric hemispheres of radii a and b, where 0 < a < b.  If the
density is constant, find the center of mass.

25. Find the center of mass of a cube of side h if its density at each point is proportional to the
square of the distance of this point from one corner of the base. (Take the base in the xy-plane
and place the edges on the coordinate axes.)

26. A right circular cone has altitude h, radius of base a, constant density, and mass M. Find its
moment of inertia about an axis through the vertex parallel to the base.

27. Find the moment of inertia of a sphere of radius R and mass M about a diameter if the density
is constant.

28. Find the moment of inertia of a cylinder of radius a and mass M if its density at each point is
proportional to the distance of this point from the axis of the cylinder.

29. The stem of a mushroom is a right circular cylinder of diameter 1 and length 2, and its cap
is a hemisphere of radius R. If the mushroom is a homogeneous solid with axial symmetry,
and if its center of mass lies in the plane where the stem joins the cap, find R.

30. A new space satellite has a smooth unbroken skin made up of portions of two circular cylinders
of equal diameters D whose axes meet at right angles. It is proposed to ship the satellite to
Cape Kennedy in a cubical packing box of inner dimension D. Prove that one-third of the box

will be waste space.
31. Let S,(u) denote the following set in n-space, where a > 0:

When n = 2 the set is a square with vertices at (0, +ZU)  and (fu,  0). When n = 3 it is an
octahedron with vertices at (0, 0, &.a),  (0, fu,  0), and (fu, 0,O).  Let l’,(u)  denote the volume
of S,(u), given by

V,(u)=j...  jdx,...dx,.
f&(a)

(a) Prove that V,(u)  = @V,(l).
(b) For IZ  2 2, express the integral for V,(l)  as an iteration of a one-dimensional integral and
an (n - 1)-fold integral and show that

s 1

V,(l)  = V,-,(l)
- 1

(1 - l~l)~--l  dx = ; V,,(l).
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32.

(c) Use parts (a) and (b) to deduce that V,(a) = 7.

Let S,(a)  denote the following set in n-space, where a > 0 and n 2 2 :

&(a> = {(Xl, * . . ,x,) 1 lxil + Ix,1 5 a for each i = 1,. . . , n - l}.

(a) Make a sketch of S,(l) when n = 2 and when n = 3.
(b) Let V,(a) = j . . . j dx, . . . dx,, and show that V,(u) = anVn(l)  .

S,(a)

33.

(c) Express the integral for V,(l) as an iteration of a one-dimensional integral and an (n - l)-
fold integral and deduce that V,(u) = 2W/n.
(a) Refer to Example 4, p. 411. Express the integral for V,(l),  the volume of the n-dimensional
unit sphere, as the iteration of an (n - l)-fold integral and a one-dimensional integral and
thereby prove that

Multiple integrals

V,(l)  = 2 I’&l)
s

l (1 - x2)(+-1)‘2  dx.
0

(b) Use part (a) and Equation (11.52) to deduce that



12
SURFACE INTEGRALS

12.1 Parametric representation of a surface

This chapter discusses surface integrals and their applications. A surface integral can be
thought of as a two-dimensional analog of a line integral where the region of integration is a
surface rather than a curve. Before we can discuss surface integrals intelligently, we must
agree on what we shall mean by a surface.

Roughly speaking, a surface is the locus of a point moving in space with two degrees
of freedom. In our study of analytic geometry in Volume I we discussed two methods
for describing such a locus by mathematical formulas. One is the implicit representation
in which we describe a surface as a set of points (x, y, z) satisfying an equation of the
form F(x, y, z) = 0. Sometimes we can solve such an equation for one of the coordinates
in terms of the other two, say for z in terms of x and y. When this is possible we obtain
an explicit representation given by one or more equations of the form z = f (x, y) . For
example, a sphere of radius 1 and center at the origin has the implicit representation
x2 + y2 + z2 - 1 = 0. When this equation is solved for z it leads to two solutions,

z=Jl -x2- y2and z= -41 -x2-y2. The first gives an explicit representation
of the upper hemisphere and the second of the lower hemisphere.

A third method for describing surfaces is more useful in the study of surface integrals;
this is the parametric or vector representation in which we have three equations expressing
x, y, and z in terms of two parameters u and v:

(12.1) x = X(u, v), y = Y(u,  v) > z = Z(u, v).

Here the point (u, v) is allowed to vary over some two-dimensional connected set T in
the #v-plane,  and the corresponding points (x, y, z) trace out a surface in xyz-space. This
method for describing a surface is analogous to the representation of a space curve by three
parametric equations involving one parameter. The presence of the two parameters in
(12.1) makes it possible to transmit two degrees of freedom to the point (x, y, z), as suggested
by Figure 12.1. Another way of describing the same idea is to say that a surface is the image
of a plane region T under the mapping defined by (12.1).

If we introduce the radius vector r from the origin to a general point (x, y, z) of the
surface, we may combine the three parametric equations in (12.1) into one vector equation

417
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FIGURE 12.1 Parametric representation of a surface.

of the form

(12.2) r(u, v) = X(u,  u>i  + Y(u, u)j + Z(u, zl)k, where (u, v) E  T.

This is called a vector equation for the surface.
There are, of course, many parametric representations for the same surface. One of

these can always be obtained from an explicit form z = f(x, y) by taking X(u, v) = U,
Y(u, u) = u, Z(u, U) = f(~, u). On the other hand, if we can solve the first two equations
in (12.1) for u and u in terms of x and y and substitute in the third-we obtain an explicit
representation z = f(x, y) .

EXAMPLE 1. A parametric representation of a sphere. The three equations

(12.3) x = acosucosv, y = a s i n u c o s v , z = asinu

FIGURE 12.2 Parametric representation of a sphere.
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D

FIGURE 12.3 Deformation of a rectangle into a hemisphere.

serve as parametric equations for a sphere of radius a and center at the origin. If we
square and add the three equations in (12.3) we find x2 + y2 + z2 = a2, and we see that
every point (x, y, z) satisfying (12.3) lies on the sphere. The parameters u and u in this
example may be interpreted geometrically as the angles shown in Figure 12.2. If we let
the point (u, u) vary over the rectangle T = [0, 2x] x [-1 zz-,  +T], the points determined
by (12.3) trace out the whole sphere. The upper hemisphere is the image of the rectangle
[0, 2~1  x [0, &T]  and the lower hemisphere is the image of [0,2~]  x [-&T, 01.  Figure 12.3
gives a concrete idea of how the rectangle [0, 2~1  x [0, 3x1 is mapped onto the upper
hemisphere. Imagine that the rectangle is made of a flexible plastic material capable of
being stretched or shrunk. Figure 12.3 shows the rectangle being deformed into a hemi-
sphere. The base AB eventually becomes the equator, the opposite edges AD and BC are
brought into coincidence, and the upper edge DC shrinks to a point (the North Pole).

EXAMPLE 2. A parametric representation of a cone. The vector equation

Y(U,  u) = 2, sin M cos 24  i + u sin CI  sin uj + v cos tc  k

represents the right circular cone shown in Figure 12.4, where u denotes half the vertex
angle. Again, the parameters u and v may be given geometric interpretations; u is the
distance from the vertex to the point (x, y, z) on the cone, and u is the polar-coordinate
angle. When (u, v) is allowed to vary over a rectangle of the form [0, 2~1  x [0, h], the
corresponding points (x, y, z) trace out a cone of altitude h cos CC.  A plastic rectangle

FIGURE 12.4 Parametric representation of a FIGURE 12.5 Deformation of a rectangle
cone. into a cone.
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may be physically deformed into the cone by bringing the edges AD and BC into coin-
cidence, as suggested by Figure 12.5, and letting the edge AB shrink to a point (the vertex
of the cone). The surface in Figure 12.5 shows an intermediate stage of the deformation.

In the general study of surfaces, the functions X, Y,  and 2 that occur in the parametric
equations (12.1) or in the vector equation (12.2) are assumed to be continuous on T. The
image of T under the mapping r is called a parametric surface and will be denoted by the
symbol r(T). In many of the examples we shall discuss, T will be a rectangle, a circular
disk, or some other simply connected set bounded by a simple closed curve. If the function
r is one-to-one on T,  the image r(T) will be called a simple parametric surface. In such a
case, distinct points of T map onto distinct points of the surface. In particular, every
simple closed curve in T maps onto a simple closed curve lying on the surface.

A parametric surface r(T) may degenerate to a point or to a curve. For example, if all
three functions X, Y, and 2 are constant, the image r(T) is a single point. If X, Y, and Z
are independent of v, the image r(T) is a curve. Another example of a degenerate surface
occurs when X(u, v) = u + v, Y(u,  v) = (U  + v)~,  and Z(u, v) = (U  + v)~,  where
T = [0, I] x [0, I]. If we write t = u + v we see that the surface degenerates to the space
curve having parametric equations x = 1, y = t2,  and z = t3,  where 0 < t < 2. Such
degeneracies can be avoided by placing further restrictions on the mapping function r,
as described in the next section.

12.2 The fundamental vector product

Consider a surface described by the vector equation

r(u, v) = X(u, v)i + Y(u,  v)j + Z(u, v)k, where (u, v) E  T.

If X, Y, and Z are differentiable on T we consider the two vectors

and

ar ax-=-
au  au

i+azj+a;k

& a x ay . az-=-
av  au

i+-&J+--k.
au

The cross product of these two vectors &/au  x &/au will be referred to as the fundamental
vector product of the representation r. Its components can be expressed as Jacobian
determinants. In fact, we have

i j k

ax ar az- - -
(12.4) E X E = au au au

ax ay az- - -
au  au  au

=

ar az
auau
a y  az

z-z

i+

az a x-
aU au
az a x-
Z au

j+

a x  a y- -
au au

ax ar- -
au av

k

m z) i + a(z, X) . acx, Y)  k=- ~ -
ah 4 acu,  v) ' + acu,  v) .
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-

V

Au r

AU T

tlA

X/

ar ar

au au %r

au

k:
ar

au in_,

+Y

ar ar . ar ar
F IGURE 12.6 Geometric interpretation of the Vectors z , a~  , and z X a~

If (u, v) is a point in T at which &/au  and at-/& are continuous and the fundamental
vector product is nonzero,  then the image point r(u, v) is called a regular point of r.
Points at which ar/au  or &/au  fails to be continuous or &/au  x &/au  = ‘0 are called
singular points of r. A surface r(T) is called smooth if all its points are regular points.
Every surface has more than one parametric representation. Some of the examples
discussed below show that a point of a surface may be a regular point for one repre-
sentation but a singular point for some other representation. The geometric significance
of regular and singular points can be explained as follows:

Consider a horizontal line segment in T. Its image under r is a curve (called a u-curve)
lying on the surface r(T). For fixed v, think of the parameter u as representing time. The
vector ar/au is the velocity vector of this curve. When u changes by an amount Au, a point
originally at r(u, v) moves along a u-curve a distance approximately equal to l\ar/au]j  Au
since \I&/&\\  represents the speed along the u-curve. Similarly, for fixed u a point of a
v-curve moves in time Au a distance nearly equal to Ilar/avll  Au. A rectangle in T having
area Au Au is traced onto a portion of r(T) which we shall approximate by the parallelogram
determined by the vectors (au/au)  Au and (iYr/ih)  Au. (See Figure 12.6.) The area of the
parallelogram spanned by (au/au)  Au and (&/au) Au is the magnitude of their cross
product,

Therefore the length of the fundamental vector product may be thought of as a local
magnification factor for areas. At the points at which this vector product is zero the
parallelogram collapses to a curve or point, and degeneracies occur. At each regular
point the vectors &/au  and &/au determine a plane having the vector &/au  x &/au as
a normal. In the next section we shall prove that &/au  x i?r/av  is normal to every smooth
curve on the surface; for this reason the plane determined by &/au  and &/au is called the
tangent plane of the surface. Continuity of &/au  and ar/av  implies continuity of &/au  x
iYr/av;  this, in turn, means that the tangent plane varies continuously on a smooth surface.
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Thus we see that continuity of &/au and &/au  prevents the occurrence of sharp edges or
corners on the surface; the nonvanishing of &/au x &/au  prevents degeneracies.

EXAMPLE 1. Surfaces with an explicit representation, z = f (x, y) . For a surface with an
explicit representation of the form z =f(x, y) , we can use x and y as the parameters,
which gives us the vector equation

r(x,  y) = xi + yj +f(x, yP.

This representation always gives a simple parametric surface. The region T is called the
projection of the surface on the xy-plane. (An example is shown in Figure 12.7, p. 425.)
To compute the fundamental vector product we note that

ar_=i+afk and
ar af- = j + - k ,
ay ayax ax

iffis differentiable. This gives us

(12.5)

ij k

& i% 10%
-x--x ax
ax ay

0 1 af
ay

Since the z-component of &/ax  x &lay is 1, the fundamental vector product is never zero.
Therefore the only singular points that can occur for this representation are points at
which at least one of the partial derivatives i?f/lax or af/lay fails to be continuous.

A specific case is the equation z = 41 - x2 - 7, which represents a hemisphere of
radius 1 and center at the origin, if x2 + y2 5 1. The vector equation

r(x,y)=xi+yj+dl -x2-y2k

maps the unit disk T = {(x, y) 1 x2 + y2 5 l} onto the hemisphere in a one-to-one
fashion. The partial derivatives &/i3x  and &/i3y  exist and are continuous everywhere in
the interior of this disk, but they do not exist on the boundary. Therefore every point
on the equator is a singular point of this representation.

EXAMPLE 2. We consider the same hemisphere as in Example 1, but this time as the image
of the rectangle T = [0,2~]  x [0, $T]  under the mapping

r (u ,v )=acosucosvi+as inucosvj+as invk .
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The vectors &/au  and at+/& are given by the formulas

ar
au--  - a s i n u c o s v i + a c o s u c o s v j ,

at-- =
au -acosusinui-asinusinvj+acosvk.

An easy calculation shows that their cross product is equal to

& i%
z x  au =  acosor(u,v).

The image of T is not a simple parametric surface because this mapping is not one-to-one
on T. In fact, every point on the line segment v = &r,  0 < u 5 277,  is mapped onto
the point (0, 0, a) (the North Pole). Also, because of the periodicity of the sine and
cosine, r takes the same values at the points (0, v) and (27r,  v), so the right and left edges
of Tare mapped onto the same curve, a circular arc joining the North Pole to the point
(a, 0,O) on the equator. (See Figure 12.3.) The vectors &/au  and i%/ih are continuous
everywhere in T. Since [l&/au x i?r/avll = a2  cos v , the only singular points of this repre-
sentation occur when cos v = 0, The North Pole is the only such point.

12.3 The fundamental vector product as a normal to the surface

Consider a smooth parametric surface r(T), and let C* be a smooth curve in T. Then
the image C = r(C*) is a smooth curve lying on the surface. We shall prove that at each
point of C the vector %/au x &/au is normal to C, as illustrated in Figure 12.6.

Suppose that C* is described by a function a defined on an interval [a, b], say

a(t) = U(t)i + V(t)j.

Then the image curve C is described by the composite function

p(t) = r[a(t)]  = X[a(t)]i  + Y[a(t)lj  + Z[a(t)lk.

We wish to prove that the derivative p’(t)  is perpendicular to the vector &/au  x &/au
when the partial derivatives &/iJu  and &/au  are evaluated at (U(t), v(t)). To compute
p’(t)  we differentiate each component of p(t)  by the chain rule (Theorem 8.8) to obtain

(12.6) p’(t) = VX.  a’(t)i + VY - a’(t)j  + VZ * a’(t)k,

where the gradient vectors OX, V Y, and VZ are evaluated at (U(t), V(t)).  Equation (12.6)
can be rewritten as

p’(t) = 5 U’(t) + k V(t),

where the derivatives &/au  and &/au  are evaluated at (U(t), V(t)). Since &/au  and &/au
are each perpendicular to the cross product %/au  x &/au,  the same is true of p’(t). This
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proves that &/au x &/au is normal to C, as asserted. For this reason, the vector product
&/au  x &/au is said to be normal to the surface r(T). At each regular point P of r(T) the
vector &/au x arlav is nonzero; the plane through P having this vector as a normal is
called the tangent plane to the surface at P.

12.4 Exercises

In Exercises 1 through 6, eliminate the parameters u and v to obtain a Cartesian equation, thus
showing that the given vector equation represents a portion of the surface named. Also, compute
the fundamental vector product ar/ au  x ar/ au  in terms of u and v.

1. Plane:
r(u,  v)  = (x0 + a,u  + b,v)i  + (yO  + a,u + b,v)j  + (z,,  + a+ + b,v)k.

2. Elliptic paraboloid:
r(u,v)  =aucosvi+businvj+u2k.

3. Ellipsoid:
r(u,v)  =asinucosvi + bsinusinvj + c c o s u k .

4. Surface of revolution:
r(u, v) = u cos v i + u sin v j + f (u)k .

5. Cylinder:
r(u, v) = ui + a sin v j + a cos v k.

6. Torus:
r ( u , v ) = ( a + b c o s u ) s i n v i + ( a + b c o s u ) c o s v j + b s i n u k , w h e r e O < b  < a . W h a t a r e
the geometric meanings of a and b?

In Exercises 7 through 10 compute the magnitude of the vector product &/au  x ar/av.

7. r(u,v)  =asinucoshvi + bcosucoshvj +csinhvk.
8. r(u, v) = (u + v)i + (u - v)j  + 4v2k.
9. r(u, v) = (u + v)i + (u2  + v2)j + (u3  + v3)k.

10. r(u, v) = u cos v i + u sin v j + $4”  sin 2v  k.

12.5 Area of a parametric surface

Let S = r(T) be a parametric surface described by a vector-valued function r defined
on a region Tin the uv-plane. In Section 12.2 we found that the length of the fundamental
vector product &/au  x &/au could be interpreted as a local magnification factor for areas.
(See Figure 12.6.) A rectangle in T of area Au Au is mapped by r onto a curvilinear paral-
lelogram on S with area nearly equal to

& &
/I /Ix - AuAv.aU a0

This observation suggests the following definition.

DEFINITION OF AREA OF A PARAMETRIC SURFACE. The area of S, denoted by a(S), is de$ned
by the double integral

(12.7) a(S) = //II: x E//dudv.

T
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In other words, to determine the area of S we first compute the fundamental vector
product ar/au  x &/au  and then integrate its length over the region T. When &/au  x &/au
is expressed in terms of its components, by.means  of Equation (12.4), we have

(12.8)

Written in this form, the integral for surface area resembles the integral for computing
the arc length of a curve.?

If S is given explicitly by an equation of the form z = f(x, y) we may use x and y as
the parameters. The fundamental vector product is given by Equation (12.5), so we have

In this case the integral for surface area becomes

where the region T is now the projection of S on the xy-plane, as illustrated in Figure 12.7.

i
4

s t
I

,” := f’(x,y)

FIGURE 12.7 A surface S with an explicit representation, z =f(x, y). The region T
is the projection of S on the xy-plane.

t Since the integral in (12.7) involves r, the area of a surface will depend on the function used to describe
the surface. When we discuss surface integrals we shall prove (in Section 12.8) that under certain general
conditions the area is independent of the parametric representation. The result is analogous to Theorem
10.1, in which we discussed the invariance of line integrals under a change of parameter.
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When S lies in a plane parallel to the xy-plane, the function f is constant, so af/lax  =
af/lay = 0, and Equation (12.9) becomes

a(S) = if dx dy
T

This agrees with the usual formula for areas of plane regions.
Equation (12.9) can be written in another form that gives further insight into its geometric

significance. At each point of S, let y denote the angle between the normal vector
N = &/ax x &lay  and the unit coordinate vector k. (See Figure 12.8.) Since the z-
component of N is 1, we have

- -  l
N-k

‘OS  ’ - IIN llkll = (I =

and hence @/ax x atjay  I\ = l/cos y . Therefore Equation (12.9) becomes

(12.10) a(S) =

Suppose now that S lies in a plane not perpendicular to the xy-plane. Then y is constant
and Equation (12.10) states that the area of S = (area of T)/cos  y , or that

(12.11) a(T) = a(S) cos y .

Equation (12.11) is sometimes referred to as the area cosine principle. It tells us that if
a region S in one plane is projected onto a region Tin another plane, making an angle y
with the first plane, the area of T is cos y times that of S. This formula is obviously true

‘

A

&?xar
ax ay

FIGURE 12.8 The length of% x d’  is l/cos  y.
aY

h

FIGURE 12.9 The area cosine principle for
a rectangle.
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when S is the rectangle shown in Figure 12.9, because distances in one direction are
shortened by the factor cos y while those in a perpendicular direction are unaltered by
projection. Equation (12.11) extends this property to any plane region S having an area.

Suppose now that S is given by an implicit representation F(x,  y, z) = 0. If S can be
projected in a one-to-one fashion on the xy-plane, the equation F(x, y, z) = 0 defines z
as a function of x and y, say z = f (x, y),  and the partial derivatives af/lax  and af/lay  are
related to those of F by the equations

af aFlax af way- - -
a x -

and - = - -
aqaz ay afyaz

for those points at which aF/az  # 0. Substituting these quotients in (12.9), we find

(12.12) a(S) =
ss

Jcwx)2 +  cway)z +  (aqaz)2 dx dy

T 1 amw

EXAMPLE 1. Area of a hemisphere. Consider a hemisphere S of radius a and center at
the origin. We have at our disposal the implicit representation x2 + y2 + z2 = a2,  z 2 0;
the explicit representation z = da2  - x2 - y2; and the parametric representation

(12.13) r(u,v)=acosucosvi+asinucosvj+asinvk.

To compute the area of S from the implicit representation we refer to Equation (12.12)
with

F(x,y,z) =x2  +y2 + z2 - a2.

The partial derivatives of F are aF/ax = 2x, aFlay  = 2y, aF/az  = 22. The hemisphere S
projects in a one-to-one fashion onto the circular disk D = {(x, y) ) x2 + y2  5 a”} in
the xy-plane. We cannot apply Equation (12.12) directly because the partial derivative
aF/az  is zero on the boundary of D. However, the derivative aF/az  is nonzero  everywhere
in the interior of D, so we can consider the smaller concentric disk D(R) of radius R,
where R < a. If S(R) denotes the corresponding portion of the upper hemisphere, Equa-
tion (12.12) is now applicable and we find

area of S(R) = J(W2  + (2Y)2  + (2z)2 dx  dy

D(R)
PI

= _a  dx dy = a
Z D(R)  J,1,  - y2 dx dy*ss

D(R)

The last integral can be easily evaluated by the use of polar coordinates, giving us

area of S(R) = a
1

-rdr d0=2na(a-da2-R2).
Ja2 - r2 I

When R + a this approaches the limit 2ra2.
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We can avoid the limiting process in the foregoing calculation by using the parametric-
representation in (12.13). The calculations of Example 2 in Section 12.2 show that

II IIE X 5 = Ila cos ur(u, u)II = a2  lcos  vi.

Therefore we can apply Equation (12.7), taking for the region T the rectangle [0, 2~1  x
[0, +T]  . We find

a(S) = a2 II lcos 01 du du = a2 ,“”I .[S~‘2cos  u du1 du = 2rra2.
T

EXAMPLE 2. Another theorem of Pappus.  One of the theorems of Pappus  states that a
surface of revolution, obtained by rotating a plane curve of length L about an axis in the
plane of the curve, has area 2xLh,  where h is the distance from the centroid of the curve
to the axis of rotation. We shall use Equation (12.7) to prove this theorem.

FIGURE 12.10 Area of a surface of revolution determined by Pappus’ theorem.

Suppose a curve C, initially in the xz-plane, is rotated about the z-axis. Let its equation
in the xz-plane be z = f(x), where a 5 x < b , a 2 0. The surface of revolution S so
generated can be described by the vector equation

r(u,u)=ucosui+usinuj+f(u)k,

where (u, u) E  [a, b] x [0,27r].  The parameters u and u can be interpreted as the radius
and angle of polar coordinates, as illustrated in Figure 12.10. If a 5 u 5 b, all points
(x,;y, z) at a given distance u from the z-axis have the same z-coordinate, f(u), so they
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all lie on the surface. The fundamental vector product of this representation is

i i k

arxa’= cos vau au sin u f’(u) = -uf’(u)  cos vi - uf’(u)  sin u j + uk,

-24 sin v u cosv 0

and hence

Therefore Equation (12.7) becomes

a(S) = joZ”  [j: UJl + [f’(u)12  du] du = 27r s,”  uvll + [f’(u>12  du.

The last integral can be expressed as SC  x ds, a line integral with respect to arc length along
the curve C. As such, it is equal to RL,  where 1 is the x-coordinate of the centroid of C and
L is the length of C. (See Section 10.8.) Therefore the area of S is 2rrLR.  This proves the
theorem of Pappus.

12.6 Exercises

1. Let S be a parallelogram not parallel to any of the coordinate planes. Let S, , S,,  and S,
denote the areas of the projections of S on the three coordinate planes. Show that the area of S
is Js,2 +s,2  +s;.

‘Ik2.  Compute the area of the region cut from the plane x + y + z = a by the cylinder
x2 +y2 = a2.

3. Compute the surface area of that portion of the sphere x2 + y2 + z2 = a2 lying within the
cylinder x2 + y2 = ay , where a > 0.

4. Compute the area of that portion of the surface z2 = 2xy which lies above the first quadrant
of the xy-plane and is cut off by the planes x = 2 and y = 1.

0s. A parametric surface S is described by the vector equation

r(u,v)  = ucosvi + usinvj + u2k,

where0 f;u <4andO  <v  52~.
(a) Show that S is a portion of a surface of revolution. Make a sketch and indicate the
geometric meanings of the parameters u and v on the surface.
(b) Compute the fundamental vector product ar/ au x arl au  in terms of u and v.
(c) The area of S is ~(65465  - 1)/n,  where n is an integer. Compute the value of n.

6. Compute the area of that portion of the conical surface x2 + y2 = z2 which lies above the
xy-plane and is cut off by the sphere x2 + y2 + z2 = 2ax.

7. Compute the area of that portion of the conical surface x2 + y2 = z2 which lies between the
two planes z = 0 and x + 22 = 3.

8. Compute the area of that portion of the paraboloid x2 + z2 = 2uy which is cut off by the
planey = u.

9. Compute the area of the torus described by the vector equation

r(u,v)  = (a fbcosu)sinvi  + (a +bcosu)cosvj +bsinuk,

where 0 < b < a and 0 2 u 5 2~, 0 < v 5 2~. [Hint:  Use the theorem of Pappus.]
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10. A sphere is inscribed in a right circular cylinder. The sphere is sliced by two parallel planes
perpendicular to the axis of the cylinder. Show that the portions of the sphere and cylinder
lying between these planes have equal surface areas.

11. Let T be the unit disk in the uv-plane, T = {(u, V)  1 u2 + u2 i; l},  and let

2 u
r(u, 21) =

u2 + u2 + 1
i+ &&j+I:Iz22++.

(a) Determine the image of each of the following sets under r: the unit circle u2 + u2 = 1 ;
the interval -1 < u 5 1 ; that part of the line u = u lying in T.
(b) The surface S = r(T) is a familiar surface. Name and sketch it.
(c) Determine the image of the uv-plane under r. Indicate by a sketch in the xyz-space the
geometric meanings of the parameters u and o.

12.7 Surface integrals

Surface integrals are, in many respects, analogous to line integrals; the integration takes
place along a surface rather than along a curve. We defined line integrals in terms of a
parametric representation for the curve. Similarly, we shall define surface integrals in
terms of a parametric representation for the surface. Then we shall prove that under
certain general conditions the value of the integral is independent of the representation.

DEFINITION OF A SURFACE INTkGRAL. Let S = r(T) be a parametric surface described
by a diflerentiable  function Y defined on a region T in the uv-plane, and let f be a scalar$eld
de$ned  and bounded on S. The surface integral off over S is denoted by the symbol Jj f dS
[or by ~Jfb,y,  4 dsl, and is dejned  by the equation r(T)

(12.14)

whenever the double integral on the right exists.

The following examples illustrate some applications of surface integrals.

EXAMPLE 1. Surface area. When f = 1 , Equation (12.14) becomes

The double integral on the right is that used earlier in Section 12.5 to define surface area.
Thus, the area of S is equal to the surface integral JJ dS.  For this reason, the symbol

dS is sometimes referred to as an “element of surface area,” and the surface integral

;I’;‘;fdS
is said to be an integral off with respect to the element of surface area, extended

over the surface r(T).
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EXAMPLE 2. Center of mass. Moment of inertia. If the scalar field f is interpreted as
the density (mass per unit area) of a thin material in the shape of the surface S, the total
mass m of the surface is defined by the equation

m = IS f(x,~,z)dS.
s

Its center of mass is the point (2, J, z) determined by the equations

Zm  = jj xf(x,  Y, z>  ds, Im = SI yf(x,  Y, z>  dS, im = J’i‘ zf(x,  Y, 4 dS  .
S S s

The moment of inertia IL of S about an axis L is defined by the equation

1, = j j d2(x, Y, z)f(x,  Y, z> dS,
S

where 6(x,  y, z) denotes the perpendicular distance from a general point (x, y, z) of S
to the line L.

To illustrate, let us determine the center of mass of a uniform hemispherical surface of
radius a. We use the parametric representation

r(u, u)  = a cos u cos 2,  i + a sin u cos uj + a sin v k ,

where (u, u) E  [0,2x] x [0, &T].  This particular representation was discussed earlier in
Example 2 of Section 12.2, where we found that the magnitude of the fundamental vector
product is a2 (cos ~1. In this example the density f is constant, say f = c, and the mass
m is 2na2c,  the area of S times c. Because of symmetry, the coordinates f and J of the
center of mass are 0. The coordinate Z is given by

Pm = c SI z d S = c s.i a sin v . u2 ]cos  V]  du dv
S T

soZ=a/2.
s

R/2
= 2na’c

a
sin v cos v dv = na3c  = - m,

0 2

EXAMPLE 3. Fluidjow  through a surface. We consider a fluid as a collection of points
called particles. At each particle (x, y, z) we attach a vector V(x,  y, z) which represents the
velocity of that particular particle. This is the velocity field of the flow. The velocity field
may or may not change with time. We shall consider only steady-state flows, that is, flows
for which the velocity V(x,  y, z) depends only on the position of the particle and not on
time.

We denote by p(x, y, z) the density (mass per unit volume) of the fluid at the point
(x, y, z). If the fluid is incompressible the density p will be constant throughout the fluid.
For a compressible fluid, such as a gas, the density may vary from point to point. In any
case, the density is a scalar field associated with the flow. The product of the density and
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the velocity we denote by F; that is,

F;(x,  y, 4 = pk  Y, z>W Y, 4.

This is a vector field called theflux density of the flow. The vector F(x,  y, z) has the same
direction as the velocity, and its length has the dimensions

mass distance mass

unit volume * unit time = (unit area)(unit time) .

In other words, the flux density vector F(x,  y, z) tells us how much mass of fluid per unit
area per unit time is flowing in the direction of V(x,  y, z) at the point (x, y, z).

Let S = r(T) be a simple parametric surface. At each regular point of S let n denote the
unit normal having the same direction as the fundamental vector product. That is, let

(12.15) It=

i3r i?r

auxav

II II

ar,@  *

au au

The dot product F * n represents the component of the flux density vector in the direction
of n. The mass of fluid flowing through S in unit time in the direction of n is defined to be
the surface integral

12.8 Change of parametric representation

We turn now to a discussion of the independence of surface integrals under a change
of parametric representation. Suppose a function r maps a region A in the uu-plane  onto
a parametric surface r(A). Suppose also that A is the image of a region B in the St-plane
under a one-to-one continuously differentiable mapping G given by

(12.16) G(s,  t) = U(s,  t>i  + V(s,  t)j if (s, t) E B.

Consider the function R defined on B by the equation

(12.17) R(s,  t) = r[G(s, t)] .

(See Figure 12.11.) Two functions r and R so related will be called smoothly equivalent.
Smoothly equivalent functions describe the same surface. That is, r(A) and R(B) are
identical as point sets. (This follows at once from the one-to-one nature of G.) The next
theorem describes the relationship between their fundamental vector products.
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2

t

S = r (A) = R(B)

/

FIGURE 12.11 Two parametric representations of the same surface.

THEOREM 12.1. Let r and R be smoothly equivalent functions related bJ1  Equation (12.179,
where G = Ui  + Vj is a one-to-one continuously d@erentiable mapping of a region B in the
St-plane  onto a region A in the uv-plane given by Equation (12.16). Then we have

(12.18)

where thepartial derivatives &/au  and &/au  are to be evaluated at thepoint  (U(s,  t), V(s,  t)) .
In other words, the fundamental vector product of R is equal to that of r, times the Jacobian
determinant of the mapping G.

Proof. The derivatives aRlas and aRli3t  can be computed by differentiation of Equation
(12.17). If we apply the chain rule (Theorem 8.8) to each component of R and rearrange
terms, we find that

and
aR at- au &aGf

-=5-z+--’at u a?,,at
where the derivatives &/au  and &/au are evaluated at (U(s,  t), V(s,  t)). Now we cross
multiply these two equations and, noting the order of the factors, we obtain

This completes the proof.

The invariance of surface integrals under smoothly equivalent parametric representa-
tions is now an easy consequence of Theorem 12.1.
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THEOREM 12.2. Let r and R be smoothly equivalent functions, as described in Theorem
12.1. If the surface integral JJ f dS exists, the surface integral jj f dS also exists and we
have r(A) R(B)

jjfds  = jjfds.
r(A) R(B)

Proof. By the definition of a surface integral we have

Now we use the mapping G of Theorem 12.1 to transform this into a double integral over
the region B in the St-plane. The transformation formula for double integrals states that

where the derivatives &/ih and &/au  on the right are to be evaluated at (U(s,  t), V(s, t)).
Because of Equation (12.18), the integral over B is equal to

This, in turn, is the definition of the surface integral Jj f dS.  The proof is now complete.
R(B)

12.9 Other notations for surface integrals

If S = r(T) is a parametric surface, the fundamental vector product N = &-/au  x &/au
is normal to S at each regular point of the surface. At each such point there are two unit
normals, a unit normal n, which has the same direction as N, and a unit normal n2 which
has the opposite direction. Thus,

N

n1 = fi
and n2 = -n,.

Let it be one of the.two normals n, or n2. Let F be a vector field defined on S and assume
the surface integral jj F * n dS exists. Then we can write

s I

(12.19) F.ndS= F[r(u,  v)] . n(u,  v) $ x $ du dv

T I I I/s = f F[r(u,  v)] - E x $ du du,

T

where the + sign is used if n = n, and the - sign is used if n = n2.
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Suppose now we express F and Y in terms of their components, say

435

and
F(x,  y, 4 = % y, z>i  + QGG y, 4j + R(x, Y,  z)k

Y(U, 0) = X(u, u)i  + Y(z.4, u)j  + Z(u, v)k.

Then the fundamental vector product of Y is given by

If n = n,, Equation (12.19) becomes

(12.20) J’s F. n dS  = SJ’  P[v(u,  v)]  ‘$$fdu du
3

S T

+ Q[r(u,  u)] a(z, du dv +
ah 4

R[v(u,  v)]  a(x, du dv ;

T T
a64 24

if n = n2, each double integral on the right must be replaced by its negative. The sum of
the double integrals on the right is often written more briefly as

(12.21) jj” P(x, Y, z) dy A dz +
s

[j Q(x,  y,  2) dz h dx + 11  R(x, y,  Z)  dx  h dy ,
s

or even more briefly as

(12.22) IS PdyAdz+QdzAdx+RdxAdy.
S

The integrals which appear in (12.21) and (12.22) are also referred to as surface integrals.
Thus, for example, the surface integral JJ P dy A dz is defined by the equation

S

(12.23) P dy A dz = wu, u>l ___a(y? ‘)  du do
S T

ah 4

This notation is suggested by the formula for changing variables in a double integral.
Despite similarity in notation, the integral on the left of (12.23) is not a double integral.

First of all, P is a function of three variables. Also, we must take into consideration the
order in which the symbols dy  and dz appear in the surface integral, because

and hence

/ am a w, Y)-=-
ah, 4 ah 4

SI P dy A dz = - i s Pdz A dy.
S S
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In this notation, formula (12.20) becomes

(12.24) II F*ndS  = II Pdyhdz+Qdzhdx+RdxAdy
s s

ifn = n,. If n = n2  the integral on the right must be replaced by its negative. This formula
resembles the following formula for line integrals:

IcF*da= fcPdx + Qdy + Rdz.

If the unit normal n is expressed in terms of its direction cosines, say

n=cosai+cos@j+cosyk,

thenF-n=Pcosa+Qcos/3+Rcosy,andwecanwrite

I/F.ndS=jJ(P cos a + Q cos /3 + R cos r) dS.
S S

This equation holds when n is either n,  or n2. The direction cosines will depend on the
choice of the normal. If n = n,  we can use (12.24) to write

(12.25)

SI (Pcosa+Qcos@+Rcosy)dS=J/Pdyndz+QdzAdx+Rdxhdy.
s s

Ifn= n2  we have, instead,

(12.26)

si (P cos a + Q cos fl + R cos y) dS = -11 P dy A dz + Q dz A dx  + R dx A dy .
S s

12.10 Exercises

1. Let S denote the hemisphere x2 + y2 +  z2 = 1, z 20, and let F(x,y,z)  =xi +yj. Let
n be the unit outward normal of S. Compute the value of the surface integral JJ F n dS,
using: S

(a) the vector representation r(u,  0) = sin u cos u i + sin u sin u j + cos u k,
(b) the explicit representation z = dm.

2. Show that the moment of inertia of a homogeneous spherical shell about a diameter is equal to
$ma2,  where m is the mass of the shell and a is its radius.

3. Find the center of mass of that portion of the homogeneous hemispherical surface x2 + y2 +
z2 = a2  lying above the first quadrant in the xy-plane.
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4. Let S denote the plane surface whose boundary is the triangle with vertices at (1, 0, 0), (0, 1, O),
and (0, 0, l),  and let F(x,  y,  z) = xi + yj + zk . Let n denote the unit normal to S having
a nonnegative z-component. Evaluate the surface integral JJ  F.  n dS, using:

(a) the vector representation r(u, u)  = (u + u)i  + (u - u)j”+ (1 - 2u)k,
(b) an explicit representation of the form z = f(x,  y) .

5. Let S be a parametric surface described by the explicit formula z = f(x,  y) , where (x, y) varies
over a plane region T,  the projection of S in the xy-plane. Let F = Pi + Qj + Rk and let
n denote the unit normal to S having a nonnegative z-component. Use the parametric re-
presentation r(x,  y) = xi + yj -tf(x,  y)k and show that

where each of P, Q, and R is to be evaluated at (x, y,f(x,  y)).
6. Let S be as in Exercise 5, and let p be a scalar field. Show that:

( ) sfa Pk y, z>  dS  = PLx,y,f(x,y)$  + (q + (qfxdy.

S T

(b)
J‘s

p(x,y,z)dy  Adz = -
ss

dx,y,f(x,y)l  ;dxdy.
s T

(cl
ss

p(x,y,z)dz  lrdx = -
ss

af-
dx,y&,yNaydxdy.

s T

7. If S is the surface of the sphere x2 + y2 + z2 = u2, compute the value of the surface integral

J.i xzdy/tdz+yzdzAdx+x2dxAdy.
S

Choose a representation for which the fundamental vector product points in the direction of the
outward normal.

8. The cylinder x2 + y 2 = 2x cuts out a portion of a surface S from the upper nappe of the cone
x2 +y2  =z2. Compute the value of the surface integral

(x4 - y4 + y2z2 -z2x2  + 1)dS.
S

9. A homogeneous spherical she11 of radius a is cut by one nappe of a right circular cone whose
vertex is at the center of the sphere. If the vertex angle of the cone is c(,  where 0 < c( < r,
determine (in terms of a and a) the center of mass of the portion of the spherical shell that lies
inside the cone.

10. A homogeneous paper rectangle of base 2aa  and altitude h is rolled to form a circular cylindrical
surface S of radius a. Calculate the moment of inertia of S about an axis through a diameter
of the circular base.
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11. Refer to Exercise 10. Calculate the moment of inertia of S about an axis which is in the plane
of the base and is tangent to the circular edge of the base.

12. A fluid flow has flux density vector F(x,  y, z) = xi - (2x + y)j + zk. Let S denote the hemi-
sphere x2 + y2 + z2 = 1,  z > 0, and let R  denote the unit normal that points out of the sphere.-
Calculate the mass of fluid flowing through S in unit time in the direction of n.

13. Solve Exercise 12 if S also includes the planar base of the hemisphere. On the lower base the
unit normal is -k .

14. Let S denote the portion of the plane x + y + z = t cut off by the unit sphere x2 + y2 +
22 =l. Letq(x,y,z)=l  - x2 - y2 - z2 if (x, y, z) is inside this sphere, and let ~(x,  y, z)
be 0 otherwise. Show that

ss
dx,y,z)dS  =

; (3 - t2)2 if ItI I J5,

S 0 i f  jtJ >  JS.

[Hint: Introduce new coordinates (x1, y, , 1z ) with the z,-axis  normal to the plane
x + y + z = t . The use the polar coordinates in the x,yl-plane  as parameters for S.]

12.11 The theorem of Stokes

The rest of this chapter is devoted primarily to two generalizations of the second funda-
mental theorem of calculus involving surface integrals. They are known, respectively, as
Stokes’ theorem? and the divergence theorem. This section treats Stokes’ theorem. The
divergence theorem is discussed in Section 12.19.

Stoke’s theorem is a direct extension of Green’s theorem which states that

ll(E-;)dxdy=]cPdx+Qdy,
S

where S is a plane region bounded by a simple closed curve C traversed in the positive
(counterclockwise) direction. Stokes’ theorem relates a surface integral to a line integral
and can be stated as follows.

THEOREM 12.3 STOKES’ THEOREM. Assume that S is a smooth simple parametric surface,
say S = r(T), where T is a region in the uv-plane bounded by a piecewise smooth Jordan
curve I’. (See Figure 12.12.) Assume also that r is a one-to-one mapping whose components
have continuous second-order partial derivatives on some open set containing T u I’. Let C
denote the image of r under r, and let P, Q, and R be continuously d@erentiable  scalarJields
on S. Then we have

(12.27) j-j- ($f  - 2) dy A dz + (E  - E)  dz A dx + (2 - $j dx A dy

x = s Pdx+Qdy+Rdz.
c

t In honor of G. G. Stokes (1819-1903),  an Irish mathematician who made many fundamental contributions
to hydrodynamics and optics.
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FIGURE 12.12 An example of a surface to which Stokes’ theorem is applicable.

The curve I? is traversed in thepositive (counterclockwise) direction and the curve C is traversed
in the direction inherited from r through the mapping function r.

Proof. To prove the theorem it suffices to establish the following three formulas,

(12.28) A dy + g dz A dx
Q : Cl  A 3

,

A dz + zdx A dy
1

Q . 2 0,

hdx + gdy  r\dz
ay

Addition of these three equations gives the formula (12.27) in Stokes’ theorem. Since the
three are similar, we prove only Equation (12.28).

The plan of the proof is to express the surface integral as a double integral over T. Then
we use Green’s theorem to express the double integral over T as a line integral over I’.
Finally, we show that this line integral is equal to Jc P d.y.

We write

r(u, v) = X(u,  v)i + Y(u, v)j  + %(zr,  v)k

and express the surface integral over S in the form

ap
--dxAdy+EdzAdx

ay
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Now let p denote the composite function given by

PC%  0) = PW(u,  u>,  Y(u,  u),  Z(u,  u)]  .
The last integrand can be written as

(12.29) --- az~=iPE)-i(PE)*
ap 8(X, Y) + ap qz, X)

3Y  %u,  u)

The verification of (12.29) is outlined in Exercise 13 of Section 12.13. Applying Green’s
theorem to the double integral over T we obtain

where P is traversed in the positive direction. We p,arametrize  I? by a function y defined on
an interval [a, b] and let

(12.30) a(t)  = Wt)rl

be a corresponding parametrization of C. Then by expressing each line integral in terms
of its parametric representation we find that

s $du+pEdv=
r au s

P d x ,
c

which completes the proof of (12.28).

12.12 The curl and divergence of a vector field

The surface integral which appears in Stokes’ theorem can be expressed more simply in
terms of the curl of a vector field. Let F be a differentiable vector field given by

F(x,  y,  z) = P(x,  y,  z>i + Q(x,  y,  z>i + W> y, z)k.

The curl of F is another vector field defined by the equation

(12.31) curlF= (z-g)i+ ($-E)j+  (z-$)k.

The components of curl F are the functions appearing in the surface integral in Stokes’
formula (12.27). Therefore, this surface integral can be written as

H (curl F) * n dS,
S
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where n is the unit normal vector having the same direction as the fundamental vector
product of the surface; that is,

at- i%

-“auauil=

The line integral in Stokes’ formula (12.27) can be written as SC  F * da, where a is the
representation of C given by (12.30). Thus, Stokes’ theorem takes the simpler form

SI (curlF).ndS= F.da.
s sc

For the special case in which S is a region in the xy-plane  and n = k, this formula reduces
to Green’s theorem,

Equation (12.31) defining the curl can be easily remembered by writing it as an expansion
of a 3 x 3 determinant,

i j k

curl F = -a 2 -?- = (g-E)i+  (?$-g)j+  (z-z)k.
ax  ay  aZ

This determinant is to be expanded in terms of first-row minors, but each “product” such
as a/ay  times R is to be interpreted as a partial derivative aR/ay.  We can also write this
formula as a cross product,

curlF= V x F ,

where the symbol V is treated as though it were a vector,

V=&i+zj+ik.
ay

If we form the “dot product” V . F in a purely formal way, again interpreting products
such as a/ax  times P as aP/ax,  we find that

(12.32) V.F=a~+!%+a~
ax ay aZ *

Equation (12.32) defines a scalar field called the divergence of F, also written as div F.
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We have already used the symbol VP,  to denote the gradient of a scalar field p, given by

This formula can be interpreted as formal multiplication of the symbolic vector V by the
scalar field q~.  Thus, the gradient, the divergence, and the curl can be represented sym-
bolically by the three products Vy,  V . F, and C’  x F, respectively.

Some of the theorems proved earlier can be expressed in terms of the curl. For example,
in Theorem 10.9 we proved that a vector fieldf =:  (f,, . . . ,fn) , continuously differentiable
on an open convex set Sin n-space, is a gradient Ion  S if and only if the partial derivatives of
the components off satisfy the relations

(12.33) w (4 = DjM4 (j!, k = 1, 2, . . . , n)

In the 3-dimensional case Theorem 10.9 can be restated as follows.

THEOREM 12.4. Let F = Pi + Qj + Rk be a continuously differentiable vectorJeld  on an
open convex set S in 3-space. Then F is a gradient 011 S if and only lj- we  have

(12.34) c u r l F = O  o n  S .

Proof. In the 3-dimensional case the relations (12.33) are equivalent to the statement
that curl F = 0.

12.13 Exercises

In each of Exercises 1 through 4, transform the surface integral jj (curl F) . II dS to a line integral

by the use of Stokes’ theorem, and then evaluate the line integral!

1. F(x,  y, z) = y2i + xy/’ + xzk, where S is the hemisphere x2 i- y2 + z2 = 1, z 2 0, and n is
the unit normal with a nonnegative z-component.

2. F(x,  y, z) = yi + zj -t  xk, where S is the portion of the paraboloid z = 1 - x2 - y2 with
z 2 0, and n is the unit normal with a nonnegative z-component.

3. F(x,  y, z) = (JJ - z)i + yzj - xzk, where S consists of the five faces of the cube 0 < x < 2,
0 5 y 5 2, 0 < z < 2 not in the xy-plane. The unit normal II is the outward normal.

4. F(x,  y, z) = xzi - yi + x2yk,  where S consists of the three faces not in the xz-plane of the
tetrahedron bounded by the three coordinate planes and the plane 3x + y + 32  = 6. The
normal n is the unit normal pointing out of the tetrahedron,

In Exercises 5 through 10, use Stokes’ theorem to show that the line integrals have the values
given. In each case, explain how to traverse C to arrive at the given answer.

5. Joy dx + z dy + x dz = ~~~43, where C is the curve of intersection of the sphere x2 +
y2 + z2 = a2  and the plane x + y -t  z = 0,

6. Jo (y + z) dx + (z + x) dy + (x + y) dz = 0, where C is the curve of intersection of the
cylinder x2 + y2 = 2y and the plane y = z.

7. Jo  y2 dx  + xy dy + xz dz = 0, where C is the curve of Exercise 6.
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8.

9.

10.

11.

12.

13.

SC (y - z) dx + (z - x) dy + (X  - y) ciz = 24~  + b), where C is the intersection of the
cylinder x2 + y2=a2andtheplanex/a+z/b=1,a>0,b>0.
Jc (y”  + z2) dx + (x2  + z”) dy + (x2  + yz) dz = 2mb2, where C is the intersection of the

hemisphere x2 + y2 + z2 = 2ux,  z > 0, and the cylinder x2 + y2 = 2bx,  where 0 < b < a.
jc (y”  - z2) dx + (z2  - x2)  dy + (x2  - y2) dz = 9a3/2,  where C is the curve cut from the
boundaryofthecubeo  Ix  <a,0  ly In,0  <z Iabytheplanex  +y  fz  =3a/2.
Ifr=xi+yj+zkandPi+Qj+Rk=axr, where a is a constant vector, show that
SC  P dx + Q dy + R dz = 2 JJ  a . n dS,  where C is a curve bounding a parametric surface S

1

and n is a suitable normal to %.
Let F = Pi + Qj + Rk, where P = -y/(x2  + y2), Q = x/(x2  + y2),  R = z, and let D be
the torus generated by rotating the circle (x - 2)2  + z2 = 1, y = 0, about the z-axis. Show
that curl F = 0 in D but that SC  P dx + Q dy + R dz is not zero if the curve C is the circle
x2 +y2  =4,z  = o .
This exercise outlines a proof of Equation (12.29),  used in the proof of Stokes’ theorem.
(a) Use the formula for differentiating a product to show that

(b) Now let p(u,  v) = P[X(u,  v),  Y(u, v), Z(u,  u)].  Compute ap/au and ap/av by the chain
rule and use part (a) to deduce Equation (12.29),

12.14 Further properties of the curl and divergence

The curl and divergence of a vector field are related to the Jacobian matrix. If F =
Pi + Qj + Rk, the Jacobian matrix of F is

DF(x,  y, z) = g

aR

ax

ap ap-
&sz

aQ aQ- - I=
ay aZ

-!
aR aR 1- _.-
ay aZ  ._ i

The trace of this matrix (the sum of its diagonal elements) is the divergence of F.
Every real matrix A can be written as a sum of a symmetric matrix, $(A  + At),  and a

skew-symmetric matrix , 4 (A - At). When A is the Jacobian matrix DF, the skew-symmetric
part becomes

I

0
ap aQ ap aR- - -  -_-1ay  ax  az  ax

(12.35)
I aQ  ap- - -
2 ax ay

0

i?R aP i?R i3Q- - -  -_-
-ax  aZ ay aZ
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The nonzero  elements of this matrix are the component of curl F and their negatives. If the
Jacobian matrix DF is symmetric, each entry in (12.35) is zero and curl F = 0.

EXAMPLE 1. Let F(x,  y, z) = xi + yj + zk. Then we have

m,y,  4 = x, Q(x,  y, 4 = y , w&y,  4 = z,

and the corresponding Jacobian matrix is the 3 x 3 identity matrix. Therefore

div F = 3 and curlF=  0 .

More generally, if F(x, y, Z) = f(x)i + g(y)j + h(z)k  , the Jacobian matrix has the elements
f’(x)9 g’(y),  A’(z on the main diagonal and zeros elsewhere, so>

div F =f’(x)  + g’(y) + h’(z) and curlF= 0 .

EXAMPLE 2. Let F(x, y, z) = xy2z2i + z2 sinyj + x2evk. The Jacobian matrix is

Therefore,

and
div F = y2z2  + z2 cos y

curl F = (x2,,  - 22 sin y)i + (2xy2z - 2xeY)j  - 2xyz2k.

EXAMPLE 3. The divergence and curl of a gradient. Suppose F is a gradient, say
F = grad p = i3p/ax  i + ap/ay j + aq/az k. The Jacobian matrix is

(12.36)

a2p, a2p, a29,
ax2 ayax  aZ  ax

1 1a29,  3 3
axay  ay2 aZ  ay  *

Therefore,

azp azp 3291- -
-axaZ  ay a2  a22 J

a2p a24, 3%
divF=s+G+s.

The expression on the right is called the Laplacian of a) and is often written more briefly
as V2~.  Thus, the divergence of a gradient VP,  is the Laplacian of ~ZJ.  In symbols, this is
written

(12.37) div (VT) = V2rp.
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When VP = 0, the function 9 is called harmonic. Equation (12.37) shows that the gradient
of a harmonic function has zero divergence. When the mixed partial derivatives in matrix
(12.36) are continuous, the matrix is symmetric and curl F is zero. In other words,

curl (grad q) = 0

for every scalar field p with continuous second-order mixed partial derivatives. This
example shows that the condition curl F = 0 is necessary for a continuously differentiable
vector field F to be a gradient. In other words, if curl F # 0 on an open set S, then F is
not a gradient on S. We know also, from Theorem 12.4 that if curl F = 0 on an open
convex set S, then F is a gradient on S. A field with zero curl is called irrotational.

EXAMPLE 4. A vector jield  with zero divergence and zero curl. Let S be the set of all
(x, y) # (0, 0)  , and  let

F(x, y) = - 1 i + -&--  ’
x2 + y2 x2 + y2j

if (x, u) E S. From Example 2 in Section 10.16 we know that F is not a gradient on S
(although F is a gradient on every rectangle not containing the origin). The Jacobian
matrix is

1

-2XY )p - x2

(x2 + yy (x2 + y2y O

DO, Y> =
y2 - x2 -2XJ’

( x ”  +  yy2 (x2 +  yy2 O

0 0- O-

and we see at once that div F = 0 and curl F = 0 on S.

EXAMPLE 5. The divergence and curl oj’ a curl. If F = Pi + Qj + Rk, the curl of F
is a new vector field and we can compute its divergence and curl. The Jacobian matrix of
curl F is

a2P  a2R  a2P  a2R  a2P  a2R

ay ax  ay2  aZ ax azay-

If we assume that all the mixed partial derivatives are continuous, we find that

and
div (curl F) = 0

(12.38) curl (curl F) = grad (div F) - V2F,
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where V2F  is defined by the equation

V2F  = (V2P)i + (V2Q)j + (V2R)k.

The identity in (12.38) relates all four operators, gradient, curl, divergence, and Laplacian.
The verification of (12.38) is requested in Exercise 7 of Section 12.15.

The curl and divergence have some general properties in common with ordinary
derivatives. First, they are linear operators. That is, if a and b are constants, we have

(12.39) d i v ( a F +  b G ) = a d i v F +  bdivG,

and

(12.40) curl (aF + bG) = a curl F + b curl G.

They also have a property analogous to the formula for differentiating a product:

(12.41) div (plF)  = a, div F -I- Vp  - F,

and

(12.42) curl (qF) = q curl F + VP x F,

where 9 is any differentiable scalar field. These properties are immediate consequences
of the definitions of curl and divergence; their proofs are requested in Exercise 6 of
Section 12.15.

If we use the symbolic vector

v=$i+dj+ik
ay

once more, each of the formulas (12.41) and (12.42) takes a form which resembles more
closely the usual rule for differentiating a product:

and
V*(tpF)=  cpV*F-t  Vpl*F

Vx(pF)=pVxF+Vg;xF.

In Example 3 the Laplacian of a scalar field, V2p, was defined to be azq/ax2  + azY/ay2 +
azv/az2. In Example 5 the Laplacian V2F  of a vector field was defined by components. We
get correct formulas for both V2p, and V2F  if we interpret V2 as the symbolic operator

This formula for V2 also arises by dot multiplication of the symbolic vector V with itself.
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Thus, we have V2 = V * V and we can write

V”q,  = (V * V)p and V2F  = (V * V)F.

Now consider the formula V * Vq. This can be read as (V . V)rp, which is Vz~y; or as
V . (VP),  which is div (‘17~).  In Example 3 we showed that div (VP)  = Vzgi,  so we have

(V * V)pl  = v * (VqJ)  ;
hence we can write V. Vpj  for either of these expressions without danger of ambiguity.
This is not true, however, when qj is replaced by a vector field F. The expression (V * V)F
is V2F,  which has been defined. However, V * (VF) is meaningless because VF is not
defined. Therefore the expression V . OF is meaningful only when it is interpreted as
(V - V)F. These remarks illustrate that although symbolic formulas sometimes serve as a
convenient notation and memory aid, care is needed in manipulating the symbols.

12.15 Exercises

1. For each of the following vector fields determine the Jacobian matrix and compute the curl
and divergence.
(a) F(x,  y, 2) = (x2  + yz)i  + (y” + xt)j + (z2 + xy)k.
(b) F(x,  y, z) = (22 - 3y)i + (3x - z)j + (y - 2x)k.
(c) F(x,  y, z) = (z + sin y)i  - (z - x cos y)j.
(d) F(x,  y, z) = eZrj  + cos xy j + cos xz2k.
(e) F(x,  y, z) = x2 sin y i f y2 sin xzj + xy sin (cos z)k .

2. If r = xi + yj + zk and r = llrll , compute curl [f(r)r],  where f‘is a differentiable function.
3. If r = xi + yj + zk and A is a constant vector, show that curl (A x r) = 2A.
4. If r = xi + yj + zk and r = ((r(( , find all integers n for which div (t-9)  = 0.
5. Find a vector field whose curl is xi + yj  + zk or prove that no such vector field exists.
6. Prove the elementary properties of curl and divergence in I<quations (12.39) through (12.42).
7. Prove that curl (curl F) = grad (div F) - V’F if the components of F have continuous mixed

partial derivatives of second order.
8. Prove the identity

V (F x G) = G. (V x F) - F. (T  x G),

where F and G are differentiable vector fields.
9. A vector field F will not be the gradient of a potential unless curl F = 0. However, it may be

possible to find a nonzero  scalar field ,U  such that ,uF  is a gradient. Prove that if such a /I
exists, F is always perpendicular to its curl. When the field is two-dimensional, say F = Pi + Qj,
this exercise gives us a necessary condition for the differential equation Pdx + Q dy = 0 to
have an integrating factor. (The converse is also true. That is, if F. curl F = 0 in a suitable
region, a nonzero  ,U  exists such that ,uFis a gradient. The proof of the converse is not required.)

10. Let F(x,  y, z) = y2z2i  + z2x2j + x2y2k. Show that curl F is not always zero, but that
F. curl F = 0. Find a scalar field /c  such that ,uF  is a gradient.

11. Let V(x, y) = yci + xcj,  where c is a positive constant, and let r(x, y) = xi + yj.  Let R be
a plane region bounded by a piecewise smooth Jordan curve C. Compute div (V x r) and
curl (V x r),  and use Green’s theorem to show that

P c V x r*da  =0,

where a describes C.
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12. Show that Green’s theorem can be expressed as follows:

jj(cur1 v>.kdxdy  =$ V.Tds,
R c

where T is the unit tangent to C and s denotes arc length.
13. A plane region R is bounded by a piecewise smooth Jordan curve C. The moments of inertia

of R about the x- and y-axes are known to be a and b, respectively. Compute the line integral

I c V(r4)  . n ds

in terms of a and b. Here Y = /Ixi + rjll , n denotes the unit outward normal of C, and s denotes
arc length. The curve is traversed counterclockwise.

14. Let F be a two-dimensional vector field. State a definition for the vector-valued line integral
Jo F x du.  Your definition should be such that the following formula is a consequence of
Green’s theorem:

s
F x da =k ’ (divF)dxdy,ii

c R

where R is a plane region bounded by a simple closed curve C.

kl2.16 Reconstruction of a vector field from its curl

In our study of the gradient we learned how to determine whether or not a given vector
field is a gradient. We now ask a similar question concerning the curl. Given a vector field
F, is there a G such that curl G = F? Suppose we write F = Pi + Qj + Rk and G =
Li  + Mj + Nk. To solve the equation curl G = F we must solve the system of partial
differential equations

axv  aiv aL  aN aM aL
( 1 2 . 4 3 )  --aZ=P,  z-ax=Q, %-%=R

ay
for the three unknown functions L, M, and N when P, Q, and R are given.

It is not always possible to solve such a system. For example, we proved in Section
12.14 that the divergence of a curl is always zero. Therefore, for the system (12.43) to have
a solution in some open set S it is necessary to have

(12.44) ap+aQ+aR=,
ax  ay  a2

everywhere in S. As it turns out, this condition is also sufficient for system (12.43) to have
a solution if we suitably restrict the set S in which (12.44) is satisfied. We shall prove now
that condition (12.44) suffices when S is a three-dimensional interval.

THEOREM 12.5 Let F be continuously dlrerentiable  on an open interval S in 3-space.
Then there exists a vector field G such that curl G = F if and only if div F = 0 everywhere
in S.
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Proof. The necessity of the condition div F = 0 has already been established, since
the divergence of a curl is always zero. To establish the sufficiency we must exhibit three
functions L, M, and N that satisfy the three equations in (12.43). Let us try to make a
choice with L = 0. Then the second and third equations in (12.43) become

aN
-Q

aM-= a n d  - = R .
ax ax

This means that we must have

W, Y, z> = -1; Q(t, Y, z> dt + f(y,  4

and

M(x,  Y, z> = Jz R(t,  Y, z> dt + dy,  z>,

where each integration is along a line segment in S and the “constants of integration”
f(v, z) and g(y, z) are independent of x. Let us try to find a solution with f(y, z) = 0.
The first equation in (12.43) requires

(12.45)
aN aM- - -=p

*ay aZ

For the choice of M and N just described we have

(12.46)
aN aM
- - az = - ; j-Q(t,  y, z) dt  - ; /‘R(t,  Y, z) dt - 5.
ay XII z a3

At this stage we interchange the two operations of partial differentiation and integration,
using Theorem 10.8. That is, we write

(12.47)

and

$ /=Q(t, Y, z> dt = JkQ(t, Y, z> dt
Y x0 x0

(12.48)
za 5

ii $0s
R(t,  y, z) dt =

f &R(t, Y, z> dt  .
20

Then Equation (12.46) becomes

(12.49)
aN aM
- - aZ =
ay s

'F&Q@, Y, z> - D&t,  y, z)] dt - 2 .
aI

Using condition (12.44) we may replace the integrand in (12.49) by D,P(t,  y, z); Equation
(12.49) becomes

aN aM ’ ag- - - =
ay aZ sz.D,P(t,  y, z) dt - ff = P(x, y, z) - P(x,,  y, z) - z.
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Therefore (12.45) will be satisfied if we choose g so that ag/az  = --P(x,,  y, z) . Thus, for
example, we may take

dy,  z> = -s:, W, 3 Y, u> du .

This argument leads us to consider the vector field G = Li + Mj + Nk,  where
L(x,  y, z) = 0 and

M(x,  Y, z> = j; Nt, Y, z) dt - j; P(x,, Y, u> du, Nx, Y, z) = - j; Q(c  Y, z> dt .

For this choice of L, M, and N it is easy to verify, with the help of (12.47) and (12.48),
that the three equations in (12.43) are satisfied, giving us curl G = F, as required.

It should be noted that the foregoing proof not only establishes the existence of a vector
field G whose curl is F, but also provides a straightforward method for determining G by
integration involving the components of F.

For a given F, the vector field G that we have constructed is not the only solution of the
equation curl G = F. If we add to this G any continuously differentiable gradient Vp7  we
obtain another solution because

curl (G -I-  Vqj)  = curl G + curl (Vpl) = curl G = F,

since curl (Vy) = 0. Moreover, it is easy to show that all continuously differentiable
solutions must be of the form G + Vg,. Indeed, if H is another solution, then curl H =
curl G, so curl (H - G) = 0. By Theorem 10.9 it follows that H - G = Vv for some
continuously differentiable gradient Vgj; hence H = G + VP,,  as asserted.

A vector field F for which div F = 0 is sometimes called solenoidal. Theorem 12.5
states that a vector field is solenoidal on an open interval S in 3-space if and only if it is the
curl of another vector field on S.

The following example shows that this statement is not true for arbitrary open sets.

EXAMPLE. A solenoidal vector field  that is not a curl. Let D be the portion of 3-space
between two concentric spheres with center at the origin and radii a and 6, where
0 < a < b . Let V = r/r3,  where Y = xi + yj + zk and r = 11~  11 . It is easy to verify that
div V = 0 everywhere in D. In fact, we have the general formula

div (Pr)  = (n + 3)r”,

and in this example n = -3. We shall use Stokes’ theorem to prove that this V is not a
curl in D (although it is a curl on every open three-dimensional interval not containing the
origin). To do this we assume there is a vector field U such that V = curl U in D and obtain
a contradiction. By Stokes’ theorem we can write

(12.50) jj(curl U).ndS  = $cU.dol,
S
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S

--L’

X/

FIGURE  12.13 The surface S and curve C in Equation (12.50).

where S and C are the surface and curve shown in Figure 12.13. To construct S, we take
a spherical surface of radius R concentric with the boundaries of D, where a < R < b,
and we remove a small “polar cap,” as indicated in the ligure.  The portion that remains
is the surface S. The curve C is the circular edge shown. Let n denote the unit outer normal
of S, so that n = r/r. Since curl U = V = rlr3, we have

YY 1
(curl V) * n = - . - = - ,

r3  r r2

On the surface S this dot product has the constant value 1/R2. Therefore we have

ss
(curl U) . n dS = -$

ss
dS = ‘y .

s S

When the polar cap shrinks to a point, the area of S approaches 47iR2  (the area of the
whole sphere) and, therefore, the value of the surface integral in (12.50) approaches 47r.

Next we examine the line integral in (12.50). It is easy to prove that for any line integral
Jo  U * da we have the inequality

IJ Ic
lJ.da  5 M*(lengthofC),

where M is a constant depending on U. (In fact, M can be taken to be the maximum value
of /IUi/ on C.) Therefore, as we let the polar cap shrink to a point, the length of C and the
value of the line integral both approach zero. Thus we have a contradiction; the surface
integral in (12.50) can be made arbitrarily close to 477,  and the corresponding line integral
to which it is equal can be made arbitrarily close to 0. Therefore a function U whose curl
is V cannot exist in the region D.

The difficulty here is caused by the geometric structure of the region D. Although this
region is simply connected (that is, any simple closed curve in D is the edge of a parametric
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surface lying completely in D) there are closed surfaces in D that are not the complete
boundaries of solids lying entirely in D. For example, no sphere about the origin is the
complete boundary of a solid lying entirely in D. If the region D has the property that
every closed surface in D is the boundary of a solid lying entirely in D, it can be shown that a
vector field U exists such that V = curl U in D if and only if div V = 0 everywhere in D.
The proof of this statement is difficult and will not be given here.

*12.17  Exercises

1. Find a vector field G(x, y, z) whose curl is 2i + j + 3k  everywhere in 3-space.  What is the
most general continuously differentiable vector field with this property?

2. Show that the vector field F(x,  y, z) = (y - z)i + (z - x)j  + (x - y)k is solenoidal, and
find a vector field G such that F = curl G everywhere in 3-space.

3. Let F(x,  y, z) = -zi + xyk. Find a continuously differentiable vector field G of the form
G(x, y, z) = L(x, y, z)i + M(x,  y, z)j  such that F = curl G everywhere, in 3-space. What is
the most general G of this form?

4. If two vector fields Uand Vare both irrotational, show that the vector field U x Vis solenoidal.
5. Let r = xi + yj  + zk and let Y = IlrlI  . Show that n = -3 is the only value of n for which

Pr  is solenoidal for r # 0. For this n, choose a 3-dimensional  interval S not containing the
origin and express re3r as a curl in S. Note: Although re3r  is a curl in every such S,  it is not
a curl on the set of all points different from (0, 0,O).

6. Find the most general continuously differentiable functionfof one real variable such that the
vector fieldf(r)r will be solenoidal, where r = xi + yj + zk and r = ljrll  .

7. Let V denote a vector field that is continuously differentiable on some open interval S in 3-
space. Consider the following two statements about V:
(i) curl V = 0 and V = curl U for some continuously differentiable vector field U (everywhere
on S).
(ii) A scalar field v exists such that VP,  is continuously differentiable and such that

V = grad q and V2v  = 0 everywhere on S.

(a) Prove that (i) implies (ii). In other words, a vector field that is both irrotational and
solenoidal in S is the gradient of a harmonic function in S.
(b) Prove that (ii) implies (i), or give a counterexample.

8. Assume continuous differentiability of all vector fields involved, on an open interval S. Suppose
H = F + G, where F is solenoidal and G is irrotational. Then there exists a vector field U
such that F = curl U and a scalar field p such that G = K’v in S. Show that U and p satisfy
the following partial differential equations in S:

V2e,  = div H, grad (div U) - V2U  = curl H.

Note: This exercise has widespread applications, because it can be shown that every
continuously differentiable vector field H on Scan be expressed in the form H = F +
G, where F is solenoidal and G is irrotational.

9. Let H(x, y, z) = x2yi  + y2zj + z2xk. Find vector fields F and G, where F is a curl and G
is a gradient, such that H = F + G.

10. Let u and L’ be scalar fields that are continuously difl‘erentiable  on an open interval R in 3-space.
(a) Show that a vector field F exists such that Gu x Gu = curl F everywhere in R.
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(b) Determine whether or not any of the following three vector fields may be used for F in
part (a): (i) T(W); (ii) uVu; (iii) VVU.
(c) If u(x,  y, z) = X3 - y3 + z2 and v(x, y, z) = x + y + z, evaluate the surface integral

/.I
Vu x Cv.ndS,

S

where S is the hemisphere x2 + y2 +  z2 = 1,  z > 0, and n is the unit normal with a non--
negative z-component.

12.18 Extensions of Stokes’ theorem

Stokes’ theorem can be extended to more general simple smooth surfaces. If T is a
multiply connected region like that shown in Figure 12.14 (with a finite number of holes),
the one-to-one image S = r(T) will contain the same number of holes as T. To extend

V Z

-

r

cu

X/

FIGURE 12.14 Extension of Stokes’ theorem to surfaces that are one-to-one images
of multiply connected regions.

Stokes’ theorem to such surfaces we use exactly the same type of argument as in the proof
of Stokes’ theorem, except that we employ Green’s theorem for multiply connected regions
(Theorem 11.12). In place of the line integral which appears in Equation (12.27) we need
a sum of line integrals, with appropriate signs, taken over the images of the curves forming
the boundary of T. For example, if T has two holes, as in Figure 12.14, and if the boundary
curves I’, r,, and I’2 are traversed in the directions shown, the identity in Stokes’ theorem
takes the form

where C, C1,  and C, are the images of l?, rl, and P2, respectively, and p, t+,  and e2 are
the composite functions p(t)  = r[y(t)],  &(t)  = r[y,(t)],  Q2(t)  = r[y2(t)].  Here y, yl, and
y2 are the functions that describe I?,  rl, and rz in the directions shown. The curves C,
C,,  and C, will be traversed in the directions inherited from r, rI,  and r2 through the
mapping function r.
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Stokes’ theorem can also be extended to some (but not all) smooth surfaces that are not
simple. We shall illustrate a few of the possibilities with examples.

Consider first the cylinder shown in Figure 12.15. This is the union of two simple smooth
parametric surfaces S1  and S,, the images of two adjacent rectangles TI and T,, under
mappings rr and r2, respectively. If y1 describes the positively oriented boundary Fl of
Tl and yz describes the positively oriented boundary I’2 of T,, the functions p1  and pz
defined by

t+(t)  = rI[yl(t)l  y p2(t)  = dYdt)l

describe the images C, and C, of rr and rz, respectively. In this example the representa-
tions r1 and r2 can be chosen so that they agree on the intersection PI A rz. If we apply

FIGURE 12.15 Extension of Stokes’ theorem to a cylinder.

Stokes’ theorem to each piece SI and S, and add the two identities, we obtain

(12.51) J-J (curl F).  n, dS + ss (curl P)  . n2 dS = jc/'.LIPl  + jc2F*dp,,
Sl sz

where its and n2 are the normals determined by the fundamental vector products of r1
and r2,  respectively.

Now let r denote the mapping of Tl U T, which agrees with rl on Tl and with r2 on
T,, and let n be the corresponding unit normal determined by the fundamental vector
product of r. Since the normals IZ~ and IZ~ agree in direction on S, n S,, the unit normal
n is the same as n, on S, and the same as IQ on S,. Therefore the sum of the surface
integrals on the left of (12.51) is equal to

ss (curl F) * n dS  .
Sl us2

For this example, the representations r1 and r2 can be chosen so that p1  and pz  determine
opposite directions on each arc of the intersection C1  n C,,  as indicated by the arrows
in Figure 12.15. The two line integrals on the right of (12.51) can be replaced by a sum
of line integrals along the two circles C;  and C,l  forming the upper and lower edges of
S, u S,, since the line integrals along each arc of the intersection C, n C, cancel. There-
fore, Equation (12.51) can be written as

(12.52) (curl F) . n dS  =
.s

F-dp,  + s F.&z,
Sl  “Sz Cl’ Cz’
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where the line integrals are traversed in the directions inherited from rI and rZ. The two
circles C;  and C;l  are said to form the complete boundary of S, u S,. Equation (12.52)
expresses the surface integral of (curl 1”) * II over S, U Sn  as a line integral over the
complete boundary of S1  u S,. This equation is the extension of Stokes’ theorem for a
cylinder.

Suppose now we apply the same concepts to the surface shown in Figure 12.16. This
surface is again the union of two smooth simple parametric surfaces S, and S,, the images
of two adjacent rectangles Tl and T, . This particular surface is called a Miibius  band;? a

n,

FIGURE 12.16 A Miibius  band considered as the union of two simple parametric
surfaces. Stokes’ theorem does not extend to a Mabius  band.

model can easily be constructed from a long rectangular strip of paper by giving one end a
half-twist and then fastening the two ends together. We define pl, Q~, C1,  and C, for the
Mijbius band as we defined them for the cylinder above. The edge of S1  u S, in this case is
one simple closed curve C’, rather than two. This curve is called the complete boundary
of the Mbbius band.

If we apply Stokes’ theorem to each piece S1  and S,, as we did for the cylinder, we obtain
Equation (12.51). But if we try to consolidate the two surface integrals and the two line
integrals as we did above, we encounter two difficulties. First, the two normals n, and n2
do not agree in direction everywhere on the intersection C, n C,.  (See Figure 12.16.)
Therefore we cannot define a normal n for the whole surface by taking n = n, on S1  and
n = n,,  on S,, as we did for the cylinder. This is not serious, however, because we can define
n to be n, on S, and on C, n C, , and then define n to be n2 everywhere else. This gives a
discontinuous normal, but the discontinuities so introduced form a set of content zero in
the tlv-plane  and do not affect the existence or the value of the surface integral

ss (curl F).  n dS.
SlUSZ

A more serious difficulty is encountered when we try to consolidate the line integrals.
In this example it is not possible to choose the mappings rI and Ye  in such a way that p1
and pZ determine opposite directions on each arc of the intersection C, n C,. This is
illustrated by the arrows in Figure 12.16; one of these arcs is traced twice in the same
direction. On this arc the corresponding line integrals will not necessarily cancel as they

7 After A. F. Mijbius  (1790-1868),  a pupil of Gauss. At the age of 26 he was appointed professor of
astronomy at Leipzig, a position he held until his death. He made many contributions to celestial mechanics,
but his most important researches were in geometry and in the theory of numbers.
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did for the cylinder. Therefore the sum of the line integrals in (12.51) is not necessarily
equal to the line integral over the complete boundary of S, U &, and Stokes’ theorem
cannot be extended to the Mbbius  band.

Note: The cylinder and the Mobius band are examples oforientable and nonorientable
surfaces, respectively. We shall not attempt 1.0  define these terms precisely, but shall
mention some of their differences. For an orientable surface S,  u S, formed from two
smooth simple parametric surfaces as described above, the mappings r1 and r2 can always
be chosen so that pI and pa determine opposite directions on each arc of the intersection
C, C-I C, . Fora  nonorientable surface no such choice is possible. For a smooth orientable
surface a unit normal vector can be defined in a ‘continuous fashion over the entire surface.
For a nonorientable surface no such definition (of  a normal is possible. A paper mode1 of
an orientable surface always has two sides that can be distinguished by painting them with
two different colors. Nonorientable  surfaces have only one side. For a rigorous discussion
of these and other properties of orientable and. nonorientable surfaces, see any book on
combinatorial topology. Stokes’ theorem can be extended to orientable surfaces by a
procedure similar to that outlined above for the cylinder.

Another orientable surface is the sphere shown in Figure 12.17. This surface is the
union of two simple parametric surfaces (hemispheres) Sr and S,,  which we may consider

FIGURE 12.17 Extension of Stokes’ theorem to a sphere.

images of a circular disk in the xy-plane  under mappings y1 and r2,  respectively. We give
r, pl, ps, C,,  C, the same meani,ngs  as in the above examples. In this case the curves C1
and C, are completely matched by the mapping r (they intersect along the equator), and the
surface S, U S, is said to be closed. Moreover, lrI and r2 can be chosen so that the directions
determined by p1  and pz  are opposite on C1  and C, , as suggested by the arrows in Figure
12.17. (This is why S, U S, is orientable.) If we apply Stokes’ theorem to each hemisphere
and add the results we obtain Equation (12.51) as before. The normals n, and n2 agree on
the intersection C1  n Cz, and we can consolidate the integrals over S1  and Sz into one
integral over the whole sphere. The two line integrals on the right of (12.51) cancel
completely, leaving us with the formula

Jl (curlF).ndS  = 0.
SIUSZ

This holds not only for a sphere, but for any orientable closed surface.
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12.19 The divergence theorem (Gauss’ theorem)

Stokes’ theorem expresses a relationship between an integral extended over a surface
and a line integral taken over the one or more curves forming the boundary of this surface.
The divergence theorem expresses a relationship between a triple integral extended over a
solid and a surface integral taken over the boundary of this solid.

THEOREM 12.6. DIVERGENCE THEOREM. Let V be a solid in 3-space  bounded by an orient-
able closedsurface S, and let n be the unit outer normal to S. [f’F isa  continuously differentiable
vector jeld  dejned  on V, we have

(12.53) JJj(divF)dxdydz = jj F.ndS.
V s

Note: If we express F and n in terms of their components, say

and
W, y, z) = P(x,  y, z)i + Q&y, z1.i + W, y, zN

n=cosui+cos/3j+cosyk,

then Equation (12.53) can be written as

(12.54)
ap aQ aR
z + - +

aY
az dx dy dz = (PCOSCL  + Qcosp  + Rcosy)dS.

V S

Proof. It suffices to establish the three equations

ap
ax dx dy dz =

PcosadS,
V s

M
g dx dy dz =

ss
Qcos[!dS,

V
ay

S

sss
$f dx dy dz =

J‘s
RcosydS,

V s

and add the results to obtain (12.54). We begin with the third of these formulas and prove
it for solids of a very special type.

Assume V is a set of points (x, y, z) satisfying a relation of the form

gk Y) I z I.%  Y) for (x, y) in T,

where T is a connected region in the xy-plane, and f and g are continuous functions on T,
with  g(x,  y) If<x,  y) for each (x, y) in T. Geometrically, this means that T is the projec-
tion of V on the xy-plane. Every line through T parallel to the z-axis intersects the solid V
along a line segment connecting the surface z = g(x,  y) 1.0 the surface z =f(x, y). The
boundary surface S consists of an upper cap S, , given by the explicit formula z = f(x, Y) ;
a lower part SZ , given by z = g(x,  y) ; and (possibly) a portion S, of the cylinder generated
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by a line moving parallel to the z-axis along the boundary of T. The outer normal to S has a
nonnegative z-component on S, , has a nonpositive component on S, , and is parallel to the
xy-plane on S, . Solids of this type will be called “xy-projectable.” (An example is shown
in Figure 12.18.) They include all convex solids (for example, solid spheres, ellipsoids,
cubes) and many solids that are not convex (for example, solid tori with axes parallel to the
z-axis).

The idea of the proof is quite simple. We express the triple integral as a double integral
extended over the projection T. Then we show that this double integral has the same value

FIGURE 12.18 An example of a solid that is xy-projectable.

as the surface integral in question. We begin with the formula

sss aR-dxdydz  = j-1 [/gyI;;,Jgdz] dxdy.aZ
V T

The one-dimensional integral with respect to z may be evaluated by the second fundamental
theorem of calculus, giving us

(12.55) Edxdydz  = {Rb,  y,f(x, ~11 - R[x,  Y, g(x,  ~11) dx  dye
V T

For the surface integral we can write

( 1 2 . 5 6 )  jjRcosydS=jjRcosydS+jjRcosydS+  jjRcosydS.
x Xl X2 X3

On S, the normal n is parallel to the xy-plane, so cos y = 0 and the integral over S, is zero.
On the surface S, we use the representation

r(x,  y) = xi + yi + f(x, y)k,
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and on S, we use the representation

r(x,  y) = xi + yj + g(x,  y)k.
On S, the normal n has the same direction as the vector product &/ax  x &/ay  , so we can
write [see Equation (12.25), p. 4361

jj R cos y dS = j j R dx A dy = j j R[x, y, f(x,  y)] dx dy .
Sl 81 T

On S, the normal n has the direction opposite to that of ar/ax  x ar/ay so, by Equation
(12.26),  we have

jj R cos y dS = - jj R dx A dy = - jj R[x, y, g(x, y)] dx dy .
sz SZ T

Therefore Equation (12.56) becomes

jj R cos y dS  = jj {Rk  y,f(x,  Y)I - Rh,  Y,  g(x, y)l)dxdy.
s T

Comparing this with Equation (12.55) we see that

aR
a, dx  dy dz  =

Rcos7)dS.

V s

In the foregoing proof the assumption that V is xy-projectable enabled us to express
the triple integral over V as a double integral over its projection T in the xy-plane. It is
clear that if V is yz-projectable we can use the same type of argument to prove the identity

g dx dy dz = P cos 0: dS ;

V s

and if V is xz-projectable we obtain

3 dx dy dz =
ay

QcosB’dS.

V s

Thus we see that the divergence theorem is valid for all solids projectable on all three
coordinate planes. In particular the theorem holds for every convex solid.

A solid torus with its axis parallel to the z-axis is xy-projectable but not xz-projectable
or yz-projectable. To extend the divergence theorem to such a solid we cut the torus into
four equal parts by planes through its axis parallel to the xz- and yz-planes, respectively,
and we apply the divergence theorem to each part. The triple integral over the whole torus
is the sum of the triple integrals over the four parts. When we add the surface integrals over
the four parts we find that the contributions from the faces common to adjacent parts cancel
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each other, since the outward normals have opposite directions on two such faces. There-
fore the sum of the surface integrals over the four parts is equal to the surface integral over
the entire torus. This example illustrates how the divergence theorem can be extended to
certain nonconvex solids.

12.20 Applications of the divergence theorem

The concepts of curl and divergence of a vector field F = Pi + Qj + Rk were introduced
in Section 12.12 by the formulas

(12.57)

and

div F  ap aQ aR
=z+-+z

ay

(12.58) curlF= (g-F)i+ (E-g)j+ (g-E)k.

To compute div F and curl F from these formulas requires a knowledge of the components
of F. These components, in turn, depend on the choice of coordinate axes in 3-space. A
change in the position of the coordinate axes would mean a change in the components of F
and, presumably, a corresponding change in the functions div F and curl F. With the help
of Stokes’ theorem and the divergence theorem we can obtain formulas for the divergence
and curl that do not involve the components of F. These formulas show that the curl and
divergence represent intrinsic properties of the vector field F and do not depend on the
particular choice of coordinate axes. We discuss first the formula for the divergence.

THEOREM 12.7. Let V(t) be a solid sphere of radius t > 0 with center at a point a in
3-space, and let S(t) denote the boundary of V(t). Let F be a vectorfield  that is continuously
differentiable on V(t). Then if 1 V(t)1  denotes the volume of V(t), and if n denotes the unit
outer normal to S, we have

(12.59) div F(a) = lim - F.ndS.

Proof. Let  P = div F. If E > 0 is given we must find a 6 > 0 such that

da> - &//F-ndSI<c whenever O<t<6.

S(t)

Since q is continuous at a, for the given E there is a 3-ball B(a; h) such that

whenever x E B(a; h) .

Therefore, if we write y(a) = v(x) + [v(a) - q(x)]  and integrate both sides of this
equation over a solid sphere V(t) of radius t < h) we find

da> IUOI  = JJs ~(4 dx  dy  dz + ssj  [da> - dx)l  dx dy  dz .
V(t) V(t)
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If we apply the divergence theorem to the first triple integral on the right and then trans-
pose this term to the left, we obtain the relation

Id4 - dx)l dx LAY dz I ; IV01  < E IV01  .

V(t)

When we divide this inequality by 1 V(t)1  we see that (12.60:)  holds with 6 = h. This proves
the theorem.

In the foregoing proof we made no special use of the fact that V(t) was a sphere. The
same theorem holds true if, instead of spheres, we use any set of solids V(t) for which
the divergence theorem is valid, provided these solids contain the point a and shrink to
a as t --f  0. For example, each V(t) could be a cube inscribed in a sphere of radius t about
a; exactly the same proof would apply.

Theorem 12.7 can be used to give a physical interpretation of the divergence. Suppose F
represents the flux density vector of a steady flow. Then the surface integral JJ F - n dS

S(t)
measures the total mass of fluid flowing through S in unit time in the direction of n. The
quotient ,J;J F. n dS/l  V(t)/ represents the mass per unit volume that flows through S in

unit time in the direction of n. As t -+  0, the limit of this quotient is the divergence of F at
a. Hence the divergence at a can be interpreted as the time rate of change of mass per unit
volume per unit time at a.

In some books on vector analysis, Equation (12.59) is laken as the dejnition of diver-
gence. This makes it possible to assign a physical meaning to the divergence immediately.
Also, formula (12.59) does not involve the components of F. Therefore it holds true in
any system of coordinates. If we choose for V(t)  a cube with its edges parallel to the
xyz-coordinate  axes and center at a, we can use Equation (12.59) to deduce the formula
in (12.57) which expresses div F in terms of the components of F. This procedure is out-
lined in Exercise 14 of Section 12.21.

There is a formula analogous to (12.59) that is sometimes used as an alternative definition
of the curl. It states that

(12.61) curl F(u) = lim - n x FdS,

where V(t)  and S(t) have the same meanings as in Theorem 12.7. The surface integral
that appears on the right has a vector-valued integrand. Such integrals can be defined in
terms of components. The proof of (12.61) is analogous to that of Theorem 12.7.

There is another formula involving the curl that can be deduced from (12.61) or derived
independently. It states that

(12.62)
1

n * curl F(a) = lim - I;* da.
t-10 IS(t)1 C(t)

In this formula, S(t) is a circular disk of radius t and center at a, and IS(t)1  denotes its
area. The vector n is a unit normal to S(t),  and a is the function that traces out C(t) in a
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direction that appears counterclockwise when viewed from the tip of n. The vector field
F is assumed to be continuously differentiable on S(t). A proof of (12.62) can be given by
the same method we used to prove (12.59). We let m(x) = n * curl F(x) and argue as
before, except that we use surface integrals instead of triple integrals and Stokes’ theorem
instead of the divergence theorem.

If F is a velocity field, the line integral over C(t) is called the circulation of F along C(t);
the limit in (12.62) represents the circulation per unit area at the point a. Thus, II * curl F(a)

can be regarded as a “circulation density” of F at point a, with respect to a plane perpen-
dicular to n at a.

When n takes the successive values i, j, and k, the dot products i * curl F, j * curl F,
and k . curl I: are the components of curl F in rectangular coordinates. When Equation
(12.61) is taken as the starting point for the definition of curl, the formula in (12.58) for the
rectangular components of curl F can be deduced from (12.62) in exactly this manner.

12.21 Exercises

I. Let S be the surface of the unit cube, 0 5 x < 1, 0 5 y 5 1,  0 I z 5 1,  and let n be the
unit outer normal to S. If F(x,  y, z) = x2i + y2j $ z2k,  use the divergence theorem to evaluate
the surface integral Jj I;.  n dS. Verify the result by evaluating the surface integral directly.

2. The sphere x2 + y2 “+ z2 = 25 is intersected by the plane z = 3. The smaller portion forms a
solid Y bounded by a closed surface S,,  made up of two parts, a spherical part S, and a planar
part S, . If the unit outer normal of V is cos a i + cos B  j + cos y k, compute the value of the
surface integral

J‘s
(xz cos u + yz cos B + cos y) dS

s

if (a) S is the spherical cap St, (b) S is the planar base S, , (c) S is the complete boundary S, .
Solve part (c) by use of the results of parts (a) and (b), and also by use of the divergence
theorem.

3. Let n = cos a i + cos /l j + cos y k be the unit outer normal to a closed surface S whichbounds
a homogeneous solid V of the type described in the divergence theorem. Assume that the
center of mass (2,  8, i) and the volume 1 V(  of V are known. Evaluate the following surface
integrals in terms of 1 V(  and X, 7, i.

(a> rj(xcosa  +ycosp  +zcosy)dS.
s

(b) JJ (xz cos a + 2yz cos /?  + 3z2 cos y) dS.
s

(c) jr  01” cos a + 2xy  cos /3 - xz cos y) dS.
s

(d) Express JJ (x2  + y2)(xi  + yj) n dS in terms of the volume I VI and a moment of inertia
of the solid. S

In Exercises 4 through 10, af/ an and ag/ an  denote directional derivatives of scalar fields f and g
in the direction of the unit outer normal n to a closed surface S which bounds a solid V of the type
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described in the divergence theorem. That is, af/ an  = Vf ’ n and ag/ an = Vg  . n . In each of these
exercises prove the given statement. You may assume continuity of all derivatives involved.

5. gdS=O whenever f is harmonic in V.

6. jif;dS = ~~~fVzgdxdydz  + Jj-1  vf.  vgdxdj’dz.
S v V

8. //f;dS  = //g$dS if both f and g are harmonic in V.

9. jif~~~=~~~,Vf,sbdv" if f is harmonic in V.

S V

1
10. V2f(a)  = lim -

t-0 I v(t)1
-gdS, where V(t) is a solid sphere of radius I with center at II,

is(t)
S(t) is the surface of V(t), and 1 V(t)1  is the volume of V(t).

11. Let V be a convex region in 3-space whose boundary is a closed surface S and let n be the
unit outer normal to S. Let F and G be two continuously differentiable vector fields such that

curl F = curl G and div F = div G everywhere in V,

and such that
G.n = F.n everywhere on S ,

Prove that F = G everywhere in V. [Hint: Let H = F - G, find a scalar field f such that
H = Vf, and use a suitable identity to prove that JJj  II  Of (I2 dx du dz = 0. From this deduce
that H = 0 in V.] V

12. Given a vector field G and two scalar fields f and g, each continuously differentiable on a
convex solid V bounded by a closed surface S. Let n denote the unit outer normal to S. Prove
that there is at most one vector field F satisfying the following three conditions:

curl F = G and div F = g in V, F.n =f on S.

13. Let S be a smooth parametric surface with the property that each line emanating from a point
P intersects S once at most. Let Q(S) denote the set of lines emanating from P and passing
through S. (See Figure 12.19.) The set n(S) is called the solid angle with vertex P subtended
by S. Let E(a)  denote the intersection of n(S)  with the surface of the sphere of radius a
centered at P. The quotient

area of X(a)
a2
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FIGURE 12.19 The solid angle n(S)  with vertex P subtended by a surface S. It is

measured by the quotient ISZ(S)J  =
area of Z(a)

a2 .

is denoted by ] n(S)]  and is used as a measure of the solid angle n(S).
(a) Prove that this quotient is equal to the surface integral

‘<dS,

S

where r is the radius vector from P to an arbitrary point of S, and r = llrll . The vector n is
the unit normal to S directed away from P. This shows that the quotient for In(S)]  is inde-
pendent of the radius a. Therefore the solid angle can be measured by the area of the intersection
of n(S)  and the unit sphere about P. [Hint: Apply the divergence theorem to the portion of
n(S)  lying between S and C(a).]
(b) Two planes intersect along the diameter of a sphere with center at P. The angle of inter-
section is 8, where 0 < % < rr. Let S denote the smaller portion of the surface of the sphere
intercepted by the two planes. Show that 1 n(S)]  = 2%.

14. Let k’(t) denote a cube of edge 2t and center at (I,  and let S(t) denote the boundary of the
cube. Let n be the unit outer normal of S(t) and let ) V(t)1  denote the volume of the cube.
For a given vector field F that is continuously differentiable at a, assume that the following
limit exists :

1

‘,‘t”,  I W)l4
F.ndS,

S(t)
and use this limit as the definition of the divergence, div F(a). Choose xyz-coordinate axes
parallel to the edges of V(t) and let P, Q, and R be the components of F relative to this coordi-
nate system. Prove that div F(a) = &P(u)  + &Q(u)  + &R(a).  [Hint:  Express the surface
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integral as a sum of six double integrals taken over the faces of the cube. Then show that
l/l k’(t)/  times the sum of the two double integrals over the faces perpendicular to the z-axis
approaches the limit D&a)  as t --f  0. Argue in a similar way for the remaining terms.]

15. A scalar field e,  which is never zero has the properties

llV~l12 = 4q and div (v,Oq)  = 10~.

Evaluate the surface integral

where S is the surface of a unit sphere with center at the origin, and aplan  is the directional
derivative of ‘p  in the direction of the unit outer normal to S.
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13
SET FUNCTIONS AND ELEMENTARY PROBABILITY

13.1 Historical introduction

A gambler’s dispute in 1654 led to the creation of a mathematical theory of probability by
two famous French mathematicians, Blaise Pascal and Pierre de Fermat. Antoine
Gombaud, Chevalier de M&C,  a French nobleman with an interest in gaming and gambling
questions, called Pascal’s attention to an apparent contradiction concerning a popular dice
game. The game consisted in throwing a pair of dice 24 times; the problem was to decide
whether or not to bet even money on the occurrence of at least one “double six” during
the 24 throws. A seemingly well-established gambling rule led de M&C  to believe that
betting on a double six in 24 throws would be profitable, but his own calculations indicated
just the opposite.

This problem and others posed by de MCrC led to an exchange of letters between Pascal
and Fermat in which the fundamental principles of probability theory were formulated
for the first time. Although a few special problems on games of chance had been solved
by some Italian mathematicians in the 15th and 16th centuries, no general theory was
developed before this famous correspondence.

The Dutch scientist Christian Huygens, a teacher of Leibniz, learned of this corre-
spondence and shortly thereafter (in 1657) published the first book on probability; entitled
De Ratiociniis in Ludo Aleae,  it was a treatise on problems associated with gambling.
Because of the inherent appeal of games of chance, probability theory soon became popular,
and the subject developed rapidly during the 18th century. The major contributors during
this period were Jakob Bernoulli? (1654-1705) and Abraham de Moivre (1667-1754).

In 1812 Pierre de Laplace  (1749-1827) introduced a host of new ideas and mathematical
techniques in his book, Thkorie  Analytique des Probabilitb.  Before Laplace,  probability
theory was solely concerned with developing a mathematical analysis of games of chance.
Laplace  applied probabilistic ideas to many scientific and practical problems. The theory
of errors, actuarial mathematics, and statistical mechanics are examples of some of the
important applications of probability theory developed in the 19th century.

Like so many other branches of mathematics, the development of probability theory
has been stimulated by the variety of its applications. Conversely, each advance in the
theory has enlarged the scope of its influence. Mathematical statistics is one important
branch of applied probability; other applications occur in such widely different fields as

t Sometimes referred to as James Bernoulli.
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genetics, psychology, economics, and engineering. Many workers have contributed to the
theory since Laplace’s time; among the most important are Chebyshev, Markov, von
Mises, and Kolmogorov.

One of the difficulties in developing a mathematical theory of probability has been to
arrive at a definition of probability that is precise enough for use in mathematics, yet
comprehensive enough to be applicable to a wide range of phenomena. The search for a
widely acceptable definition took nearly three centuries and was marked by much
controversy. The matter was finally resolved in the 20th century by treating probability
theory on an axiomatic basis. In 1933 a monograph by a Russian mathematician
A. Kolmogorov outlined an axiomatic approach that forms the basis for the modern theory.
(Kolmogorov’s monograph is available in English translation as Foundations of Probability
Theory, Chelsea, New York, 1950.) Since then the ideas have been refined somewhat and
probability theory is now part of a more general discipline known as measure theory.

This chapter presents the basic notions of modern elementary probability theory along
with some of its connections to measure theory. Applications are also given, primarily to
games of chance such as coin tossing, dice, and card games. This introductory account is
intended to demonstrate the logical structure of the subject as a deductive science and to
give the reader a feeling for probabilistic thinking.

13.2 Finitely additive set functions

The area of a region, the length of a curve, or the mass of a system of particles is a
number which measures the size or content of a set. All these measures have certain
properties in common. Stated abstractly, they lead to a general concept called a finitely
additive set function. Later we shall introduce probability as another example of such a
function. To prepare the way, we discuss first some properties common to all these
functions.

A functionf: & + R whose domain is a collection JZZ of sets and whose function values
are real numbers, is called a set function. If A is a set in class &,  the value of the function
at A is denoted by f(A).

DEFINITION OF A FINITELY ADDITIVE SET FUNCTION. A set function f: d -+ R is said to be
finitely additive if

(13.1) f(A u B) =fV) +fW

whenever A and B are disjoint sets in ~2’ such that A U B is also in &.

Area, length, and mass are all examples of finitely additive set functions. This section
discusses further consequences of Equation (13.1).

In the usual applications, the sets in ~2  are subsets of a given set S, called a universal set.
It is often necessary to perform the operations of union, intersection, and complementation
on sets in &. To make certain that & is closed under these operations we restrict & to be
a Boolean algebra, which is defined as follows.
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DEFINITION OF A BOOLEAN ALGEBRA OF SETS. A nonempty  class & of subsets of a given
universal set S is called a Boolean algebra if for every A and B in d we have

AuBE& and A’E22.

Here A’ = S - A, the complement of A relative to S.

A Boolean algebra &?  is also closed under intersections and differences, since we have

A n B = (A’ u B’)’ and A-B=AnB’.

This implies that the empty set 0 belongs to Se  since ,Z = A - A for some A in &.
Also, the universal set S is in JZ?  since S = 0 ’ .

Many Boolean algebras can be formed from the subsets of a given universal set S. The
smallest such algebra is the class d, = { 0 , S} , which consists of only two special subsets:
ia and S. At the other extreme is the class zJca,,  which consists of all subsets of S. Every
Boolean algebra J&’ consisting of subsets of S satisfies the inclusion relations s9, c JXI  E
&I.

The property of finite additivity of set functions in Equation (13.1) requires A and B to
be disjoint sets. The next theorem drops this requirement.

T H E O R E M  13.1. Let f: JY -+ R be a finitely additive set function defined on a Boolean
algebra &’  of sets. Then for all A and B in .&  we have

(13.2) f(A  u 8 =fW  +f(B  - 4,

and

(13.3) f(A u B) = f(A)  + f(B)  - f(A n B) .

Proof. The sets A and B - A are disjoint and their union is A U B. Hence, by applying
(13.1) to A and B - A we obtain (13.2).

To prove (13.3) we first note that A n B’ and B are disjoint sets whose union is A U B.
Hence by (13.1) we have

(13.4) f (A u B) = f (A n B’) + f(B) I

Also, A n B’ and A n B are disjoint sets whose union is A, so (13.1) gives us

(13.5) f(A) = f(A  n B’) + f(A n B)  .

Subtracting (13.5) from (13.4) we obtain (13.3).

13.3 Finitely additive measures

The set functions which represent area, length, and mass have further properties in
common. For example, they are all nonnegative set functions. That is,

for each A in the class @’  under consideration.
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DEFINITION OF A FINITELY ADDITIVE MEASURE. A nonnegative set function f: J# + R that is
finitely additive is called a finitely  additive measure, or simply a measure.

Using Theorem 13.1 we immediately obtain the following further properties of measures.

THEOREM 13.2. Let f: SI + R be ajnitely  additive measure dejned  on a Boolean algebra&.
Then for all sets A and B in ~2 we have

(a>  f (A  U B) I SW + f W .
(b) f(B  - 4 =fW  -fW i f  AGB.
Cc>  f(A)  < f(B) if A c B. (Monotone property)

(4 f(O)  = 0.

Proof. Part (a) follows from (13.3), and part (b) follows from (13.2). Part (c) follows
from (b), and part (d) follows by taking A = B = 0 in (b).

EXAMPLE. The number of elements in a finite set. Let S = {a,, a2, . . . , a,} be a set
consisting of n (distinct) elements, and let & denote the class of all subsets of S. For each
A in JZZ,  let y(A) denote the number of distinct elements in A (V is the Greek letter “nu”).
It is easy to verify that this function is finitely additive on &. In fact, if A has k elements
and if B has m elements, then v(A)  = k and V(B)  = m . If A and B are disjoint it is clear
that the union A V B is a subset of S with k + m elements, so

This particular set function is nonnegative, so v is a measure.

13.4 Exercises

1. Let & denote the class of all subsets of a given universal set and let A and B be arbitrary sets
in & . Prove that:
(a) A n B’ and B are disjoint.
(b) A u B = (A n B’) u B. (This formula expresses A u B as the union of disjoint sets.)
(c) A n B and A n B’ are disjoint.
(d) (A n B) u (A n B’) 7 A. (This formula expresses A as a union of two disjoint sets.)

2. Exercise l(b) shows how to express the union of two sets as the union of two disjoint sets.
Express in a similar way the union of three sets ‘4, u A, v A, and, more generally, of n sets
A,uA,u~~~uA,. Illustrate with a diagram when II = 3.

3. A study of a set S consisting of 1000 college graduates ten years after graduation revealed
that the “successes” formed a subset A of 400 members, the Caltech graduates formed a subset
B of 300 members, and the intersection A n B consisted of 200 members.
(a) For each of the following properties, use set notation to describe, in terms of unions and
intersections of A, B, and their complements A’ and B’ relative to S,  the subsets consisting of
those persons in S that have the property:

(i) Neither a “success” nor a Caltech graduate.
(i) A “success” but not a Caltech graduate.
(iii) A “success” or a Caltech  graduate, or both.
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(iv) Either a “success” or a Caltech graduate, but not both.
(v) Belongs to not more than one of A or B.

(b) Determine the exact number of individuals in each of the five subsets of part (a).
4. Letfbe a finitely additive set function defined on a class .sfl of sets. Let A,, . . . , A, be n sets

in &’  such that Ai  n Aj  = 0 if i # j. (Such a collection is called a disjoint collection of sets.)

If the union 6 Al, is in class & for all m < n, use induction to prove that
k=l

f ( kcl  Ak)  = kzlf(Ak) .

In Exercises 5, 6, and 7, S denotes a finite set consisting of n distinct elements, say S =
h.~2,.~~,GJ.

5. Let A, = {al},  the subset consisting of a, alone. Show that the class &?r  = { 121,  A,, A;,  S} is
the smallest Boolean algebra containing A,.

6. Let A, = (al},  A, = {u2},  Describe, in a manner similar to that used in Exercise 5, the smallest
Boolean algebra gz containing both A, and A,.

7. Do the same as in Exercise 6 for the subsets A, = {al}, Aa = {u2},  and A, = {ua}.
8. If gk denotes the smallest Boolean algebra which contains the k subsets A, = {al},  A, =

(4, . . . , Al, = {Us}, show that gk contains 2”+l subsets of S if k < n and 2n  subsets if k = n.
9. Letfbe a finitely additive set function defined on the Boolean algebra of all subsets of a given

universal set S. Suppose it is known that

fU A B)  =f(A)f(W

for two particular subsets A and B of S. Iff(S)  = 2, prove that

f(A ” B) = f(A’) + f(B’) - f(A’)f(B’)  .

10. If A and B are sets, their symmetric difference A n B is the set defined by the equation A A B =
(A - B) u (B - A). Prove each of the following properties of the symmetric difference.
(a) AAB=BAA.
(b)AAA=@.
(c) AABr(AAC)u(CAB).
(d) A a B is disjoint from each of A and B.
(e) (A AB) AC=AA(BAC).
(f) Iffis a finitely additive set function defined on the Boolean algebra d of all subsets of a
given set S, then for all A and B in d we havef(A A B) =f(A)  +f(B)  - 2f(A  n B).

13.5 The definition of probability for finite sample spaces

In the language of set functions, probability is a specific kind of measure (to be denoted
here by P)  defined on a specific Boolean algebra g of sets. The elements of 3 are subsets
of a universal set S. In probability theory the universal set S is called a sample space. We
discuss the definition of probability first for finite sample spaces and later for infinite sample
spaces.

DEFINITION OF PROBABILITY FOR FINITE SAMPLE SPACES. Let 9I denote a Boolean algebra
whose elements are subsets of a givenJinite  set S. A set jbnction  P dejined on 93’ is called a
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probabilitjv  measure if it satisfies the following three conditions.
(a) P isfinitetv  additive.
(b) P is nonnegative.
(c) P(S) = 1.

In other words, for finite sample spaces probability is simply a measure which assigns the
value 1 to the whole space.

It is important to realize that a complete description of a probability measure requires
three things to be specified: the sample space S, the Boolean algebra 9?  formed from certain
subsets of S, and the set function P. The triple (S, 9, P) is often called aprobability space.
In most of the elementary applications the Boolean algebra 3’ is taken to be the collection
of all subsets of S.

EXAMPLE. An illustration of applied probability theory is found in the experiment of
tossing a coin once. For a sample space S we take the set of all conceivable outcomes of
the experiment. In this case, each outcome is either “heads” or “tails,” which we label by the
symbols h and t. Thus, the sample space S is {h, t}, the set consisting of h and t. For the
Boolean algebra we take the collection of all subsets of S; there are four, ,@,  S, H, and T,
where H = {h} and T = {t}. Next, we assign probabilities to each of these subsets. For
the subsets ia and S we have no choice in the assignment of values. Property (c) requires
that P(S) = 1, and, since P is a nonnegative measure, P(D) = 0. However, there is some
freedom in assigning probabilities to the other two subsets, Hand T. Since H and Tare
disjoint sets whose union is S, the additive property requires that

pm + P(T) = P(S) = 1.

We are free to assign any nonnegative values whatever to P(H) and P(T) so long as their
sum is 1. If we feel that the coin is unbiased so that there is no apriori reason to prefer
heads or tails, it seems natural to assign the values

P(H) = P(T) = 4.

If, however, the coin is “loaded,” we may wish to assign different values to these two
probabilities. For example, the values P(H) = 4 and P(T) = $ are just as acceptable as
P(H) = P(T) = 4. In fact, for any real p in the interval 0 < p 5 1 we may define
P(H) = p and P(T) = 1 - p, and the resulting function P will satisfy all the conditions
for a probability measure.

For a given coin, there is no mathematical way to determine what the probability p
“really” is. If we choosep  = 4 we can deduce logical consequences on the assumption that
the coin is fair or unbiased. The theory for unbiased coins can then be used to test the
fairness of an actual coin by performing a large number of experiments with the coin and
comparing the results with the predictions based on the theory. The testing of agreement
between theory and empirical evidence belongs to that branch of applied probability known
as statistical inference, and will not be discussed in this book.

The foregoing example is a typical application of the concepts of probability theory.
Probability questions often arise in situations referred to as “experiments.” We shall not
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attempt to define an experiment; instead, we shall merely mention some familiar examples:
tossing one or more coins, rolling a pair of dice, dealing a bridge hand, drawing a ball from
an urn, counting the number of female students at the California Institute of Technology,
selecting a number from a telephone directory, recording the radiation count of a Geiger
counter.

To discuss probability questions that arise in connection with such experiments, our
first task is to construct a sample space S that can be used to represent all conceivable
outcomes of the experiment, as we did for coin tossing. Each element of S should represent
an outcome of the experiment and each outcome should correspond to one and only one
element of S. Next, we choose a Boolean algebra L%’ of subsets of S (usually all subsets of
S) and then define a probability measure P on g. The choice of the set S, the choice of ~23,
and the choice of P will depend on the information known about the details of the experi-
ment and on the questions we wish to answer. The purpose of probability theory is not to
discuss whether the probability space (S, LAY’,  P) has been properly chosen. This motivation
belongs to the science or gambling game from which the experiment emanates, and only
experience can suggest whether or not the choices were well made. Probability theory is the
study oj’logical  consequences that can be derived once the probability space is given. Making
a good choice of the probability space is, strictly speaking, not probability theory - it is
not even mathematics; instead, it is part of the art of applying probability theory to the
real world. We shall elaborate further on these remarks as we deal with specific examples
in the later sections.

If S = {a,, a,, . . . , a,}, and if z% consists of all subsets of S, the probability function P
is completely determined if we know its values on the one-element subsets, or singletons:

P(h>>,  P(hH, . . . , P({a,l).
In fact, every subset A of S is a disjoint union of singletons, and P(A) is determined by the
additive property. For example, when

A = {al} U {az}  U . * . U {ok},

the additive property requires that

W) = i: fY{aJ).
i=l

To simplify the notation and the terminology, we write P(a,)  instead of P({a,}).  This
number is also called the probability C$  the point ai . Therefore, the assignment of the point
probabilities P(x) for each element x in a finite set S amounts to a complete description of
the probability function P.

13.6 Special terminology peculiar to probability theory

In discussions involving probability, one often sees phrases from everyday language
such as “two events are equally likely,” “an event is impossible,” or “an event is certain
to occur.” Expressions of this sort have intuitive appeal and it is both pleasant and helpful
to be able to employ such colorful language in mathematical discussions. Before we can do
so, however, it is necessary to explain the meaning of this language in terms of the funda-
mental concepts of our theory.

Because of the way probability is used in practice, it is convenient to imagine that each
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probability space (S, 2?,  P)  is associated with a real or conceptual experiment. The
universal set S can then be thought of as the collection of all conceivable outcomes of the
experiment, as in the example of coin tossing discussed in the foregoing section. Each
element of S is called an outcome or a sample and the subsets of S that occur in the Boolean
algebra 9?  are called events. The reasons for this terminology will become more apparent
when we treat some examples.

Assume we have a probability space (S, 9Y,  P)  associated with an experiment. Let A
be an event, and suppose the experiment is performed and that its outcome is X. (In other
words, let x be a point of S.) This outcome x may or may not belong to the set A. If
it does, we say that the event A has occurred. Otherwise, we say that the event A has not
occurred, in which case x E A’, so the complementary event A’ has occurred. An event A
is called impossible if A = 0 , because in this case no outcome of the experiment can be
an element of A. The event A is said to be certain if A = S, because then every outcome
is automatically an element of A.

Each event A has a probability P(A) assigned to it by the probability function P. [The
actual value of P(A) or the manner in which P(A) is assigned does not concern us at
present.] The number P(A) is also called the probability that an outcome of the experiment
is one of the elements of A. We also say that P(A) is the probability that the event A occurs
when the experiment is performed.

The impossible event @ must be assigned probability zero because P is a finitely additive
measure. However, there may be events with probability zero that are not impossible.
In other words, some of the nonempty  subsets of S may be assigned probability zero. The
certain event S must be assigned probability 1 by the very definition of probability, but
there may be other subsets as well that are assigned probability 1. In Example 1 of Section
13.8 there are nonempty  subsets with probability zero and proper subsets of S that have
probability 1.

Two events A and B are said to be equally likely if P(A) = P(B). The event A is called
more likely than B if P(A) > P(B), and at least as likely as B if P(A) > P(B). Table 13.1
provides a glossary of further everyday language that is often used in probability discus-
sions. The letters A and B represent events, and x represents an outcome of an experiment
associated with the sample space S. Each entry in the left-hand column is a statement
about the events A and B, and the corresponding entry in the right-hand column defines the
statement in terms of set theory.

TABLE 13.1. Glossary of Probability Terms

Statement Meaning in set theory

At least one of A or B occurs
Both events A and B  occur
Neither A nor B occurs
A occurs and B does not occur
Exactly one of A or B occurs
Not more than one of A or B occurs
If A occurs, so does B (A implies B)
A and B are mutually exclusive
Event A or event B
Event A and event B

-

XEA  uB
XEA  nB

XEA’  n B’
xgAnB’

x E (A n B’) u (A’ n B)
x E (A n B)’

AsB
AnB=a
AuB
AnB
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13.7 Exercises

Let S be a given sample space and let A, B, and C denote arbitrary events (that is, subsets of S
in the corresponding Boolean algebra g).  Each of the statements in Exercises 1 through 12 is
described verbally in terms of A, B, C. Express these statements in terms of unions and intersections
of 11,  B, C and their complements.

1. If A occurs, then B does not occur. 7. At least two of A, B, C occur.
2. None of the events A, B, C occurs. 8. Exactly two occur.
3. Only A occurs. 9. Not more than two occur.
4. At least one of A, B, C occurs. 10. A and C occur but not B.
5. Exactly one of A, B, C occurs. Il.  All three events occur.
6. Not more than one occurs. 12. Not more than three occur.

13. Let A denote the event of throwing an odd total with two dice, and let B denote the event of
throwing at least one 6. Give a verbal description of each of the following events:

(a) A u B, (d) A’ n B,
@)A  nB, (e) A’ n B’,
(c)  A n B’, (f) A’ u B.

14. Let A and B denote events. Show that

JYA n B) 5 P(A) I f’(A u B) 5 P(A) + P(B).

15. Let A and B denote events and let a = P(A), b = P(B), c = P(A n B) . Compute, in terms of
a, b, and c,  the probabilities of the following events:

(a)  A’, (d) A’ u B’,
(b) B’, (e) A’ u B,
Cc> A u B, (f) A n B’.

16. Given three events A, B, C. Prove that

13.8 Worked examples

We shall illustrate how some of the concepts of the foregoing sections may be used to
answer specific questions involving probabilities.

EXAMPLE 1. What is the probability that at least one “head” will occur in two throws
of a coin?

First Solution. The experiment in this case consists of tossing a coin twice; the set S
of all possible outcomes may be denoted as follows:

S = {hh, ht, th, tt}.

If we feel that these outcomes are equally likely, we assign the point probabilities P(x) = 4
for each x in S. The event “at least one head occurs” may be described by the subset

A = {hh, ht, th}.
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The probability of this event is the sum of the point probabilities of its elements. Hence,
P(A)=$+f+~=g.

Second Solution. Suppose we use the same sample space but assign the point proba-
bilities as follows :t

P(hh) = 1) P(h)  = P(h)  = lJ(tt) = 0.

Then the probability of the event “at least one head occurs” is

P(hh) + P(ht)  + P(th)  = I + 0 + 0 = 1 .

The fact that we arrived at a different answer from that in the first solution should not
alarm the reader. We began with a different set of premises. Psychological considerations
might lead us to believe that the assignment of probabilities in the first solution is the more
natural one. Indeed, most people would agree that this is so if the coin is unbiased. How-
ever, if the coin happens to be loaded so that heads always turns up, the assignment of
probabilities in the second solution is more natural.

The foregoing example shows that we cannot expect a unique answer to the question
asked. To answer such a question properly we must specify the choice of sample space
and the assignment of point probabilities. Once the sample space and the point proba-
bilities are known only one probability for a given event can be logically deduced. Different
choices of the sample space or point probabilities may lead to different “correct” answers
to the same question.

Sometimes the assignment of probabilities to the individual outcomes of an experiment
is dictated by the language used to describe the experiment. For example, when an object
is chosen “at random” from a finite set of II elements, this is intended to mean that each
outcome is equally likely and should be assigned point probability l/n. Similarly, when we
toss a coin or roll a die, if we have no apriori reason to feel that the coin or die is loaded,
we assume that all outcomes are equally likely. This agreement wiI1 be adopted in all the
exercises of this chapter.

EXAMPLE 2. If one card is drawn at random from each of two decks, what is the proba-
bility that at least one is the ace of hearts?

Solution. The experiment consists in drawing two cards, a and b, one from each deck.
Suppose we denote a typical outcome as an ordered pair (a, b). The number of possible
outcomes, that is, the total number of distinct pairs (a, b) in the sample space S is 522.
We assign the probability l/522 to each such pair. The event in which we are interested
is the set A of pairs (a, b), where either a or b is the ace of hearts. There are 52 + 51
elements in A. Hence, under these assumptions we deduce that

52+51  1 1
P(A) = ~ - - .

522 = 26 522

t Note that for this assignment of probabilities there are nonempty  subsets of S with probability zero and
proper subsets with probability 1.
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EXAMPLE 3. If two cards are drawn at random from one deck, what is the probability
that one of them is the ace of hearts?

Solution. As in Example 2 we use ordered pairs (a, b) as elements of the sample space.
In this case the sample space has 52 * 51 elements and the event A under consideration
has 51 + 51 elements. If we assign the point probabilities l/(52 * 51) to each outcome,
we obtain

P(A) = g+ = &.

EXAMPLE 4. What is the probability of throwing 6 or less with three dice?

Solution. We denote each outcome of the experiment as a triple of integers (a, b, c)
where a, 6, and c may take any values from 1 to 6. Therefore the sample space consists
of 63  elements and we assign the probability 1/63  to each outcome. The event A in question
is the set of all triples satisfying the inequality 3 < a + b + c 5 6. If A, denotes the
set of (a, 6, c) for which a + b + c = n, we have

A =A, UA, WA, UA,;.

Direct enumeration shows that the sets A,, with n = 3, 4, 5 , and 6 contain 1 , 3 , 6, and 10
elements, respectively. For example, the set A, is given by

A, = {Cl,27 3),  (1, 3,2), (1,  1,4), (1,4, I),  (2, 1,3),

( 2 , 3, 11, (2,2,2), ( 3 , 1,2), (392, 11, (4, 1, 1)).

Therefore A has 20 elements and

P(A) = ; = ; .

EXAMPLE 5. A die is thrown once. What is the probability that the number of points
is either even or a multiple of 3 ?

Solution. We choose the sample space S = {1,2,  3,4,  5,6},  consisting of six elements,
to each of which we assign the probability B. The event “even” is the set A = {2,4, 6))
the event “a multiple of 3” is B = (3, 6). We.are  interested in their union, which is the
set A U B = (2, 3,4,  6). Since this set contains four elements we have P(A  U B) = 4/6.

This example can be solved in another way, using the formula

P(AUB)=P(A)+P(B)-l’(AnB)=$+s-;g.

13.9 Exercises
1. Let S be a finite sample space consisting of n elements. Suppose we assign equal probabilities to

each of the points in S. Let A be a subset of S consisting of k elements. Prove that P(A) = k/n.

For each of Exercises 2 through 8, describe your choice of sample space and state how you are
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assigning the point probabilities. In the questions associated with card games, assume all cards
have the same probability of being dealt.

2. Five counterfeit coins are mixed with nine authentic coins.
(a) A coin is selected at random. Compute the probability that a counterfeit coin is selected.
If two coins are selected, compute the probability that:
(b) one is good and one is counterfeit.
(c) both are counterfeit.
(d) both are good.

3. Compute the probabilities of each of the events described in Exercise 13 of Section 13.7. Assign
equal probabilities to each of the 36 elements of the sample space.

4. What is the probability of throwing at least one of 7, 11, or 12 with two dice?
5. A poker hand contains four hearts and one spade. The spade is discarded and one card is

drawn from the remainder of the deck. Compute the probability of filling the flush-that is, of
drawing a fifth heart.

6. In poker, a straight is a five-card sequence, not necessarily all of the same suit. If a poker hand
contains four cards in sequence (but not A234 or JQKA) and one extra card not in the sequence,
compute the probability of filling the straight. (The extra card is discarded and a new card is
drawn from the remainder of the deck.)

7. A poker hand has four cards out of a five-card sequence with a gap in the middle (such as
5689),  and one extra card not in the sequence. The extra card is discarded and a new one is
drawn from the remainder of the deck. Compute the probability of filling the “inside straight.”

8. An urn contains A white stones and B black stones. A second urn contains C white stones and
D black stones. One stone is drawn at random from the first urn and transferred to the second
urn. Then a stone is drawn at random from the second urn. Calculate the probability of each
of the following events.
(a) The first stone is white.
(b) The first stone is black.
(c) The second stone is white, given that the transferred stone was white.
(d) The second stone is white, given that the transferred stone was black.

9. Two stones are drawn with replacement from an urn containing four red stones and two white
stones. Calculate the probability of each of the following events.
(a) Both stones are white.
(b) Both stones are red.
(c) Both stones are the same color.
(d) At least one stone is red.

10. Let P,  denote the probability that exactly 12 of the events A and B will occur, where n takes the
values 0, 1, 2. Express each of P,, P,,  P,  in terms of P(A), P(B), and P(A n B).

Odds. Some gambling games are described in terms of “odds” rather than in terms of
probabilities. For example, if we roll a fair die, the probability of the event “rolling a three” is $..
Since there are six possible outcomes, one of which is favorable to the event “rolling a three” and
five of which are unfavorable, this is often described by saying that the odds in favor of the event
are 1 to 5, or the odds against it are 5 to 1. In this case the odds are related to the probability by
the equation

1 1
-=1+5*6

In general, if A is an event with probability P(A) and if a and b are two real numbers such that

(13.6) P(A)  = sb ,
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we say the odds in favor of A are a to b, or the odds against .4  are b to a. Since 1 - a/(a  + b) =
b/(a + b) , the odds against A are the same as the odds in favor of the complementary event A’.
The following exercises are devoted to further properties of odds and their relation to probabilities.

11. If P(A) = 1, show that (13.6) can be satisfied only when b = 0 and a z 0. If P(A) # 1,
show that there are infinitely many choices of a and b satisfying (13.6) but that all have the
same ratio a/b.

12. Compute the odds in favor of each of the events described in Exercise 2.
13. Given two events A and B. If the odds against A are 2 to 1 and those in favor of A u B are

3 to 1, show that
& IWO  52.

Give an example in which P(B) = & and one in which P(B) = 2.

13.10 Some basic principles of combinatorial analysis

Many problems in probability theory and in other branches of mathematics can be
reduced to problems on counting the number of elements in a finite set. Systematic methods
for studying such problems form part of a mathematical discipline known as combinatorial
anabsis.  In this section we digress briefly to discuss some basic ideas in combinatorial
analysis that are useful in analyzing some of the more complicated problems of probability
theory.

If all the elements of a finite set are displayed before us, there is usually no difficulty in
counting their total number. More often than not, however, a set is described in a way
that makes it impossible or undesirable to display all its elements. For example, we might
ask for the total number of distinct bridge hands that can be dealt. Each player is dealt
13 cards from a 52-card deck. The number of possible distinct hands is the same as the
number of different subsets of 13 elements that can be formed from a set of 52 elements.
Since this number exceeds 635 billion, a direct enumeration of all the possibilities is clearly
not the best way to attack this problem; however, it can readily be solved by combinatorial
analysis.

This problem is a special case of the more general problem of counting the number of
distinct subsets of k elements that may be formed from a set of it elements,7  where n 2 k .
Let us denote this number byf(n, k). It has long been known that

(13.7) An,  k) = 0;: ’
where, as usual (3 denotes the binomial coefficient,

n0 n.I
k = k!(n - k)!’

In the problem of bridge hands we have f(52, 13) = (:i) = 635,013,559,600  different
hands that a player can be dealt.

t When we say that a set has n elements, we mean that it has n distinct elements. Such a set is sometimes
called an n-element set.
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There are many methods known for proving (13.7). A straightforward approach is to
form each subset of k elements by choosing the elements one at a time. There are n
possibilities for the first choice, n - 1 possibilities for the second choice, and n - (k - 1)
possibilities for the kth choice. If we make all possible choices in this manner we obtain
a total of

I
n(n - 1). * +-k+l)=(n~.k)!

subsets of k elements. Of course, these subsets are not all distinct. For example, if k = 3
the six subsets

ia, b, 4, {b, c, a>,  {c,  a, bl, {a,~,  bl, {c, b, 4, (6 a, 4

arc all equal. In general, this method of enumeration counts each k-element subset exactly
k! times.7 Therefore we must divide the number n!/(n  - k)! by k! to obtainf(n, k). This
gives usf(n, k) = (;)  , as asserted.

This line of argument is more or less typical of the combinatorial analysis required in
the later sections. Hence it seems worthwhile to digress briefly to discuss the fundamental
principles on which this analysis is based.

We often wish to count the number of elements in the Cartesian product of n finite sets
A . . . . A The Cartesian product is denoted by the symbol A, x * * . x A, and is
dt&ed  by tck  equation

A, x ..a x A,={(a,  ,...,  a,)/a,~A~  ,...,  ~,EA,}.

That is, the Cartesian product consists of the set of all ordered n-tuples (a,, . . . , a,) where
the kth component of the n-tuple comes from the kth set A,.

An example with n = 2 is shown in Figure 13.1. Here A, = { 1, 2,4,  5)  and A, = {I, 3).
There are 4 elements in Al,  and 2 elements in A,, giving a total of 8 elements in the Cartesian
product A, x A,. More generally, if A, consists of k, elements and A, consists of k,
elements, then Al x A, consists of k,k,  elements. By induction on n, it follows that if A,
consists of k, elements, then the Cartesian product A, x . * * x A, consists of k, * * * k,
elements.

To express this result in the language of set functions, let 9 denote the class of all
finite sets and let Y be the set function defined on 9 as follows : If A E 9, v(A)  is the number
of distinct elements in A. (For the empty set we define V(D) = 0 .) Then it is easy to verify
that Y is a finitely additive set function, so we may write

(13.8)

if{&,&,..., S,} is a disjoint collection of finite sets (that is, if Si  n Sj  = QI whenever
i #j).  The number of elements in a Cartesian product may be expressed in terms of Y
as follows :

v(A,  x A, x . . . x A,) = v(A&(A&  * . * v(A,).

t The reason for this will become clear in Example 3 on p. 484, where we give a more detailed derivation
of (13.7).
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FIGURE 13.1 An example illustrating the Cartesian of two sets. The plotted points
represent A, x A,.

A similar formula tells us how to count the number of elements in any set T of n-tuples
if we know the number of possible choices for each of the successive components. For
example, suppose there are k, possible choices for the first component x1. Let k, be the
number of possible choices for the second component x2, once x1 is known. Similarly,
let k, be the number of possible choices for the rth component x,, once x1, xp , . . . , xreI
are known. Then the number of n-tuples that can be formed with these choices is

v(T)  = k,k,  . . . k, .

This formula is often referred to as the principle of sequential counting. It can be proved
by induction on n. In many applications the set of choices for x,.  may not be easy to describe
since it may not be determined until after the choices of the earlier components have been
made. (This was the case when we used the principle to count bridge hands.) Fortunately,
to apply the principle of sequential counting we do not need to know the actual set of
choices for x, but only the number of possible choices for x,.

The additive property in formula (13.8) and the principle of sequential counting provide
the key to the solution of many counting problems. The following examples show how they
can be applied.

EXAMPLE 1. Sampling with replacement. Given a set S consisting of n elements. If
k > 1, how many ordered k-tuples can be formed if each component may be an arbitrary
element of S?

Note: It may be helpful to think of S as an urn containingn  balls labeled 1, 2, . . . , n.
We select a ball and record its label as the first component of our k-tuple. Replacing
the ball in the urn, we again select a ball and use its label as the second component,
and so on, until we have made k selections. Since we replace each ball after it is drawn,
the same label may appear in different components of our k-tuple.
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Solution. Each k-tuple is an element of the Cartesian product

T =  S, x ... x s,,

where each Si  = S. Conversely, each element of T is one of the k-tuples in question.
Hence the number of k-tuples formed in this way is

v(T) = Y(&)  * * * Y(,&)  = nk.

EXAMPLE 2. Sampling without replacement. Given a set S consisting of n elements. If
k 5 n, how many ordered k-tuples can be formed if the components are chosen from S
without replacement, that is to say, if no element of S may be used twice in any given
k-tuple ?

Solution. Consider any k-tuple (x,, x2, . . . , x1<)  formed from the elements of S without
replacement. For the first component x1 there are n choices (the IZ elements of S). When
x1 is chosen there remain n - 1 ways to choose x2. With x2 chosen, there remain n - 2
ways to choose x3, and so on, there being n - k + I ways to choose x,. Therefore, by
the principle of sequential counting, the total number of k-tuples so formed is

n!n(n - l)(n - 2) * * * (n - k + 1) = ~
(n - k)!’

In particular, when k = n this result tells us that n! distinct n-tuples may be formed from
a given set S of n elements, with no two components of any n-tuple being equal.

EXAMPLE 3. The number of k-element subsets of an n-element set. If k 5 n, how many
distinct subsets of k elements can be formed from a set S consisting of n elements?

Solution. Let r denote the number of subsets in question and let us denote these subsets

bY
Al,&,...,&.

These sets are distinct but need not be disjoint. We shall compute r in terms of n and k
by an indirect method. For this purpose, let Bi denote the collection of k-tuples that can
be formed by choosing the components from the elements of Ai without replacement.
The sets B, , B, , . . . , B,.  are disjoint. Moreover, if we apply the result of Example 2 with
n = k we have

v(Bi)  = k! foreachi= I,2  ,...,  r.
Now let

T=B,vB,V...uB,.

Then T consists of all k-tuples that can be formed by choosing the components from S
without replacement. From Example 2 we have

Y(T)  = n!/(n - k)!
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and by additivity we also have

v(T)  = zvY(BJ = k! r.
i=l

Equating the two expressions for V(T) we obtain

n!
r=k!(n-k)!=

This proves formula (,13.7)  stated earlier in this section.

If we use the result of Example 3 to count the total number of subsets of a set S consisting
of n elements, we obtain

n

Since this sum is also obtained when we expand (1 + 1)” by the binomial theorem, the
number of subsets of S is 2”.

13.11 Exercises

1. Let A = {1,2,3). Display in roster notation the set of ordered pairs (a, b) obtained by
choosing the first component from A and the second component from the remaining elements
of A. Can this set of pairs be expressed as a Cartesian product?

2. A two-card hand can be dealt from a deck of 52 cards in 52.51 = 2652 ways. Determine the
number of distinct hands, and explain your reasoning.

3. A senate committee consisting of six Democrats and four Republicans is to choose a chairman
and a vice-chairman. In how many ways can this pair of officers be chosen if the chairman
must be a Democrat ?

4. An experiment consists of tossing a coin twice and then rolling a die. Display each outcome
of this experiment as an ordered triple (a, 6, c), where each of a and b is either H (heads)
or T (tails) and c is the number of points on the upturned face of the die. For example,
(H, H, 3) means that heads came up on both tosses and 3 appeared on the die. Express the
set of all possible outcomes as a Cartesian product and determine the number of possible
outcomes.

5. In how many ways can a bridge deck of 52 cards be dealt into four hands, each containing 13
cards? Explain your reasoning.

6. Two dice, one red and one white, are tossed. Represent the outcome as an ordered pair (a, b),
where a denotes the number of points on the red die, b the number on the white die. How
many ordered pairs (a, 6) are possible ? How many are there for which the sum a + b is:
(a) even? (b) divisible by 3? (c) either even or divisible by 3?

7. A poker hand contains five cards dealt from a deck of 52. How many distinct poker hands
can be dealt containing:
(a) two pairs (for example, 2 kings, 2 aces, and a 3)?
(b) a flush (five cards in a given suit)?
(c) a straight flush (any five in sequence in a given suit, but not including ten, jack, queen,
king, ace)?
(d) a royal flush (ten, jack, queen, king, ace in a single suit)?



486 Set functions and elementary probability

8. Refer to Exercise 7. Compute the probability for a poker hand to be:
(a) a flush.
(b) a straight flush.
(c) a royal flush.

9. How many committees of 50 senators can be formed that contain:
(a) exactly one senator from Alaska?
(b) both senators from Alaska?

10. A committee of 50 senators is chosen at random. Compute the probability that both senators
from Alaska are included.

11. A code group consists of four symbols in a row, each symbol being either a dot or a dash.
How many distinct code groups can be formed?

12. How many k-letter words can be formed with an alphabet containing n letters?
13. Show that:

( a )  (It) +j3) +(:) +..,=(y) +(I) +(:) +...=2+‘.

(b) (;i’ + (;r + + (;y = (;) .

14. Suppose a set of ordered pairs (a, b) is constructed by choosing the first component from a
set of k elements, say from the set {a,, . . . , a,}, and the second component from a set of m
elements, say from {b,, . . . , b,,}. There are a total of m pairs with first component (11,  namely,
(01,  bl), . . . 1 (al, b,,,). Similarly, there are m pairs (ai, b,), . . . , (ai, b,) with first component
ui. Therefore the total number of ordered pairs (a, b) is m + m + + m (k summands).
This sum equals km, which proves the principle of sequential counting for sets of ordered
pairs. Use induction to prove the principle for sets of ordered n-tuples.

13.12 Conditional probability

An unbiased die is thrown and the result is known to be an even number. What is the
probability that this number is divisible by 3? What is the probability that a child is color
blind, given that it is a boy? These questions can be put in the following form: Let A and
B be events of a sample space S. What is the probability that A occurs, given that B has
occurred? This is not necessarily the same as asking for the probability of the event
A n B. In fact, when A = B the question becomes: If A occurs, what is the probability
that A occurs? The answer in this case should be 1 and this may or may not be the proba-
bility of A n B. To see how to treat such problems in general, we turn to the question
pertaining to rolling a die.

When we ask probability questions about rolling an unbiased die, we ordinarily use
for the sample space the set S = {1,2,  3,4,  5, 6) and assign point probability i to each
element of S. The event “divisible by 3” is the subset A = (3, 6) and the event “even” is
the subset B = {2,4,  6). We want the probability that an element is in A, given that it is
in B. Since we are concerned only with outcomes in which the number is even, we disregard
the outcomes 1, 3, 5 and use, instead of S, the set B = {2,4,6}  as our sample space. The
event in which we are now interested is simply the singleton {6},  this being the only outcome
of the new sample space that is divisible by 3. If all outcomes of B  are considered equally
likely, we must assign probability i to each of them; hence, in particular, the probability of
(6) is also i.

Note that we solved the foregoing problem by employing a very elementary idea. We
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simply changed the sample space from S to B and provided a new assignment of probabilities.
This example suggests a way to proceed in general.

Let (S, J%‘,  P) be a given probability space. Suppose A and B are events and consider
the question: “What is the probability that A occurs, given that B has occurred?”
As in the example just treated, we can change the sample space from S to B and provide a
new assignment of probabilities. We are at liberty to do this in any manner consistent with
the definition of probability measures. For B itself we have no choice except to assign the
probability 1. Since we are interested in those elements of A which lie in the new sample
space B, the problem before us is to compute the probability of the event A n B according
to the new assignment of probabilities. That is, if P’ denotes the probability function
associated with the new sample space B, then we must compute P’(A n B).

We shall show now that if P(B) # 0 we can always define a probability function P’
and a Boolean algebra 59’  of subsets of B such that (B, .%‘,  P’) is a probability space. For
the Boolean algebra 3?’ we take the collection of all sets T n B where T is in the original
Boolean algebra G?.  It is easy to verify that .%‘I,  so defined, is indeed a Boolean algebra.
One way to define a probability function P’ on 23”  is simply to divide each of the old
probabilities by P(B). That is, if C E 9?’ we let

P(C)P’(C) = -
f’(B)  ’

(This is where the assumption P(B) # 0 comes in.) We are only changing the scale, with
all probabilities magnified by the factor l/P(B). It is easy to check that this definition of
P’ gives us a bona jide probability measure. It is obviously nonnegative and it assigns
probability 1 to B. The additive property follows at once from the corresponding additive
property for P.

Since each C in 53’  is of the form A n B, where A is an event in the original sample
space S, we can rewrite the definition of P’ as follows:

P’(A n B) =
P(A n B)

J’(B) ’

This discussion suggests that the quotient P(A 17 B)/P(B)  provides a reasonable measure
of the probability that A occurs, given that B occurs. The following definition is made
with this motivation in mind:

DEFINITION OF CONDITIONAL PROBABILITY. Let (S, ~3, P) be a probability space and let
B be an eoent such that P(B) # 0. The conditional probability that an event A will occur,
given that B has occurred, is denoted by the symbol P(A 1 B) (read: “the probability of A,
given B”)  and is dejned  by the equation

P(A 1 B) = ‘(;(;) B).

The conditional probability P(A [ B) is not defined if P(B) = 0.

The following examples illustrate the use of the concept of conditional probability.



488 Set functions and elementary probability

EXAMPLE 1. Let us consider once more the problem raised earlier in this section: A die
is thrown and the result is known to be an even number. What is the probability that this
number is divisible by 3? As a problem in conditional probabilities, we may take for the
sample space the set S = { 1, 2, 3,4,  5, 6) and assign point probabilities Q to each element
of S. The event “even” is the set B = {2,4,  6) and the event “divisible by 3” is the set
A = (3, 6). Therefore we have

This agrees, of course, with the earlier solution in which we used B as the sample space
and assigned probability 4 to each element of B.

EXAMPLE 2. This is an example once used by the Caltech  Biology Department to warn
against the fallacy of superficial statistics. To “prove” statistically that the population of
the U.S. contains more boys than girls, each student was asked to list the number of boys
and girls in his family. Invariably, the total number of boys exceeded the total number of
girls. The statistics in this case were biased because all undergraduates at Caltech  were males.
Therefore, the question considered here is not concerned with the probability that a child
is a boy; rather, it is concerned with the conditional probability that a child is a boy, given
that he comes from a family with at least one boy.

To compute the probabilities in an example of this type consider a sample of 4n families,
each with two children. Assume that n families have 2 boys, 2n families one boy and one
girl, and n families 2 girls. Let the sample space S be the set of all 8n children in these
families and assign the point probability P(X) = 1/(8n)  to each x in S. Let A denote the
event “the child is a boy” and B the event “the child comes from a family with at least one
boy.” The probability P(A) is obviously t. Similarly, P(B) = $ since 3n of the 4n families
have at least one boy. Therefore the probability that a child is a boy, given that he comes
from a family with at least one boy, is the conditional probability

13.13 Independence

An important idea related to conditional probability is the concept of independence of
events, which may be defined as follows:

DEFIWTION OF ISDEPENDENCE. Two events A and B are called independent (or stochasti-
tally  independent) if and only if

(13.9) P(A  n B) = P(A)P(B).

If A and B are independent, then P(A  1 B) = P(A) if P(B) # 0. That is, the conditional
probability of A, given B, is the same as the “absolute” probability of A. This relation
exhibits the significance of independence. The knowledge that B has occurred does not
influence the probability that A will occur.
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EXAMPLE 1. One card is drawn from a 52-card deck. Each card has the same probability
of being selected. Show that the two events “drawing an ace” and “drawing a heart” are
independent.

Solution. We choose a sample space S consisting of 52 elements and assign the point
probability A to each element. The event A, “drawing an ace,” has the probability
P(A) = & = lLs. The event B, “drawing a heart,” has the probability P(B) = 5;  = a.
The event A n B means “drawing the ace of hearts,” which has probability .&. Since
P(A n B) = P(A)P(B),  Equation (13.9) is satisfied and events A and B are independent.

EXAMPLE 2. Three true dice are rolled independently, so that each combination is equally
probable. Let A be the event that the sum of the digits shown is six and let B be the event
that all three digits are different. Determine whether or not these two events are independent.

Solution. For a sample space S we take the set of all triples (a, b, c) with a, b, c ranging
over the values 1, 2, 3, 4, 5, 6. There are 63  elements in S, and since they are equally
probable we assign the point probability 1/63  to each element. The event A is the set of all
triples (a, b, c) for which a + b + c = 6. Direct enumeration shows that there are 10
such triples, namely :

(1,2,3),  (1, 3,2),  (1, 1,4), (194,  I>,

(2, 1,3),  (2, 3, 11,  (2,2,  a,

(3, 1,2),  (3,L  11,

(4,131).

The event B consists of all triples (a, b, c) for which n # 6, b # c, and a # c. There
are 6 . 5 .4 = 120 elements in B. Exactly six of these elements are in set A, so that A n B
has six elements. Therefore

P(A  n B) = 5
63  ’

P(A) = g ) and P(B) = $.

In this case P(A n B) # P(A)P(B);  therefore events A and B are not independent.

Independence for more than two events is defined as follows. A finite collection & of
n events is said to be independent if the events satisfy the multiplicative property

(13.10) P
t i
ii  A, = flP(A,:)
k=l k=l

for every finite subcollection {A,, A,, . . . , A,}, where m may take the values m = 2,
3 ,*-*, n, the sets Ai being in &‘.

When & consists of exactly three events A, B, and C, the condition of independence in
(13. IO)  requires that

(13.11) P(A  n B) = P(A)P(B),  P(A  n C) = P(A)P(C),  P(B n C) = P(B)P(C),
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(13.12) P(A  n B n C) = P(A)P(B)P(C).

It might be thought that the three equations in (13.11) suffice to imply (13.12) or, in other
words, that independence of three events is a consequence of independence in pairs. This
is not true, as one can see from the following example:

Four tickets labeled a, b, c, and abc, are placed in a box. A ticket is drawn at random,
and the sample space is denoted by

S = {a, b, c, abc}.

Define the events A, B, and C as follows:

A = {a, abc}, B = {b, abc}, C = {c, abc}.

In other words, the event X means that the ticket drawn contains the letter x. It is easy
to verify that each of the three equations in (13.11) is satisfied so that the events A, B,
and C are independent in pairs. However, (13.12) is not satisfied and hence the three
events are not independent. The calculations are simple and are left as an exercise for
the reader.

13.14 Exercises

1. Let A and B be two events with P(A) # 0, P(B) # 0. Show that

(13.13) P(A n B) = P(B)P(A 1 B) = P(A)P(B  1 A).

Sometimes it is easier to compute the probabilities P(A) and P(B ) A) directly by enumeration of
cases than it is to compute P(A n B). When this is the case, Equation (13.13) gives a con-
venient way to calculate P(A n B) . The next exercise is an example.

2. An urn contains seven white and three black balls. A second urn contains five white and
five black balls. A ball is selected at random from the first urn and placed in the second. Then
a ball is selected at random from the second. Let A denote the event “black ball on first draw”
and B the event “black ball on second draw.”
(a) Compute the probabilities P(A) and P(B  1 ,4) directly by enumerating the possibilities.
Use Equation (13.13) to compute P(A  n B) .
(b) Compute P(A n B) directly by enumerating all possible pairs of drawings.

3. (a) Let A,, A,, A, be three events such that P(A,  A A,) # 0. Show that

(b) Use induction to generalize this result as follows: If A,, A,, . . . , A, are n events (n > 2)
such that P(A,  n A, n . . n A,-,)  # 0, then

P(A,  n A, n n A,) = P(A,)P(A,  1 AJP(A,  1 A, n’A,)  . P(A,  1 A, n A, n . . n A,-,).

4. A committee of 50 senators is chosen at random. Find the probability that both senators
from Alaska are included, given that at least one is.
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5.

6 .

7.
8 .

9 .

10.

11.

12.

1 3

An urn contains five gold and seven blue chips. Two chips are selected at random (without
replacement). If the first chip is gold, compute the probability that the second is also gold.
A deck of cards is dealt into four hands containing 13 ca.rds each. If one hand has exactly
eight spades, what is the probability that a particular one of the other hands has (a) at least
one spade? (b) at least two spades? (c) a complete suit?
ShowthatP(AuBIC)=P(AIC)+P(BIC)-P(AnBIC).
Let A,, A,, . . , A, be it disjoint events whose union is the entire sample space S. For every
event Ewe have the equation

E=EnS=EnijAi=iJ(EnAi).
i-1 i=l

This equation states that E can occur only in conjunction with some Ai. Show that

(a) P(E) = 5 P(E n AJ.
i=l

(b) P(E) = 2 P(E 1 Ai)!‘(
i=l

This formula is useful when the conditional probabilities P(El  Ai) are easier to compute
directly than P(E).
An unbiased coin is tossed repeatedly. It comes up heads on the first six tosses. What is the
probability that it will come up heads on the seventh toss?
Given independent events A and B whose probabilities are neither 0 nor 1. Prove that A’
and B’ are independent. Is the same true if either of A or B has probability 0 or 1 ?
Given independent events A and B. Prove or disprove in each case that :
(a) A’ and B are independent.
(b) A v B and A n B are independent.
(c) P(A u B) = 1 - P(A’)P(B’).
IfAl,A,,..., A, are independent events, prove that

P
i 1
; Ai + fiP(A;)  =  1 .
i=l i=l

If the three events A, B, and C are independent, prove that A U B and C are independent.

[Hint: Use the result of Exercise 7 to show that P(A u B 1 C) = P(A u B).]

14. Let A and B be events, neither of which has probability 0. Prove or disprove the following
statements :
(a) If A and B are disjoint, A and B are independent.
(b) If A and B are independent, A and B are disjoint.

15. A die is thrown twice, the sample space S consisting of the 36 possible pairs of outcomes
(a, b) each assigned probability &. Let A, B, and C denote the following events:

A = {(a, b) 1 a is odd}, B = {(a, b) 1 b is odd}, C = {(a, b) 1 a + b is odd}.

(a) Compute P(A), P(B), P(C), P(A n B), P(A n C), P(.B  n C), and P(A n B n C).
(b) Show that A, B, and C are independent in pairs.
(c) Show that A, B, and C are not independent.
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13.15 Compound experiments

We turn now to the problem of de Mere  mentioned in the introduction -whether or not
it is profitable to bet even money on the occurrence of at least one “double six” in 24 throws
of a pair of dice. We treat the problem in a more general form: What is the probability of
throwing a double six at least once in n throws of a pair of dice? Is this probability more
than one-half or less than one-half when n = 24?

Consider first the experiment of tossing a pair of fair dice just once. The outcomes of this
game can be described by ordered pairs (a, b) in which a and b range over the values 1, 2,
3,4, 5,6. The sample space S consists of 36 such pairs. Since the dice are fair we assign the
probability & to each pair in S.

Now suppose we roll the dice n times. The succession of the n experiments is one
compound experiment which we wish to describe mathematically. To do this we need a
new sample space and a corresponding probability measure. We consider the outcomes of
the new game as ordered n-tuples (x1, . . . , xJ, where each component xi is one of the
outcomes of the original sample space S. In other words, the sample space for the com-
pound experiment is the n-fold Cartesian product S x * * * x S,  which we denote by S”.
The set S” has 36” elements, and we assign equal probabilities to each element:

P(x)  = $ i f  xESn.

We are interested in the event “at least one double six in n throws.” Denote this event
by A. In this case it is easier to compute the probability of the complementary event A’,
which means “no double six in n throws.” Each element of A’ is an n-tuple whose com-
ponents can be any element of S except (6, 6). Therefore there are 35 possible values for
each component and hence (35)” n-tuples altogether in A’. Since each element of A’ has
probability (3Le)n, the sum of all the point probabilities in A’ is ($$)a. This gives us

P(A) = 1 - P(X)  = 1 - ($g)n.

To answer de Mere’s  question we must decide whether P(A) is more than one-half or less
than one-half when n = 24. The inequality P(A) 2 4 is equivalent to 1 - (+g)” 2 4, or
($8)” < i. Taking logarithms we find

nlog35 - nlog36 < -1og2, or n 2
log 2

log 36 - log 35
= 24.6+.

Therefore P(A) < 4 when n = 24 and P(A) > 4 when n 2 25. It is not advantageous to
bet even money on the occurrence of at least one double six in 24 throws.

The foregoing problem suggests a general procedure for dealing with successive experi-
ments. If an experiment is repeated two or more times, the result can be considered one
compound experiment. More generally, a compound experiment may be the result of
performing two or more distinct experiments successively. The individual experiments may
be related to each other or they may be stochastically independent, in the sense that the
probability of the outcome of any one of them is unrelated to the results of the others.
For the sake of simplicity, we shall discuss how one can combine two independent experi-
ments into one compound experiment. The generalization to more than two experiments
will be evident.
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To associate a bona$de probability space with a compound experiment we must explain
how to define the new sample space S, the corresponding Boolean algebra L8’  of subsets
of S, and the probability measure P defined on 9. As in the above example, we use the
concept of Cartesian product.

Suppose we have two probability spaces, say (S,, :gl, P,) and (S,, g2, PJ.  These
spaces may be thought of as associated with two experiments El  and E2. By the compound
experiment E we mean the one for which the sample space S is the Cartesian product
S1  x S,. An outcome of E is a pair (x, y) in S, with the first component x an outcome of
E, and the second component y an outcome of E2.  If S, has n elements and if S, has m
elements, then S, x S2  has nm elements.

For the new Boolean algebra $ we take the collection of all subsets of S. Next we
define the probability function P. Since S is finite we can define P(x,  y) for each point
(x, y) in S and then use additivity to define P for subsets of S. The point probabilities
P(x,  y) can be assigned in many ways. However, if the two experiments El  and E, are
stochastically independent, we define P by the equation

(13.14) P(X?  Y> = PlW2W for each (x,y) in S.

Motivation for this definition can be given as follows. Consider two special events A
and B in the new space S,

and
B = {(XI  9 YA  (x, 7 YA - . . > (x, 5 yd> .

That is, A is the set of all pairs in S, x S, whose first element is x1, and B is the set of all
pairs whose second element is yl. The intersection of the two sets A and B is the singleton
{(xl,yl)j. If we feel that the first outcome x1 should have no influence on the second out-
come y1 it seems reasonable to require events A and B to be independent. This means we
would like to define the new probability function P in such a way that we have

(13.15) P(A A B) = P(A)P(B).

If we decide how to assign the probabilities P(A) and P(B), Equation (13.15) will tell us
how to assign the probability P(A n B), that is, the probability P(x,, yi). Event A occurs
if and only if the outcome of the first experiment is x1. Since P,(x,)  is its probability, it
seems natural to assign the value P,(x,)  to P(A) as well. Similarly, we assign the value
P2(yl)  to P(B). Equation (13.15) then gives us

All this, of course, is merely motivation for the assignment of probabilities in (13.14).
The only way to decide whether or not (13.14) is a permissible assignment of point proba-
bilities is to check the fundamental properties of probability measures. Each number
P(x, y) is nonnegative, and the sum of all the point probabilities is equal to 1, since we have
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When we say that a compound experiment E is determined by two stochastically inde-
pendent experiments El  and E2, we mean that the probability space (S, B, P) is defined in
the manner just described, “independence” being reflected in the fact that P(x,,r)  is the
product P,(x)P,(y). It can be shown that the assignment of probabilities in (13.14) implies
the formula

(13.16) P(U x V)  = P,(U)P,(V)

for every pair of subsets U in gI and V in gz. (See Exercise 12 in Section 13.23 for an
outline of the proof.) We shall deduce some important consequences of this formula.

Let A be an event (in the compound experiment E) of the form

A = Cl  x  S,,

where C, E  9YI. Each outcome in A is an ordered pair (x, y) where x is restricted to be
an outcome of C1  (in the first experiment I&)  but y can be any outcome of Sz (in the second
experiment Ez).  If we apply (13.16) we find

P(A) = P(C,  x S,)  = P,(C,)P,(S,) = P1(Cl),

since P,(S,) = 1 . Thus the definition of P assigns the same probability to A that P,
assigns to Ct. For this reason, such an event A is said to be determined by the$rst  experi-
ment E,. Similarly, if B is an event of E of the form

where C, E  gz, we have

P(B) = P(S,  x C,) = P,(S,)P,(C,)  = P2(C,)

and B is said to be determined by the second experiment E,. We shall now show, using
(13.16), that two such events A and B are independent. That is, we have

(13.17) P(A  n B) = P(A)P(B).

First we note that

A  nB={(x,y)I(x,y)EC1  x  S,and(x,y)ES1  x C,)

= {(x,y)lx~C~ andyt:C,}

= c, x c,.

Hence, by (13.16), we have

(13.18) P(A n B) = P(C1  x C,) = Pl(C,)P,(C,).

SincePI = P(A) andP,(C,) = P(B) we obtain (13.17). Note that Equation (13.18) also
shows that we can compute the probability P(A n B) as a product of probabilities in the



Bernoulli trials 495

individual sample spaces S, and S,; hence no calculations with probabilities in the
compound experiment are needed.

The generalization to compound experiments determined by n experiments E, , E, , . . . ,
E,  is carried out in the same way. The points in the new sample space are n-tuples

(Xl,-%,  * *. 7 x,) and the point probabilities are defined as the product of the probabilities
of the separate outcomes,

(13.19) P(Xl,-%,... 7 x,) = Pl(Xl)P2(X2>  * * * P&n) *

When this definition of P is used we say that E is determined by n independent experiments

El,  E,, . . . , E,. In the special case in which all the experiments are associated with the
same probability space, the compound experiment E is said to be an example of independent
repeated trials under identical conditions. Such an example is considered in the next
section.

13.16 Bernoulli trials

An important example of a compound experiment was studied extensively by Jakob
Bernoulli and is now known as a Bernoulli sequence of trials. This is a sequence of repeated
trials executed under the same conditions, each result being stochastically independent of
all the others. The experiment being repeated has just two possible outcomes, usually
called “success” and “failure ;” the probability of success is denoted byp and that of failure
by q. Of course, q = 1 - p. The main result associated with Bernoulli sequences is the
following theorem:

THEOREM 13.3. BERNOULLI’S FORMULA. The probability of exactly k successes in n
Bernoulli trials is

(13.20) 0;2-  pkqn-ky
denotes the binomial coefJicient, ”

I
where

k! (n - k>?’

Proof. Denote “success” by S and “failure” by F and consider a particular sequence of
n results. This may be represented by an n-tuple

(Xl,  x2,  * . * ,x,),

where each xi is either an S or an F. The event A in which we are interested is the collection
of all n-tuples that contain exactly k S’s and n - k F’s. Let us compute the point probability
of a particular n-tuple in A. The probability of each S isp, and that of each F is q. Hence,
by (13.19), the probability of each particular n-tuple in A is the product of k factors equal
top with n - k factors equal to q. That is,

P(x,  ) x*  ) . . . , XJ = p” qn-” if (x1,x2,.  . . ,x,)EA.
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Therefore, to compute P(A) we need only count the number of elements in A and multiply
this number by p’; qn-‘. But the number of elements in A is simply the number of ways
of putting exactly k S’s into the n possible positions of the n-tuple. This is the same as
the number of subsets of k elements that can be formed from a set consisting of n elements;
we have already seen that this number is ($).  Therefore, if we add the point probabilities
for all points in A we obtain

P(A)  = ; pkql”--“.0
EXAMPLE 1. An unbiased coin is tossed 50 times. Compute the probability of exactly

25 heads.

Solution. We interpret this experiment as a sequence of 50 Bernoulli trials, in which
“success” means “heads” and “failure” means “tails.” Since the coin is unbiased we assign
the probabilities p = q = -$, and formula (13.20) gives us (T)(#5o  for the probability of
exactly k heads in 50 tosses. In particular, when k = 25 we obtain

To express this number as a decimal it is best to use logarithms, since tables of logarithms
of factorials are readily available. If we denote the number in question by P, a table of
common logarithms (base IO)  gives us

log P = log 50! - 2log25!  - 5Olog2

= 64.483 - 50.381 - 15.052 = -0.950 = 0.05 - 1.00

so P = 0.112.
= log 1.12 - log 10 = log 0.112,

EXAMPLE 2. What is the probability of at least r successes in n Bernoulli trials?

Solution. Let A, denote the event “exactly k successes in n trials.” Then the event E
in which we are interested is the union

E=A,uA,,u.*.uA,.

Since the A, are disjoint, we find

P(E) =sP(A,)  =$&q?
k=r k=r

Since

= (p + qjn = 1,
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the probability of the complementary event E’ can be computed as follows:

This last sum gives us the probability of at most r - 1 successes in ti trials.

13.17 The most probable number of successes in n Bernoulli trials

A pair of fair dice is rolled 28 times. What is the most probable number of sevens?
To solve this problem we let f(k) denote the probability of exactly k sevens in 28 tosses.
The probability of tossing a seven is 6. Bernoulli’s formula tells us that

f(k) = (2k8) ($(;r-”

We wish to determine what value (or values) of k in the range k = 0, 1, 2, . . . , 28 make
f(k) as large as possible. The next theorem answers this question for any sequence of
Bernoulli trials.

THEOREM 13.4. Given an integer n 2 1 and a real p, 0 < p < 1, consider the set of
numbers

f(k) = 0“k Pk(l  - Prk, for k = O,l,. . . , n.

(a) If(n  + 1)p  is not an integer, the largest value off(k) occursfor exactly one k:

k = t(n + lIpI, thegreatest integer < (n + 1)~.

(b) If (n + 1)p is an integer, the largest value of,f(k)  occurs for exact4  two  values of k:

k = (n + l)p and k = (n + 1)~  - 1.

Proof. To study the behavior off(k) we consider the ratio

f(k) k + 1 1 -- p-=----
r(k) = f(k  + 1) n - k  17

fork=O,l,...,n- 1, The function r(k) is strictly increasing so we have

0 < r(0) < r(1) < * * * < r(n  - 1).

We consider six cases, illustrated in Figure 13.2. In the first three cases we show that f (k)
takes its largest value for exactly one k. In the remaining casesf(k)  takes its largest value
for two consecutive values of k.
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FIGURE 13.2 Calculation of the most probable number of successes in n Bernoulli
trials.

CASE I. r(O)  > 1. In this case r(k) > 1 for every k so we have

f(0) > f’(l) > . . * > f(n).

Therefore the largest value off(k) occurs only for k = 0. Also, r(0) = (1 - p)/(n,o) > 1  ,
so 1 -p  > np, (n + 1)p  < 1, hence [(n + l)p]  = 0.

CASE 2. r(n - 1) < 1. In this case r(k) < 1 for every k so f(0) <f(l)  < . * * <f(n)
and the largest value off(k) occurs only for k = n. Since r(n - 1) = ~(1  - p)/p  < 1, we
h a v e n - n p < p , h e n c e n < ( n + l ) p < n + l . , s o [ ( n + l ) p ] = n .

CASE 3. r(O)  < 1, r(n - 1) > 1, and r(k) # 1 for all k. In this case there is a unique
integer s, 0 < s < n, such that r(s - 1) < 1 and r(s) > 1 . The functionf’(k) increases in
the range 0 5 k < s and decreases in the range s < k < n. Thereforef(k)  has a unique
maximum at k = s. Since r(s - 1) = ~(1  - p)/(np  - sp  + p) < 1 we have s < (n + 1)~.
The inequality r(s) > 1 shows that (n + 1)p  < s + 1 , hence [(n + l)p]  = s.

Note that in each of the first three cases the maximum value of f(k) occurs when

k = Kn + lIpI; also (n + 1)p  is not an integer in any of these cases.

CASE 4. r(0) < 1, r(n - 1) > 1, and r(s - 1) = lfor some s, 2 < s < n. In this case
f(k) increases for 0 < k 5 s - 1 and decreases for s < k 5 n. The maximum value of
f(k) occurs twice, when k = s - 1 and when k = s. The equation r(s - 1) = 1 implies
(n + 1)p  = s.

CASE 5. r(n - 1) = 1. In this case r(k) < 1 for k < n - 2, so J’(k) increases in the
range 0 2 k < n - 1, and .f(n - 1) =f(n).  Hence the maximum of f(k) occurs twice,
when k = n - 1 and when k = n. The equation r(n - 1) = 1 implies (n + 1)p  = n.
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CASE 6. r(0) = 1. In this case r(k) > 1 for k 2 1 , so f’(k) decreases in the range
1 5 k 5 n. The maximumf(k)  occurs twice, when k = 0 and when k = 1. The equation
r(0) = 1 implies (n + I)p = 1.

In each of the last three cases the maximum value off(k) occurs for k = (n + 1)~  and
for k = (n + 1)~ - 1 . This completes the proof.

EXAMPLE 1. A pair of fair dice is rolled 28 times. What is the most probable number of
sevens ?

Solution. We apply Theorem 13.4 with n = 28, p = Q,  and (n + 1)~ = z>.  This is
not an integer so the largest value off(k) occurs for k = [$%I = 4.

Note: If the dice are rolled 29 times there are two solututions, k = 4 and k = 5.

EXAMPLE 2. Find the smallest n such that if a pair of fair dice is thrown n times the
probability of getting exactly four sevens is at least as large as the probability of getting any
other number of sevens.

Solution. We take p = & in Theorem 13.4. We want the largest value of f(k) to occur
when k = 4. This requires either [(n + I)p] = 4, (n + l),~,  = 4, or (n + 1)p - 1 = 4.
The smallest n satisfying any of these relations is n = 23.

13.18 Exercises

1. A coin is tossed twice, the probability of heads on the first toss beingp,  and that on the second
toss pa. Consider this a compound experiment determined by two stochastically independent
experiments, and let the sample space be

(a) Compute the probability of each element of S.
(b) Canp,  and pz be assigned so that

P(H, H) =Q, P(H, T) = P(T, H) = $, P(T, T) = $?

(c) Can pr and pz be assigned so that

P(H, H) = P(T, T) = .+, P(H, T) = P( T, H) = Q ?

(d) Consider the following four events (subsets of S):

H,  : heads on the first toss,
Hz : heads on the second toss,
T, : tails on the first toss,
T2 : tails on the second toss.

Determine which pairs of these four events are independent.
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In each of Exercises 2 through 12 describe your sample space, your assignment of probabilities,
and the event whose probability you are computing.

2 .

3 .
4 .

5 .

6 .

7.

8 .

9 .

10.

11.

12.

13.

1 4 .

A student takes a true - false examination consisting of 10 questions. He is completely unpre-
pared so he plans to guess each answer. The guesses are to be made at random. For example,
he may toss a fair coin and use the outcome to determine his guess.
(a) Compute the probability that he guesses correctly at least five times.
(b) Compute the probability that he guesses correctly at least nine times.
(c) What is the smallest n such that the probability of guessing at least n correct answers is
less than &?
Ten fair dice are tossed together. What is the probability that exactly three sixes occur?
A fair coin is tossed five times. What is the probability of getting (a) exactly three heads?
(b) at least three heads? (c) at most one head?
A man claims to have a divining rod which locates hidden sources of oil. The Caltech  Geology
Department conducts the following experiment to test his claim. He is taken into a room.in
which there are 10 sealed barrels. He is told that five of them contain oil and five contain
water. His task is to decide which of the five contain oil and which do not.
(a) What is the probability that he locates the five oil barrels correctly just by chance?
(b) What is the probability that he locates at least three of the oil barrels correctly by chance?
A little old lady from Pasadena claims that by tasting a cup of tea made with milk she can tell
whether the milk or the tea was added first to the cup. The lady’s claim is tested by requiring
her to taste and classify 10 pairs of cups of tea, each pair containing one cup of tea made by
each of the two methods under consideration. Letp denote her “true” probability of classifying
a pair of cups correctly. (If she is skillful, p is substantially greater than 4; if not, p I 4 .)
Assume the 10 pairs of cups are classified under independent and identical conditions.
(a) Compute, in terms of p, the probability that she classifies correctly at least eight of the
10 pairs of cups.
(b) Evaluate this probability explicitly whenp = 4.
(Another problem of Chevalier de Mere.) Determine whether or not it is advantageous to
bet even money on at least one 6 appearing in four throws of an unbiased die. [Hint: Show
that the probability of at least one 6 in n throws is 1 - ($)n .]
An urn contains w white balls and b black balls. If k 5 n, compute the probability of drawing
k white balls in n drawings, if each ball is replaced before the next one is drawn.
Two dice are thrown eight times. Compute the probability that the sum is 11 exactly three
times.
Throw a coin 10 times or 10 coins once and count the number of heads. Find the probability
of obtaining at least six heads.
After a long series of tests on a certain kind of rocket engine it has been determined that in
approximately 5 ‘A of the trials there will be a malfunction that will cause the rocket to misfire.
Compute the probability that in 10 trials there will be at least one failure.
A coin is tossed repeatedly. Compute the probability that the total number of heads will be
at least 6 before the total number of tails reaches 5.
Exercise 12 may be generalized as follows: Show that the probability of at least nz successes
before n failures in a sequence of Bernoullian trials is

VIZ++--l

cc

m + n - 1

k 1
Pligm+n--lc--l.

k=rrr

Determine all n with the following property: If a pair of fair dice is thrown n times, the prob-
ability of getting exactly ten sevens is at least as large as the probability of getting any other
number of sevens.
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15. A binary slot machine has three identical and independent wheels. When the machine is
played the possible outcomes are ordered triples (x, y, z), where each of x, y, z can be 0 or 1.
On each wheel the probability of 0 is p and the probability of 1 is 1 - p , where 0 < p < 1 .
The machine pays $2 if the outcome is (I,  1, 1) or (0, 0,O); it pays $1 for the outcome (1, 1,O);
otherwise it pays nothing. Letf(p) denote the probability that the machine pays $1 or more
when it is played once.
(a) CalculatefQ).
(b) Define the “payoff” to be the sum &,Yg(~)P(~),  where S is the sample space, P(x) is the
probability of outcome x, andg(x) is the number of dollars paid by outcome x. Calculate the
value of p for which the payoff is smallest.

13.19 Countable and uncountable sets

Up to now we have discussed probability theory only for finite sample spaces. We wish
now to extend the theory to infinite sample spaces. For this purpose it is necessary to
distinguish between two types of infinite sets, countable and uncountable. This section
describes these two concepts.

To count the members of an n-element set we match the set, element by element, with the
set of integers {1,2,  . . . , n}. Comparing the sizes of two sets by matching them element by
element takes the place of counting when we deal with infinite sets. The process of “match-
ing” can be given a neat mathematical formulation by employing the function concept:

DEFINITION. Two sets A and B are said to be in one-to-one correspondence ifafinction  f
exists with the following properties:

(a) The domain off is A and the range off is B.
(b) If x and y are distinct elements of A, then f (x) and f (y) are distinct elements of B.

That is, for all x and y in A,

(13.21) X#Y implies f(x) # f(y).

A function satisfying property (13.21) is said to be one-to-one on A. Two sets A and B
in one-to-one correspondence are also said to be equivalent, and we indicate this by
writing A - B. It is clear that every set A is equivalent to itself, since we may let f (x) = x
for each x in A.

A set can be equivalent to a proper subset of itself. For example, the set P = (1, 2,
3 >, consisting of all the positive integers,
{i,‘4;6,  . . .

is equivalent to the proper subset Q =
} consisting of the even integers. In this case a one-to-one function which

makes them equivalent is given byf(x) = 2x for x in P.
If A - B we can easily show that B N A. In fact, if f is one-to-one on A and if the

range offis B, then for each b in B there is exactly one a in A such that f (a) = b . Therefore
we can define an inverse function g on B as follows: If b E B, g(b) = a, where a is the
unique element of A such that f(a) = b. This g is one-to-one on B and its range is A;
hence BN A. This property of equivalence is known as symmetry:

(13.22) A-B implies B-A.
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It is also easy to show that equivalence has the following property, known as transitivity:

(13.23) A - B  a n d  B - C implies A - C .

A proof of the transitive property is requested in Exercise 2 of Section 13.20.
A set S is calledJinite and is said to contain n elements if

S-(1,2  ,...,  n}.

The empty set is also considered to be finite. Sets which are not finite are called inznite  sets.
A set S is said to be countably injinite if it is equivalent to the set of all positive integers,
that is, if

(13.24) SN{1)2,3,.  . .}.

In this case there is a function f which establishes a one-to-one correspondence between
the positive integers and the elements of S; hence the set S can be displayed in roster
notation as follows:

s = {f(I),f(2),f(3), . . 4.

Often we use subscripts and denote f(k) by ar  (or by a similar notation) and we write
S = {a,,  4, a,, . . .} . The important thing here is that the correspondence in (13.24)
enables us to use the positive integers as “labels” for the elements of S.

A set is said to be countable if it is finite or countably infinite. A set which is not countable
is called uncountable.? (Examples will be given presently.) Many set operations when
performed on countable sets produce countable sets. For example, we have the following
properties :

(a) Every subset of a countable set is countable.
(b) The intersection of any collection of countable sets is countable.
(c) The union of a countable collection of countable sets is countable.
(d) The Cartesian product of a finite number of countable sets is countable.
Since we shall do very little with countably infinite sets in this book, detailed proofs of

these properties will not be given.j:  Instead, we shall give a number of examples to show
how these properties may be used to construct new countable sets from given ones.

EXAMPLE 1. The set S of all integers (positive, negative, or zero) is countable.

Proof. If n E S,  letf(n) = 2n if n is positive, and letf(n) = 2 (nl  + 1 if n is negative or
zero. The domain off is S and its range is the set of positive integers. Since f is one-to-one
on S, this shows that S is countable.

EXAMPLE 2. The set R of all rational numbers is countable.

Proof. For each fixed integer n 2 1, let S, denote the set of rational numbers of the
form x/n, where x belongs to the set S of Example 1. Each set S, is equivalent to S [take

t The words denumerable  and nondenumerable are sometimes used as synonyms for countable and un-
countable, respectively.
$ Proofs are outlined in Exercises 3 through 8 of Section 13.20.
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f(t) = nt if t E S,] and hence each S, is countable. Since R is the union of all the S,,
property (c) implies that R is countable.

Note . If F = {A,, A,, A,, . . .} is a countable collection of sets, the union of all sets
in the family 9 is denoted by the symbols

l.J A, or A, uA,  VA,  u*.*.
k = l

EXAMPLE 3. Let A be a countably infinite set, say A = {a,, a2,  a,, . . . > . For each integer
n 2 1, let 9n denote the family of n-element subsets of A. That is, let

9n = {S 1 S s A and S has n elements}.

Then each 9%  is countable.

Proof. If S is an n-element subset of A, we may write

s = iakl,  ak2,  . . . , s,>?

where k, < k, < * . * < k,. Let f(S) = (ak,  , ak,,  . . . , ak,). That is, f is the function
which associates with S the ordered n-tuple (akl, ak,, . . . , a,*).  The domain of f is
gm and its range, which we denote by T,, is a subset of the Cartesian product
C, = A x A x . . - x A (n factors). Since A is countable, so is C,  [by property (d)] and
hence T, is also [by property (a)]. But T, N gn becausefis  one-to-one. This shows that
9n is countable.

EXAMPLE 4. The collection of all finite subsets of a countable set is countable.

Proof. The result is obvious if the given set is finite. Assume, then, that the given set
(call it A) is countably infinite, and let 9 denote the class of all finite subsets of A:

9={SjSc AandSisfinite}.

Then 9 is the union of all the families & of Example 3; hence, by property (c), 9 is
countable.

EXAMPLE 5. The collection of all subsets of a countably infinite set is uncountable.

Proof. Let A denote the given countable set and let & denote the family of all subsets
of A. We shall assume that & is countable and arrive at a contradiction. If ~2’  is countable,
then .d N A and hence there exists a one-to-one functionf whose domain is A and whose
range is ~2.  Thus for each a in A, the function valuef(a)  is a subset of A. This subset
may or may not contain the element a. We denote by B the set of elements a such that
a $f(a).  Thus,

B={a[a~Abuta$f(a)).
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This B, being a subset of A, must belong to the family &‘. This means that B = f(b) for
some b in A. Now there are only two possibilities: (i) b E B, or (ii) b # B. If b E B, then
by the definition of B we have b $f(b), which is a contradiction since f(b) = B. There-
fore (i) is impossible. In case (ii), b $ B, which means b $f(b)  . This contradicts the defini-
tion of B, so case (ii) is also impossible. Therefore the assumption that J&’ is countable
leads to a contradiction and we must conclude that & is uncountable.

We give next an example of an uncountable set that is easier to visualize than that in
Example 5.

EXAMPLE 6. The set of real x satisfying 0 < x <: 1 is uncountable.

Proof. Again, we assume the set is countable and arrive at a contradiction. If the set
is countable we may display its elements as follows: {x,, xp, x3, . . .}.  Now we shall con-
struct a real number y satisfying 0 < y < 1 which is not in this list. For this purpose we
write each element x, as a decimal:

x, = O.a,,,  an.2  q3.  . . ,

where each a,,i  is one of the integers in the set {O., 1,2, . . . , 9}.  Let y be the real number
which has the decimal expansion

y = O.YlYZY3~  * * 7
where

1 i f  an.% # 1,
Yn =

2 i f  an,%=l.

Then no element of the set {x1,  xp , x3, . . .} can be equal to y, because y differs from x1
in the first decimal place, differs from xz in the second decimal place, and in general, y
differs from xlc in the kth decimal place. (A situation like x, = 0.249999 . * * and y =
0.250000 * * - cannot occur here because of the way the yn are chosen.) Since this y satisfies
0 < y < 1, we have a contradiction, and hence the set of real numbers in the open interval
(0, 1) is uncountable.

13.20 Exercises

1. Let P ={1,2,3,. . .} denote the set of positive integers. For each of the following sets,
exhibit a one-to-one function f whose domain is P and whose range is the set in question:
(a) A = {2,4,  6, . . .},  the set of even positive integers.
(b) B = (3, 3’,  33,  . . .} , the set of powers of 3.
(c) C = (2, 3, 5,7,  11, 13, . . .},  the set of primes. [Note: Part of the proof consists in
showing that C is an infinite set.]
(d) P x P, the Cartesian product of P with itself.
(e) The set of integers of the form 2”3”, where m and n are positive integers.

2. Prove the transitive property of set equivalence:

I f  A - B a n d  B - C , t h e n  A - C .

[Hint: Iffmakes A equivalent to B and ifg makes B equivalent to C, show that the
composite function h = g of makes A equivalent to C.]
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Exercises 3 through 8 are devoted to providing proofs of the four properties (a), (b), (c), (d)
of countable sets listed in Section 13.19.

3. Prove that every subset of a countable set is countable. [Hint:  Suppose S is a countably
infinite set, say S = {x1,  x2, xs,  . . .}, and let A be an infinite subset of S.  Let k(1) be the
smallest positive integer m such that x,  E A. Assuming k(l), k(2), . . . , k(n - 1) have been
defined, let k(n) be the smallest positive integer m > k(n  - 1) such that x,,  E A. Letf(n)  =
xktn). Show that f is a one-to-one function whose domain is the set of positive integers and
whose range is A. This proves the result when S is countably infinite. Construct a separate
proof for a finite S.]

4. Show that the intersection of any collection of countable sets is countable. [Hint: Use the
result of Exercise 3.1

5. LetP={1,2,3,. . .}  denote the set of positive integers.
(a) Prove that the Cartesian product P x P is countable. [Hint: Let Q denote the set of
positive integers of the form 2”3”, where m and n are positive integers. Then Q = P, so Q is
countable (by Exercise 3). If (m, n) E p x P, let f(m,  ?I) = 2”3”  and use this function to

show that P x P - Q .]
(b) Deduce from part (a) that the Cartesian product of two countable sets is countable. Then
use induction to extend the result to n countable sets.

6. Letg ={Br,&,&,.. .}  be a countable collection of disjoint sets (&  A Bj = ,@  when i #j)
a,

such that each B,  is countable. Show that the union U B,  is also countable. [Hint: Let

& = {bl,,,  b,n,  bs,n,  . . . } and S = fi B,. If x E S, thin .Y = b,,,  for some unique pair
k=l

(m, n) and we can define  f(x) = (m, n) . Use this f to show that S is equivalent to a subset
of P x P and deduce (by Exercise 5) that S is countable.]

7. Let&={A,,A,,A,,.. .}  be a countable collection of sets, and let g = {B,, B,, B,, . . .}
be defined as follows: B,  = A, and, for n > 1,

12-l

B,  = A ,  -u A , .
k=l

That is, B,  consists of those points in A, which are not in any of the earlier sets A,, . . . , A,-,  .
Prove that J!%  is a collection of disjoint sets (Bi n Bj = 13 when i #j) and that

~z’i,=&?k.
k=l k=l

This enables us to express the union of any countable collection of sets as the union of a count-
able collection of disjoint sets.

8. If 9 is a countable collection of countable sets, prove that the union of all sets in 9 is count-
able. [Hint:  Use Exercises 6 and 7.1

9. Show that the following sets are countable:
(a) The set of all intervals on the real axis with rational end points.
(b) The set of all circles in the plane with rational radii and centers having rational coordinates.
(c) Any set of disjoint intervals of positive length.

10. Show that the following sets are uncountable:
(a) The set of irrational numbers in the interval (0, 1).
(b) The set of all intervals of positive length.
(c) The set of all sequences whose terms are the integers 0 and 1. (Recall that a sequence is
a function whose domain is the set of positive integers.)
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13.21 The definition of probability for countably infinite sample spaces

This section extends the definition of probability to countably infinite sample spaces.
Let S.be a countably infinite set and let 99 be a Boolean algebra of subsets of S. We define
a probability measure P on 98 as we did for the finite case, except that we require countable
additivity as well as finite additivity. That is, for every countably infinite collection

vl,Az>-- .} of elements of 97,  we require that

(13.25) if Ai n A, = 0 whenever i # j .

Finitely additive set functions which satisfy (13.25) are said to be countably additive (or
completely additive). Of course, this property requires assuming also that the countable
union A, V A, U A, U . * * is in 97 whenever each A, is in 97.  Not all Boolean algebras
have this property. Those which do are called Boolean c-algebras. An example is the
Boolean algebra of all subsets of S.

DEFINITION OF PROBABILITY FOR COUNTABLY INFINITE SAMPLE SPACES. Let .9# denote a
Boolean o-algebra whose elements are subsets of a given countably infinite set S. A set
function P is called a probability measure on .!Z? if it is nonnegative, countably additive, and
satisfies P(S) = 1 .

When W is the Boolean algebra of all subsets of S, a probability function is completely
determined by its values on the singletons (called point probabilities). Every subset A of
S is either finite or countably infinite, and the probability of A is computed by adding the
point probabilities for all elements in A,

P(A) = z.PW.

The sum on the right is either a finite sum or an absolutely convergent infinite series.
The following example illustrates an experiment with a countably infinite sample space.

EXAMPLE. Toss a coin repeatedly until the first outcome occurs a second time; at this
point the game ends.

For a sample space we take the collection of all possible games that can be played. This
set can be expressed as the union of two countably infinite sets A and B, where

A = (TT,  THT, THHT, THHHT, . . .> and B = (HH, HTH, HTTH, HTTTH, . . .>.

We denote the elements of set A (in the order listed) as a,, a,, a,, . . ., and those of set B
as b,, b,, b,, . . . . We can assign arbitrary nonnegative point probabilities P(a,)  and P(b,)
provided that
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For example, suppose the coin has probability p of coming up heads (H) and proba-
bility q = 1 - p of coming up tails (T), where 0 < p < 1. Then a natural assignment of
point probabilities would be

(13.26) WJ  = 42p” and P(b,)  = pzq*.

This is an acceptable assignment of probabilities because we have

Now suppose we ask for the probability that the game ends after exactly n + 2 tosses.
This is the event {a,} U {b,} , and its probability is

P(a,>  + P&J  = q2p”  + p2q”.

The probability that the game ends in at most n + 2 tosses is

$$‘(a,)  +~Wd = q2 ’ L/b’  + $ 1 ,yyr = 1 _ qpn+l  _ pqn+l.
k=O k = O

13.22 Exercises

The exercises in this section refer to the example in Section 13.21.

1. Using the point probabilities assigned in Equation (13.26),  let&(p)  denote the probability that
the game ends after exactly n + 2 tosses. Calculate the absolute maximum and minimum values
off,(p)  on the interval 0 5 p 5 1 for each of the values IZ = 0, 1,  2, 3.

2. Show that each of the following is an acceptable assignment of point probabilities.

(4 W,)  = Wh) = & for n = 0, 1,2,  .  .  .  .

1
W JYa,)  = WJ = (n + 2)(n + 3) f o r  n=0,1,2  ,....

3. Calculate the probability that the game ends before the fifth toss, using:
(a) the point probabilities in (13.26).
(b) the point probabilities in Exercise 2(a).
(c) the point probabilities in Exercise 2(b).

4. Calculate the probability that an odd number of tosses is required to terminate the game, using:
(a) the point probabilities in (13.26).
(b) the point probabilities in Exercise 2(a).
(c) the point probabilities in Exercise 2(b).

13.23 Miscellaneous exercises on probability

1. What is the probability of rolling a ten with two unbiased dice?
2. Ten men and their wives are seated at random at a banquet. Compute the probability that a

particular man sits next to his wife if (a) they are seated at a round table; (b) they are seated in

a row.
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3. A box has two drawers. Drawer number 1 contains four gold coins and two silver coins.
Drawer number 2 contains three gold coins and three silver coins. A drawer is opened at
random and a coin selected at random from the open drawer. Compute the probability of each
of the following events:
(a) Drawer number 2 was opened and a silver coin was selected.
(b) A gold coin was selected from the opened drawer.

4. Two cards are picked in succession from a deck of 52 cards, each card having the same prob-
ability of being drawn.
(a) What is the probability that at least one is a spade?

The two cards are placed in a sack unexamined. One card is drawn from the sack and
examined and found not to be a spade. (Each card has the same probability of being drawn.)
(b) What is the probability now of having at least one spade?

The card previously drawn is replaced in the sack and the cards mixed. Again a card is
drawn and examined. No comparison is made to see if it is the same card previously drawn.
The card is again replaced in the sack and the cards mixed. This is done a total of three times,
including that of part (b), and each time the card examined is not a spade.
(c) What is a sample space and a probability function for this experiment? What is the prob-
ability that one of the two original cards is a spade?

5. A man has ten pennies, 9 ordinary and 1 with two heads. He selects a penny at random,
tosses it six times, and it always comes up heads. Compute the probability that he selected
the double-headed penny.

6. Prove that it is impossible to load a pair of dice so that every outcome from 2 to 12 will have
the same probability of occurrence.

7. A certain Caltech sophomore has an alarm clock which will ring at the appointed hour with
probability 0.7. If it rings, it will wake him in time to attend his mathematics class with proba-
bility 0.8. If it doesn’t ring he will wake in time to attend his class with probability 0.3.
Compute the probability that he will wake in time to attend his mathematics class.

8. Three horses A, B, and Care in a horse race. The event “A beats B”  will be denoted symboli-
cally by writing AB. The event “A beats B who beats C” will be denoted by ABC, etc. Sup-
pose it is known that

P(AB) = $, .P(AC) = $, P(BC) = 4,
and that

P(ABC) = P(ACB), P(BAC) = P(BCA) , P(CAB) = P(CBA) .

(a) Compute the probability that A wins.
(b) Compute the probability that B wins.
(c) Compute the probability that C wins.
(d) Are the events AB, AC, and CB independent?

9. The final step in a long computation requires the addition of three integers aI, a2, a3. Assume
that (a) the computations of a,, a2, and as are stochastically independent; (b) in the com-
putation of each ai there is a common probability p that it is correct and that the prob-
ability of making an error of + 1 is equal to the probability of making an error of -1; (c)
no error larger than + 1 or less than - 1 can occur. Remember the possibility of compensating
errors, and compute the probability that the sum a, + aa + us is correct.

10. The game of “odd man out.” Suppose n persons toss identical coins simultaneously and in-
dependently, where n 2 3. Assume there is a probabilityp of obtaining heads with each coin.
Compute the probability that in a given toss there will be an “odd man,” that is, a person whose
coin does not have the same outcome as that of any other member of the group.

11. Suppose n persons play the game “odd man out” with fair coins (as described in Exercise 10).
For a given integer m compute the probability that it will take exactly m plays to conclude the
game (the mth play is the first time there is an “odd man”).
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12. Suppose a compound experiment (S, g’,  P)  is determined by two stochastically independent
experiments (S,  , gI,  PI)  and (S,  , gz,  Pz),  where S = S, x & and

m, y> = P,(x)&(y)
for each (x, y) in S. The purpose of this exercise is to establish the formula

(13.27) P(U  x V) = P,(U)P,(V)

for every pair of subsets U in gI  and V in gz. The sample spaces S,  and S,  are assumed to
be finite.
(a) Verify that Equation (13.27) is true when U and V are singletons, and also when at least
one of U or V is empty.

Suppose now that

U={Ul,U2,...,Uk) a n d V={u,,u,  )...)  u,}.

Then U x V consists of the km pairs (Ui,  uj). For each i = 1,2,.  . . , k let Ai  denote the set
of m pairs in U x V whose first component is ui  .
(b) Show that the Ai  are disjoint sets whose union is U x V.
(c) Show that

P(A,)  = 2 I’&,  uj) = Pl(ui)P2(  V) .
61

(d) From (b) and (c) deduce that

P(U  X V) =iP(AJ  =Pl(U)Pz(V).
i=l



14
CALCULUS OF PROBABILITIES

14.1 The definition of probability for uncountable sample spaces

A line segment is broken into two pieces, with the point of subdivision chosen at random.
What is the probability that the two pieces have equal length? What is the probability that
the longer segment has exactly twice the length of the shorter? What is the probability
that the longer segment has at least twice the length of the shorter? These are examples of
probability problems in which the sample space is uncountable since it consists of all
points on a line segment. This section extends the definition of probability to include
uncountable sample spaces.

If we were to use the same procedure as for countable sample spaces we would start with
an arbitrary uncountable set S and a Boolean o-algebra 9 of subsets of S and define a
probability measure to be a completely additive nonnegative set function P defined on L4?
with P(S) = 1. As it turns out, this procedure leads to certain technical difficulties that
do not occur when S is countable. To attempt to describe these difficulties would take us
too far afield. We shall avoid these difficulties by imposing restrictions at the outset on the
set S and on the Boolean algebra a.

First, we restrict S to be a subset of the real line R, or of n-space R”. For the Boolean
algebra g we use special subsets of S which, in the language of modern integration theory,
are called measurable subsets of S. We shall not attempt to describe the exact meaning of a
measurable set; instead, we shall mention some of the properties possessed by the class of
measurable sets.

First we consider subsets of R. The measurable subsets have the following properties:

1. If A is measurable, so is R - A, the complement of A.
2. If {A,, A,, A,, . . .} is a countable collection of measurable sets, then the union

A, U A, U A, U * 9 . is also measurable.
3. Every interval (open, closed, half-open, finite, or infinite) is measurable.

Thus, the measurable sets of R form a Boolean o-algebra which contains the intervals.
A smallest Boolean o-algebra exists which has this property; its members are called Borel
sets, after the French mathematician Emile Bore1 (1871-1956).

Similarly, in 2-space a smallest Boolean o-algebra exists which contains all Cartesian
products of pairs of intervals; its members are the two-dimensional Bore1 sets. Bore1 sets
in n-space are defined in an analogous fashion.

510
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Henceforth, whenever we use a set S of real numbers as a sample space, or, more
generally, whenever we use a set S in n-space as a sample space, we shall assume that this
set is a Bore1 set. The Bore1 subsets of S themselves form a Boolean a-algebra. These
subsets are extensive enough to include all the events that occur in the ordinary applications
of probability theory.

DEFINITION OF PROBABILITY FOR UNCOUNTABLE SAMPLE SPACES. Let S be a subset of Rn,
and let 93’ be the Boolean a-algebra of Bore1 subsets of S. A nonnegative completely additive
set function P dejned  on % with P(S) = 1 is called a probability measure. The triple
(S, 9, P) is called a probability space.

14.2 Countability of the set of points with positive probability

For countable sample spaces the probability of an event A is often computed by adding
the point probabilities P(x) for all x in A. This process is not fruitful for uncountable
sample spaces because, as the next theorem shows, most of the point probabilities are zero.

THEOREM 14.1. Let (S,  97, P) be a probability space and let T denote the set of all x in S
for which P(x) > 0. Then T is countable.

Proof. Foreachn=1,2,3  ,..., let T, denote the following subset of S:

< P(x) < 1 ‘
n

If P(x) > 0 then x E T,  for some n. Conversely, if x E  T,  for some n then x E T. Hence
T = T, v T, v..  . . Now T,  contains at most n points, because if there were n + 1 or
more points in T, the sum of their point probabilities would exceed 1. Therefore T is
countable, since it is a countable union of finite sets.

Theorem 14.1 tells us that positive probabilities can be assigned to at most a countable
subset of S. The remaining points of S will have probability zero. In particular, if all the
outcomes of S are equally likely, then every point in S must be assigned probability zero.

Note: Theorem 14.1 can be given a physical interpretation in terms of mass distri-
bution which helps to illustrate its meaning. Imagine that we have an amount of mass, with
the total quantity equal to 1. (This corresponds to P(S) = 1.) Suppose we are able to
distribute this mass in any way we please along the real line, either by smearing it along
the line with a uniform or perhaps a varying thickness, or by placing discrete lumps of mass
at certain points, or both. (We interpret a positive amount of mass as a discrete lump.)
We can place all the mass at one point. We can divide the mass equally or unequally in
discrete lumps among two points, among ten points, among a million points, or among
a countably infinite set of points. For example, we can put & at 1, 2 at 2, + at 3, and so on,
with mass ($)n  at each integer n 2 1 . Or we can smear all themasswithoutanyconcentrated
lumps. Or we can smear part of it and distribute the rest in discrete lumps. Theorem 14.1
tells us that at most a countable set of points can be assigned discrete lumps of mass.

Since most (if not all) the point probabilities for an uncountable sample space will be
zero, a knowledge of the point probabilities alone does not suffice to compute the
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probabilities of arbitrary events. Further information is required; it is best described in
terms of two new concepts, random variables and distribution functions, to which we turn
next. These concepts make possible the use of integral calculus in many problems with
uncountable sample spaces. Integration takes the place of summation in the computation
of probabilities.

14.3 Random variables

In many experiments we are interested in numbers associated with the outcomes of the
experiment. For example, n coins are tossed simultaneously and we ask for the number of
heads. A pair of dice is rolled and we ask for the sum of the points on the upturned faces.
A dart is thrown at a circular target and we ask for its distance from the center.
Whenever we associate a real number with each outcome of an experiment we are dealing
with a function whose domain is the set of possible outcomes and whose range is the set
of real numbers in question. Such a function is called a random variable. A formal
definition can be given as follows:

DEFINITION OF A RANDOM VARIABLE. Let S denote a sample space. A real-valuedfunction
dejined on S is called a one-dimensional random variable. If the function values are ordered
pairs of real numbers (that is, vectors in 2-space), the function is said to be a two-dimensional
random variable. More generally, an n-dimensional random variable is simply a function
whose domain is the given sample space S and whose range is a collection of n-tuples of real
numbers (vectors in n-space).

Thus, a random variable is nothing but a vector-valued function defined on a set. The
term “random” is used merely to remind us that the set in question is a sample space.7

Because of the generality of the above definition, it is possible to have many random
variables associated with a given experiment. In any particular example the experimenter
must decide which random variables will be of interest and importance to him. In general,
we try to work with random variables whose function values reflect, as simply as possible,
the properties of the outcomes of the experiment which are really essential.

Notations. Capital letters such as X, Y, 2 are ordinarily used to denote one-dimensional
random variables. A typical outcome of the experiment (that is, a typical element of the
sample space) is usually denoted by the Greek letter cc) (omega). Thus, X(w)  denotes that
real number which the random variable X associates with the outcome w.

The following are some simple examples of random variables.

EXAMPLE 1. An experiment consists of rolling a die and reading the number of points
on the upturned face. The most “natural” random variable X to consider is the one
stamped on the die by the manufacturer, namely:

X(w) = w f o r  o =  1,2,3,4, 5,6.

t The terms “stochastic variable” and “chance variable” are also used as synonyms for “random variable.”
The word “stochastic” is derived from a Greek stem meaning “chance” and seems to have been invented by
Jakob Bernoulli. It is commonly used in the literature of probability theory.
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If we are interested in whether the number of points is even or odd, then we can consider
instead the random variable Y,  which is defined as follows:

Y(0) = 0 if w is even,

Y(w) = 1 i f  w i s o d d .

The values 0 and 1 are not essential-any two distinct real numbers could be used instead.
However, 0 and 1 suggest “even” and “odd,” respectively, because they represent the
remainder obtained when the outcome co is divided by 2.

EXAMPLE 2. A dart is thrown at a circular target. The set of all possible outcomes is
the set of all points w on the target. If we imagine a coordinate system placed on the
target with the origin at the center, we can assign various random variables to this experi-
ment. A natural one is the two-dimensional random variable which assigns to the point o
its rectangular coordinates (x, y). Another is that which assigns to (0  its polar coordinates
(r, 19). Examples of one-dimensional random variables are those which assign to each w
just one of its coordinates, such as the x-coordinate or the r-coordinate (distance from the
origin). In an experiment of this type we often wish to know the probability that the dart
will land in a particular region of the target, for example, the first quadrant. This event can
be described most simply by the random variable which assigns to each point w its polar
coordinate angle 19, so that X(W) = 8; the event “the dart lands in the first quadrant” is the
set of w such that 0 < X(w)  < &r.

Abbreviations. We avoid cumbersome notation by using special abbreviations to describe
certain types of events and their probabilities. For example, if t is a real number, the set
of all LC)  in the sample space such that X(w)  = t is denoted briefly by writing

x= t.

The probability of this event is written P(X = t) instead of the lengthier P({w 1 X(o) = t}).
Symbols such as P(X = a or X = b) and P(a  < X 5 b) are defined in a similar fashion.
Thus, the event “X = a or X = b”  is the union of the two events “X = a” and “X = b”  ;
the symbol P(X  = a or X = b) denotes the probability of this union. The event
“a < X < b”  is the set of all points w such that X(w)  lies in the half-open interval (a, b],
and the symbol P(a  < X 5 b) denotes the probability of this event.

14.4 Exercises

1. Let X be a one-dimensional random variable.
(a) If a < b, show that the two events a < X < b and X < a are disjoint.
(b) Determine the union of the two events in part (a).
(c) Show that P(a  < X < b) = P(X  < b) - P(X  I a).

2. Let (X, Y) denote a two-dimensional random variable defined on a sample space S. This means
that (X, Y) is a function which assigns to each o in S a pair of real numbers (X(w), Y(w)).
Of course, each of X and Y is a one-dimensional random variable defined on S. The notation
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stands for the set of all elements w in S such that X(w) < a and Y(w) 5 b.
(a) If a < b and c < d, describe, in terms of elements of S,  the meaning of the following
notation: a <X<b,c  < Y<d.
(b) Show that the two events “X 5 a, Y I c” and “X < a, c < Y < d”are disjoint. Interpret
these events geometrically.
(c) Determine the union of the two events in (b).
(d) Generalize Exercise 1 (c) to the two-dimensional case.

3. Two fair dice are rolled, each outcome being an ordered pair (a, b), where each of a and b is
an integer from 1 to 6. Let X be the random variable which assigns the value a + b to the
outcome (a, b).
(a) Describe, in roster notation, the events “X = 7,” “X = 11,” “X = 7 or X = 11.”
(b) Compute the probabilities of the events in part (a).

4. Consider an experiment in which four coins are tossed simultaneously (or one coin is tossed
four times). For each coin define a random variable which assigns the value 1 to heads and the
value 0 to tails, and denote these random variables by X1,  X, , X, , X, . Assign the probabilities
P(Xi  = 1) = P(Xi  = 0) = i for each Xi. Consider a new random variable Y which assigns
to each outcome the total number of heads among the four coins. Express Yin terms of X1,
X, , X3,  X, and compute the probabilities P( Y = 0) , P( Y = 1))  and P( Y < 1).

5. A small railroad company has facilities for transporting 100 passengers a day between two cities,
at a fixed cost (to the company) of $7 per passenger. If more than 100 passengers buy tickets
in any one day the railroad is obligated to provide bus transportation for the excess at a cost of
$10 per passenger. Let X be the random variable which counts the number of passengers that
buy tickets in a given day. The possible values of Xare the integers 0, 1, 2, 3, . . . up to a certain
unknown maximum. Let Y denote the random variable which describes the total daily cost
(in dollars) to the railroad for handling passengers. Express Yin terms of X.

6. A factory production line consists of two work stations A and B. At station A, X units per
hour are assembled; they are immediately transported to station B, where they are inspected
at the rate of Y units per hour, where Y < X. The possible values of X and Y are the integers
8,9,  and 10. Let Z denote the random variable which counts the number of units that come off
the production line during the first hour of production.
(a) Express Z in terms of X and Y, assuming each of X and Y is constant during this hour.
(b) Describe, in a similar way, the random variable U which counts the number of units de-
livered in the first two consecutive hours of production. Each of X and Y is constant during each
hour, but the constant values during the second hour need not be the same as those during the
first.

14.5 Distribution functions

We turn now to the problem of computing the probabilities of events associated with
a given random variable. Let X be a one-dimensional random variable defined on a
sample space S, where S is a Bore1 set in n-space for some n > 1 . Let P be a probability
measure defined on the Bore1  subsets of S. For each w in S, X(o) is a real number, and
as OJ runs through the elements of S the numbers A’(U)  run through a set of real numbers
(the range of X). This set may be finite, countably infnite, or uncountable. For each real
number t we consider the following special subset of S:

/l(t) = {w  ( X(0) < t).

If t is less than all the numbers in the range of X, the set A(t) will be empty; otherwise,
A(t) will be a nonempty  subset of S. We assume that for each t the set -4(t) is an event,
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that is, a Bore1  set. According to the convention discussed at the end of Section 14.3, we
denote this event by the symbol X 5 t.

Suppose we know the probability P(X 5 t) for every real t. We shall find in a moment
that this knowledge enables us to compute the probabilities of many other events of
interest. This is done by using the probabilities P(X  < t) as a basis for constructing a
new function F, called the distribution function of X. It is defined as follows:

DEFINITION OF A DISTRIBUTION FUNCTION. Let X be a one-dimensional random variable.
The function F de$ned  for all real t by the equation

F(t) = P(X 5 t)

is called the distribution function of the random variable X.

Note: Sometimes the notation FX  is used to emphasize the fact that the distribution
function is associated with the particular random variable X. The value of the function
at t is then denoted by Fx(t).

It is important to realize that the distribution function F is defined over the entire real
axis, even though the range of X may be only a bounded portion of the real axis. In fact,
if all numbers X(a)  lie in some finite interval [a, b], then for t < a the probability P(X < t)

is zero (since for t < a the set X < t is empty) and for t 2 b the probability P(X < t) is 1
(because in this case the set X 5 t is the entire sample space). This means that for bounded
random variables X whose range is within an interval [a, b] we have F(t) = 0 for all
t<aandF(t)=lforallt~b.

We now proceed to derive a number of properties common to all distribution functions.

T H E O R E M  14.2. Let F denote a distribution function of a one-dimensional random variable
X. Then we have:

(a>  0 I F(t) I 1 for all 1.
(b) P(a < X 5 b) = F(b) - F(a) if a<b.

Cc>  FW  I F(b) i f  a<b.

Proof. Part (a) follows at once from the definition of F because probabilities always lie
between 0 and 1.

To prove (b) we note that the events “a < X 5 b” and “X 5 a” are disjoint. Their
union is the event “X 5 b.” Using additivity we obtain

P(a<XIb)+P(XIa)=P(XIb),

which can also be expressed as

P(a<X<b)=P(X<b)-P(X<a)=F(b)-F(a).

Part (c) follows from (b) since P(a < X 5 b) 2 0.

Note: Using the mass analogy, we would say that F(t) represents the total amount of
mass located between - a, and t (including the point t itself). The amount of mass located
in a half-open interval (a, b] is F(b) - F(a).
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FIGURE 14.1 A distribution function
of a bounded random variable.

FIGIJRE  14.2 A distribution function of an
unbounded random variable.

Figure 14.1 shows a distribution function of a bounded random variable X whose
values X(W) lie in the interval [0, 11.  This particular example is known as a uniform
distribution. Here we have

F(t)=0  f o r  t<O, F(t) = t for 0 I f I I, F(t) = 1 for t 2 1.

Figure 14.2 shows an example of a distribution function corresponding to an unbounded
random variable. This example is known as a Cauchy distribution and its function values
are given by the formula

F(t) = i + -A arctan  t .
n

Experiments that lead to uniform and to Cauchy distributions will be discussed later.

Note: Using the mass analogy, we would say that in Figure 14.1 no mass has been
placed to the left of the origin or to the right of the point 1. The entire mass has been
distributed over the interval [0, 11. The graph of F is linear over this interval because the
mass is smeared with a uniform thickness. In Figure 14.2 the mass has been smeared along
the entire axis. The graph is nonlinear because the mass has been smeared with a varying
thickness.

Theorem 14.2(b) tells us how to compute (in terms of F) the probability that X lies in a
half-open interval of the form (a, b]. The next theorem deals with other types of intervals.

THEOREM 14.3. Let F be a distribution function of a one-dimensional random variable X.
Then $a < b we have:

(a) P(a 5 X 5 b) = F(b) - F(a) + P(X = a).
(b) P(a < X < b) = F(b) - F(a) - P(X = b).
(c) P(a 5 X < b) = F(b) - F(a) + P(X = a) - P(X = b).

Proof. To prove (a) we note that the events “a < X < b” and “X = a” are disjoint and
their union is ‘<a 5 X 5 b .” Using additivity and Theorem 14.2(b) we obtain (a). Parts
(b) and (c) are similarly proved.
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Note that all four events
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a<Xlb, alX<b, a<X<b, and a<X<b

have equal probabilities if and only if P(X = a) = 0 and P(X = 6) = 0.

The examples shown in Figures 14.1 and 14.2 illustrate two further properties shared by
all distribution functions. They are described in the following theorem.

THEOREM  14.4. Let F be the distribution function of a one-dimensional random variable A’.
Then we have

(14.1) lim F(t)  =  0
t-r-m

and lim F(t)  = 1 .
t-++m

Proof. The existence of the two limits in (14.1) and the fact that each of the two limits
lies between 0 and 1 follow at once, since F is a monotonic function whose values lie between
0 and 1.

Let us denote the limits in (14.1) by L, and L2,  respectively. To prove that L1  = 0 and
that L2  = 1 we shall use the countably additive property of probability. For this purpose
we express the whole space S as a countable union of disjoint events:

S=C(-n<X<-n+l)UCJ(n<XSn+l).
n=l n=O

Then, using additivity, we get

P(S) = zP(-n < X 5 -n + 1) + gP(n  < X < n + 1)
7Fl TL=O

=2rnm  fl[f(-n + 1) - F(--)I  +fmm $oLF(n  + 1) - F(n)].
-L

The sums on the right will telescope, giving us

P(S) = lim [F(O) - Q--M)]  + lim [F(N  + 1) - F(O)]
M-+m N-*02

=F(0)-LL,+L,--F(O)=L,-LL,.

Since P(S) = 1, this proves that L, - L, = 1 or L, = 1 + L,. On the other hand, we also
have L, < I and L, 2 0. This implies that L, = 0 and L, = 1, as asserted.

14.6 Discontinuities of distribution functions

An example of a possible distribution function with discontinuities is shown in Figure
14.3. Using the mass analogy we would say that F has a jump discontinuity at each point
which carries a positive amount of mass. As the next theorem shows, the jump is equal to
the amount of mass concentrated at that particular point.
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------------_ Jump = P(X = a)

,dfl

\c
l;m F(t) = F(Q)

I

91 ‘- ‘I+

a

FIGURE 14.3 A possible distribution function. F IGURE  14.4 Illustrating a jump dis-
continuity of a distribution function.

THEOREM 14.5. Let F be the distribution function of a one-dimensional random variable X.
Then for each real a we have

(14.2)

and

(14.3)

lim F(t) = F(a)
t-a+

.

lim F(t)  = F(a) - P(X = a).
t+a-

Note: The limit relation in (14.2) tells us that Fis continuousfrom the right at each point
a, because F(t)+ F(a) as t + a from the right. On the other hand, Equation (14.3) tells
us that as t -+  a from the left, F(t) will approach F(a)  if and only if the probability
P(X = a) is zero. When P(X  = a) is nor zero, the graph of F has a jump discontinuity at
a of the type shown in Figure 14.4.

Proof. The existence of the limits follows at once from the monotonicity and bounded-
ness of F. We prove now that the limits have the values indicated. For this purpose we
use part (b) of Theorem 14.2. If t > a we write

(14.4) F(t) = F(a) + P(a < X < t) ;

if t < a we write

(14.5) F(t) = F(a) - P(t < X 5 a).

Letting t--j  a+ in (14.4) we find

lim F(t) = F(a) + lim P(a < X 5 t) ,
t-+n+ t+n-t

whereas if t + a- in (14.5) we obtain

lim F(t) = F(a) - lim P(1  < X 5 a).
t+a- t-+a--

Therefore to prove (14.2) and (14.3) we must establish two equations:

(14.6) limP(a < X 5 t) = 0
t+at
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and

(14.7) limP(t<X<a)=P(X=a).
t+a-

These can be justified intuitively as follows: When t + a+ , the half-open interval (a, t]
shrinks to the empty set. That is, the intersection of all half-open intervals (a, t], for
t > a, is empty. On the other hand, when t + a- the half-open interval (t, a] shrinks
to the point a. (The intersection of all intervals (t, a] for t < a is the set (a}.) Therefore,
if probability behaves in a continuous fashion, Equations (14.6) and (14.7) must be valid.
To convert this argument into a rigorous proof we proceed as follows:

For each integer n 2 1, let

(14.8) pn=P  a<Xla+A.
( n 1

To prove (14.6) it suffices to show thatp, + 0 as n 4 co. Let S,  denote the event

1
a+-

n+l
<Xla+L

n

The sets S,  are disjoint and their union S, U S2  U S, U * - - is the event a < X 5 a + 1.
By countable additivity we have

(14.9) ~P(S,)=P(a<XIa+l)=p,.
n=l

On the other hand, Equation (14.8) implies that

Pn  - Pn+l  = W,),

so from (14.9) we obtain the relation

(14.10) nt$Pn  - Pn+1)  = Pl.

The convergence of the series is a consequence of (14.9). But the series on the left of
(14.10) is a telescoping series with sum

p1 - lim pn.
72-m

Therefore (14.10) implies that lim,,,, pn = 0, and this proves (14.6).
A slight modification of this argument enables us to prove (14.7) as well. Since

et < x I a) = P(t  < x < a) + p(x = a)

we need only prove that
limP(t < X < a) = 0.
t-a-
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.

For this purpose we introduce the numbers

4n =P  a
(

wA<X<a
n )

andshowthatq,-+Oasn+ao. In this case we consider the events T,,  given by

1
a-&<Xja--

n n+l

for n = 1, 2, 3, . . . . These are disjoint and their union is the event a - 1 < X < a,
so we have

We now note that q,,  - q,+l = P(T,J, and we complete the proof as above.

The most general type of distribution is any real-valued function F that has the following
properties :

(a) F is monotonically increasing on the real axis,
(b) F is continuous from the right at each point,
(c) lim,-,  F(t) = 0 and lim,,,,  F(t) = 1.

In fact, it can be shown that for each such function F there is a corresponding set function
P, defined on the Bore1 sets of the real line, such that P is a probability measure which
assigns the probability F(b) - F(a) to each half-open interval (a, b]. For a proof of this
statement, see H. Cramer, Mathematical Methods of Statistics, Princeton University Press,
Princeton, N.J., 1946.

There are two special types of distributions, known as discrete and continuous, that are
of particular importance in practice. In the discrete case the entire mass is concentrated
at a finite or countably infinite number of points, whereas in the continuous case the
mass is smeared, in uniform or varying thickness, along an interval (finite or infinite).
These two types of distributions will be treated in detail in the next few sections.

14.7 Discrete distributions. Probability mass functions

Let X be a one-dimensional random variable and consider a new function p, called the
probability mass function of A’. Its values p(t) are defined for every real number t by the
equation

p(t) = P(X = t).

That is, p(t) is the probability that X takes the value t. When we want to emphasize that
p is associated with A’  we writep, instead ofp and px(t) instead ofp(t).

The set of real numbers t for which p(t) > 0 is either finite or countable. We denote
this set by T; that is, we let

T = it.1  p(t) > 01.
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The random variable X is said to be discrete if

&p(t) = 1.

In other words, X is discrete if a unit probability mass is distributed over the real line by
concentrating a positive mass p(t) at each point t of some finite or countably infinite set
T and no mass at the remaining points. The points of T are called the mass points of X.

For discrete random variables a knowledge of the probability mass function enables
us to compute probabilities of arbitrary events. In fact, we have the following theorem.

THEOREM 14.6. Let A be a Bore1 subset of the real line R, and let P(X E A) denote the
probability of the set of u such that X(o) E A. Then we have

(14.11) P(X E 4 = zEJTP(4  9

where T is the set of mass points of X.

Proof. Since A A T E A and T - A G R - A, we have

(14.12) .TnTp(x)  I P(X E A) and

But A n T and T - A are disjoint sets whose union is T, so the second inequality in
(14.12) is equivalent to

l-zE&T~(x)  I 1 - p(X E A) or zsFn:nT~(4  2 P(X E A).

Combining this with the first inequality in (14.12) we obtain (14.11).

Note: Since@)  = 0 when x $ T, the sum on the right of (14.11) can be written as
IseA  p(x) without danger of its being misunderstood.

When A is the interval (- co, t], the sum in (14.11) gives the value of the distribution
function F(t).  Thus, we have

F(t)  = P(X  5 t) = z: p(x).
rst

If a random variable X is discrete, the corresponding distribution function F is also called
discrete.

The following examples of discrete distributions occur frequently in practice.

EXAMPLE 1. Binomial distribution. Let p be a given real number satisfying 0 5 p 5 1
and let q = 1 -p. Suppose a random variable X assumes the values 0, 1, 2, . . . , n,
where n is a fixed positive integer, and suppose the probability P(X = k) is given by the
formula

P(X = k) = for k=0,1,2  ,...,  n.
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0.4

0.2

- -

(a) The mass function (b) The distribution function

FIGURE 14.5 The probability mass function and the distribution function of a
binomial distribution with pararneters n = 5 and p = &.

This assignment of probabilities is permissible because the sum of all the point probabilities
is

-$P(X = k) =$(;) p”,“”  = (p + q)” = 1.
k=O k=O

The corresponding distribution function F, is said to be a binomial distribution with
parameters n andp. Its values may be computed by the summation formula

F,(t)  = 2 (JPkPk.
OlkSt

Binomial distributions arise naturally from a Bernoulli sequence of trials where p is
the probability of “success” and q the probability of “failure.” In fact, when the random
variable X counts the number of successes in k trials, P(X = k) is precisely (!J)P”~“-~
because of Bernoulli’s formula. (See Theorem 13.3 in Section 13.16.) Figure 14.5 shows
the graphs of the probability mass function and the corresponding distribution function
for a binomial distribution with parameters n = 5 and p = 4.

EXAMPLE 2. Poisson distribution. Let il be a positive real number and let a random
variable X assume the values 0, 1, 2, 3, . . . . If the probability P(X  = k) is given by the
formula

p(X = k) = $ for k = 0, 1, 2, . . . )

the corresponding distribution function Fx is said to be a Poisson distribution with param-
eter A. It is so named in honor of the French mathematician S. D. Poisson (1781-1840).
This assignment of probabilities is permissible because

xp(X = k) = g-k2  5 = e-“e” = 1.

k=O k=O ’
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The values of the distribution function are computed from the partial sums

The Poisson distribution is applicable to many problems involving random events
occurring in time, such as traffic accidents, connections to wrong numbers in a telephone
exchange, and chromosome interchanges in cells induced by x-ray radiation. Some specific
applications are discussed in the books by Feller and Parzen  listed at the end of this
chapter.

14.8 Exercises

1. A perfectly balanced die is rolled. For a random variable X we take the function which counts
the number of points on the upturned face. Draw a graph of the corresponding distribution
function F, .

2. Two dice are rolled. Let X denote the random variable which counts the total number of
points on the upturned faces. Construct a table giving the nonzero  values of the probability
mass function pX and draw a graph of the corresponding distribution function FX  .

3. The distribution function F of a random variable X is given by the following formulas:

0 i f  t-C-2,

i f -2<t<o,
P(t) =

I

k

4 i f  Ojt <2,

1 i f  t22.
(a) Sketch the graph of F.
(b) Describe the probability mass function p and draw its graph.
(c) Compute the following probabilities: P(X  = l), P(X 5 I),  P(X < I), P(X  = 2),
P(X12),P(O  <X<2),P(O <X<2),P(l  <X52).

4. Consider a random variable X whose possible values are all rational numbers of the form
n nfl

- a n d -
n+l

, where n = 1,2,  3, . . . . If
n

P(X=$)  =P(X+J)  =A,
verify that this assignment of probabilities is permissible and sketch the general shape of the
graph of the distribution function F”.

5. The probability mass function p of a random variable X is zero except at points t = 0, 1, 2.
At these points it has the values

p(0) = 3c3, p(1) = 4c - lOc2, p(2) = 5c - 1,

forsomec >O.
(a) Determine the value of c.
(b) Computethefollowingprobabilities: P(X < l),P(X < 2),P(l < X < 2),P(O < X < 3).
(c) Describe the distribution function F and sketch its graph.
(d) Find the largest t such that F(t) < 4.
(e) Find the smallest t such that F(t) > t.
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6. A random variable X has a binomial distribution with parameters n = 4 andp = +.
(a) Describe the probability mass function p and sketch its graph.
(b) Describe the distribution function F and sketch its graph.
(c) Compute the probabilities P(l < X 5 2) and. P(l < X 5 2).

7. Assume that if a thumbtack is tossed on a table, it lands either with point up or in a stable
position with point resting on the table. Assume there is a positive probability p that it lands
with point up.
(a) Suppose two identical tacks are tossed simultaneously. Assuming stochastic independence,
show that the probability that both land with point up is p2.
(b) Continuing part (a), let X denote the random variable which counts the number of tacks
which land with point up (the possible values of Xare 0, 1, and 2). Compute the probabilities
P(X  = 0) and P(X  = 1).
(c) Draw the graph of the distribution function F’  when p = *.

8. Given a random variable X whose possible values are 1, 2, . . . , n. Assume that the prob-
abilityP(X = k) is proportional to k. Determine the constant of proportionality, the probability
mass function px , and the distribution function F”.

9. Given a random variable X whose possible values are 0, 1,2,  3, . . . . Assume that P(X  = k)
is proportional to CL/k!,  where c is a fixed real number. Determine the constant of proportion-
ality and the probability mass function p.

10. (a) A fair die is rolled. The sample space is S = { 1,2,  3,4,  5,6}.  If the number of points on
the upturned face is odd a player receives one dollar; otherwise he must pay one dollar. Let
X denote the random variable which measures his financial outcome (number of dollars) on
each play of the game. (The possible values of X are + 1 and - 1.) Describe the probability
mass function px and the distribution F, . Sketch their graphs.
(b) A fair coin is tossed. The sample space S == {H, T}. If the outcome is heads a player
receives one dollar; if it is tails he must pay one dollar. Let Y denote the random variable
which measures his financial outcome (number of dollars) on each play of the game. Show that
the mass function py and the distribution FY  are identical to those in part (a). This example
shows that different random variables may have the same probability distribution function.
Actually, there are infinitely many random variables having a given probability distribution
F. (Why?) Such random variables are said to be identically  distributed.  Each theorem
concerning a particular distribution function is applicable to any of an infinite collection of
random variables having this distribution.

11. The number of minutes that one has to wait for a train at a certain subway station is known
to be a random variable X with the following probability mass function:

pw  = 0 unless t = 3k/lO forsome k =0,1,2 ,..., 10.

p(t) = & if t = 0,0.3,0.6,0.9,2.1,2.4, 2.7, 3.0.

pw = * i f t = 1.2, 1.5, 1.8.

Sketch the graph of the corresponding distribution function F. Let A be the event that one
has to wait between 0 and 2 minutes (including 0 and 2),  and let B be the event that one has
to wait between 1 and 3 minutes (including 1 and 3). Compute the following probabilities:
N),W),P(A nB),WI4,%4  UB).

12. (a) If0 <p < 1 andq = 1 -p,showthat
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.

(b) Given il > 0, let p =+forn>1.  ShowthatQ,-+lasn--ta3andthat

n0k pkq’+-k  -+ z e-1 a s  n+co.

This result suggests that for large n and small p, the binomial distribution is approximately
the same as the Poisson distribution, provided the product np is nearly constant; this constant
is the parameter 1 of the Poisson distribution.

14.9 Continuous distributions. Density functions

Let X be a one-dimensional random variable and let F be its distribution function, so
that F(t) = P(X 5 t) for every real t. If the probability P(X = t) is zero for every 1 then,
because of Theorem 14.5, F is continuous everywhere on the real axis. In this case F is
called a continuous distribution and X is called a continuous random variable. If the deriva-
tive F’ exists and is continuous on an interval [a, t] we can use the second fundamental
theorem of calculus to write

(14.13) F(t)  - F(a)  = s,‘fCu,  du,

where f is the derivative of F. The difference F(t) - F(a) is, of course, the probability
P(a < X 5 t), and Equation (14.13) expresses this probability as an integral.

Sometimes the distribution function F can be expressed as an integral of the form
(14.13), in which the integrand f is integrable but not necessarily continuous. Whenever
an equation such as (14.13) holds for all intervals [a, t],  the integrand f is called a proba-
bility density function of the random variable X (or of the distribution F) provided thatfis
nonnegative. In other words, we have the following definition:

DEFINITION OF A PROBABILITY DENSITY FUNCTION. Let X be a one-dimensional random
variable with a continuous distribution function F. A nonnegative function f is called a
probability density of X (or of F) zyf is integrable on every interval [a, t] and if

(14.14) F(t) - F(a) = s,“f(u)  du.

If we let a -+ --co  in (14.14) then F(a) + 0 and we obtain the important formula

(14.15) F(t) = P(X 5 t) = fm f(u) du ,

valid for all real t. If we now let t + + co and remember that F(t) + 1 we find that

(14.16) I
+cO

--41  f(u) du = 1.
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For discrete random variables the sum of all the probabilities P(X = t) is equal to 1.
Formula (14.16) is the continuous analog of this statement There is also a strong analogy
between formulas (14.11) and (14.15). The density functionf plays the same role for con-
tinuous distributions that the probability mass functionp plays for discrete distributions -
integration takes the place of summation in the computation of probabilities. There is
one important difference, however. In the discrete case p(t) is the probability that X = t,
but in the continuous casef(t)  is not  the probability that X = t . In fact, this probability is
zero because F is continuous for every t. Of course, this also means that for a continuous
distribution we have

P(a<X<b)=P(a<X<b)=P(a<X<b)=P(a<X<b).

If F has a density feach of these probabilities is equal to the integral js f(u) du.

Note: A given distribution can have more than one density since the value of the
integrand in (14.14) can be changed at a finite number of points without altering the
integral. But iffis conGnuous  at t thenf(t) = F’(t) ; in this case the value of the density
function at t is uniquely determined by F.

Since f is nonnegative, the right-hand member of Equation (14.14) can be interpreted
geometrically as the area of that portion of the ordinate set offlying to the left of the line
x = t . The area of the entire ordinate set is equal to 1. The area of the portion of the
ordinate set above a given interval (whether it is open, closed, or half-open) is the proba-
bility that the random variable X takes on a value in that interval. Figure 14.6 shows an
example of a continuous distribution function F and its density function f. The ordinate
F(t) in Figure 14.6(a) is equal to the area of the shaded region in Figure 14.6(b).

The next few sections describe some important examples of continuous distributions.

14.10 Uniform distribution over an interval

A one-dimensional random variable X is said to have a uniform distribution function F
over a finite interval [a, b] if F is given by the following formulas:

10 i f  tsa,

i f  a<t<b,

i f  t>b.

(a) The distribution function F. (b) The density functionf.

FIGURE 14.6 A uniform distribution over an interval [a, 61 and the corresponding
density function.
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This is a continuous distribution whose graph is shown in Figure 14.6(a).
The derivative F’(t) exists everywhere except at the points a and b, and we can write

where f is the density function, defined as follows:

l/P - 4 i f  a<t<b,
f(t) = o

otherwise.

The graph off is shown in Figure 14.6(b).
The next theorem characterizes uniform distributions in another way.

THEOREM 14.7. Let X be a one-dimensional random variable with all its values in a finite
interval [a, b], and let F be the distribution function of  X. Then F is uniform over [a, b] if
and only if

(14.17) P(XEZ) = P(XEJ)

for every pair of  subintervals Z and J of  [a, b] having the same length, in which case we have

P(X  E Z) = A!--
b - a ’

where h is the length of  I.

Proof. Assume first that X has a uniform distribution over [a, b]. If [c, c + h] is any
subinterval of [a, b] of length h we have

P(c < X 5 c + h) = F(c + h) - F(c) = ’ ; ’ -a a - ;fl  = $-a .
- - -

This shows that P(XE I) = P(XE J) = h/(b  - a) for every pair of subintervals Z and J of
[a, b] of length h.

To prove the converse, assume that X satisfies (14.17). First we note that F(t) = 0 if
t < a and F(t) = 1 if t > b, since X has all its values in [a, b].

Introduce a new function g defined on the half-open interval (0, b - a] by the equation

(14.18) g(u) = P(a < X 5 a + 24) i f  O<u<b-a.

Using additivity and property (14.17) we find

g(u  + v) = P(a  < X I a + u + v)
=P(a<X<a+u)+P(a+u<XIa+u+v)

=g(u)+P(a<XIa+v)=g(u)+g(v),
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provided that 0 < u + v < b - a. That is, g satisfies the functional equation

g(u  + 4 = g(u)  + g(v)

for all u and v such that u > 0, v > 0, u + v < b - a. This is known as Cauchy’s
functionalequation. In a moment we shall prove that every nonnegative solution of Cauchy’s
functional equation is given by

g(u) = & g(b  - 4 f o r  O<u<b-a.

Using this in Equation (14.18) we find that for 0 < u 5 b - a we have

P(a  < X 5 a + u) = & P(a  < X 5 b)  = A-
b - a

since P(a < X < b) = 1. In other words,

F(a + 1.4)  - F(a) = & i f  O<u<b-a.

We put t = a + u and rewrite this as

F(t) - F(a) = E i f  a<tlb.
-

But F(a) = 0 since F is continuous from the right. Hence

F(t)  = t--a
b - a

i f  a<t<b,

which proves that F is uniform on [a, b].

THEOREM 14.8. SOLUTION OF CAUCHY'S FUNCTIONAL EQUATION. Let g be a real-valued
function deJned on a half-open interval (0, c] and satisfying the following two properties:

(a) g(u + v) = g(u) + g(v) whenever u,  v, and u + v are in (0, c],

and

(b) g is nonnegative on (0, c].

Then g is given by the formula

g(u)+)  f o r  o<u<c.

ProoJ By introducing a change of scale we can reduce the proof to the special case in
which c = 1 . In fact, iet

G(x)  = g(cx> f o r  O<xl;l.
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Then G is nonnegative and satisfies the Cauchy  functional equation

G(x  + Y> = G-4  + G(y)

whenever x, y, and x + y are in (0, 11.  If we prove that

(14.19) G(x) = xG(I) f o r  O<x<l

it follows that g(cx) = xg(c) , or that g(u) = (u/c)g(c)  for 0 < u 5 c.
If x is in (0, l] then x/2 is also in (0, l] and we have

G(x)=G(;)  +G@  =2G(;).

By induction, for each x in (0, l] we have

(14.20) for n = 1,2, 3, . . . .

Similarly, if y and my are in (0, l] we have

G(v) = mG(y) for m=l,2,3  ,... .

Taking y = x/n and using (14.20) we obtain

if x and mx/n are in (0, 11.  In other words, we have

(14.21) W-3 = rG(x)

for every positive rational number r such that x and rx are in (0, 11.
Now take any x in the open interval (0, 1) and let {r,} and {R,} be two sequences of

rational numbers in (0, I] such that

r,, < x < R, and such that limr, = lim R, = x.
n-rcc  n-rm

Cauchy’s functional equation and the nonnegative property of G show that G(x + y) 2
G(x) so G is monotonic increasing in (0, 11.  Therefore

W,)  I G(x)  I W,).
Using (14.21) we rewrite this as

r,W) 5 G(x)  I W(1).

Letting n --t CO we find xG(1)  5 G(x) 5 xG(l) , so G(x) = xG(1)  , which proves (14.19).
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Note: Uniform distributions are often used in experiments whose outcomes are points
selected at random from an interval [a, b],  or in experiments involving an interval [a, b] as
a target, where aiming is impossible. The terms “at random” and “aiming is impossible”
are usually interpreted to mean that if Z is any subinterval of [a, b] then the probability
P(X E Z)  depends only on the length of Z and not on its location in [a, b]. Theorem 14.7
shows that uniform distributions are the only distributions with this property.

We turn now to the probability questions asked at the beginning of this chapter.

EXAMPLE. A line segment is broken into two pieces, with the point of subdivision chosen
at random. Let X denote the random variable which measures the ratio of the length of the
left-hand piece to that of the right-hand piece. Determine the probability distribution
function F,  .

Solution. Use the interval [0, l] to represent the line segment and let the point of
subdivision be described by the random variable Y(w) = co for each OJ in (0, 1). Since the
point of subdivision is chosen at random we assume that Y has a uniform distribution
function Fy over [0, 11.  Hence

Fy(t)  = t f o r  O<t<l.

If the segment is broken at co,  then w/(1 - w) is the ratio of the length of the left-hand
piece to that of the right-hand piece. Therefore X(w) = cu/(l - w).

If t <: 0 we have F,(t) = 0 since the ratio X(o) cannot be negative. If t 2 0, the
inequality X(o) < t is equivalent to w/(1 - o) 5 t , which is equivalent to o 2 t/(1 + t).
Therefore

since 0 < t/(1 + t) < 1 .
Now we can calculate various probabilities. For example, the probability that the two

pieces have equal length is P(X  = 1) = 0. In fact, since F, is a continuous distribution,
the probability that X takes any particular value is zero.

The probability that the left-hand segment is at least twice as long as the right-hand
segment isP(X>2)= 1 -P(X<2)=  1 -g=&. Similarly, the probability that the
right-hand segment is at least twice as long as the left-hand segment is P(X  < &) = $. The
probability that the longer segment is at least twice as long as the shorter segment is
P(X>2)+P(X<+)=Q.

14.11 Cauchy’s distribution

A random variable X is said to have a Cauchy  distribution F if

F(t) = i + 1 arctan  t
Tr



Cauchy’s distribution

(a) The distribution function F. (b) The density function jI

FIGURE  14.7 Cauchy’s distribution function and the corresponding density function.

for all real t. This function has a continuous derivative everywhere; a continuous density
functionfis given by the formula

f(t) = l
?7(1  + t2) *

The graphs of F andfare shown in Figures 14.7(a) and (b), respectively.
The following experiment leads to a Cauchy distribution. A pointer pivoted at the point

(-1, 0) on the x-axis is spun and allowed to come to rest. An outcome of the experiment
is 8,  the angle of inclination from the x-axis made by a line drawn through the pointer;
8 is measured so that -$r < 19 5 +T. Let X be the random variable defined by X(0)  = 0,
and let Y be the random variable which measures the y-intercept of the line through the
pointer. If 0 is the angle described above, then

Y(0) = tan 8.

We shall prove that Y has a Cauchy distribution Fy if X has a uniform distribution over
[-gr, &T].

If a < t let IX  = arctan  a and let 8 = arctan  t. Then we have

Fy(t)  - F,(a) = P(a < Y _<  t) = P(a < X _<  0) =
s

‘fx(u)  du = 8--cr.
a 7r

Sincea+-+asa+--wefind

e + %nFy(t) = ___ =
n

A arctan  t + i .
7r

This shows that Y has a Cauchy distribution, as asserted.
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14.12 Exercises

1. A random variable X has a continuous distribution function F,  where

0 i f  t<o,

F(t) = ct i f  Ost<l,

1 i f  t>l.

(a) Determine the constant c and describe the density functionf.
(b) Compute the probabilities P(X  = &), P(X  < 4)  , P(lXl  < 4).

2. Letf(t) = c /sin II  for 1 t 1 < a/2 and letf(t)  = 0 otherwise. Determine the value of the constant
c so that f will be the density of a continuous distribution function F. Also, describe F and
sketch its graph.

3. Solve Exercise 2 iff(t) = c(4t - 2t2) for 0 5 I 5 2, andf(t)  = 0 otherwise.
4. The time in minutes that a person has to wait for a bus is known to be a random variable with

density function f given by the following formulas :

f(t) = +2 f o r  O<t<l, f(t)  = a f o r  2<t<4, f(t) = 0 otherwise.

Calculate the probability that the time a person has to wait is (a) more than one minute;
(b) more than two minutes; (c) more than three minutes.

5. A random variable X has a continuous distribution function F and a probability densityf.
The density has the following properties : f(t) = 0 if t < d ,f($ = 1 ,f(t) is linear if $ 5 t 5 $,
f(1 -- t) =f(t) for all t.
(a) Make a sketch of the graph of6
(b) Give a set of formulas for determining F and sketch its graph.
(c) Compute the following probabilities: fYX<l),  W<f), P(X<#,  PWI$),
P($ < x < 8).

6. A random variable X has a uniform distribution over [ -3, 31.
(a) Compute P(X = 2)) P(X < 2)) P(lXl < 2)) P(IX  - 21 < 2).
(b) Find a f for which P(X > t) = 4.

7. The Lethe  Subway Company schedules a northbound train every 30 minutes at a certain
station. A man enters the station at a random time. Let the random variable X count the
number of minutes he has to wait for the next train. Assume X has a uniform distribution over
the interval [0, 301.  (This is how we interpret the statement that he enters the station at
“random time.“)
(a) For each k = 5, 10, 15, 20, 25, 30, compute the probability that he has to wait at least
k minutes for the next train.
(b) A competitor, the Styx Subway Company, is allowed to schedule a northbound train
every 30 minutes at the same station, but at least 5 minutes must elapse between the arrivals
of competitive trains. Assume the passengers come into the station at random times and always
board the first train that arrives. Show that the Styx Company can arrange its schedule so that
it receives five times as many passengers as its competitor.

8. Let X be a random variable with a uniform distribution F,  over the interval [0, 11. Let Y =
uX + b, where a > 0. Determine the distribution function F, and sketch its graph.

9. A roulette wheel carries the integers from 0 to 36, distributed among 37 arcs of equal length.
The wheel is spun and allowed to come to rest, and the point on the circumference next to a
tixed pointer is recorded. Consider this point as a random variable X with a uniform distri-
bution. Calculate the probability that X lies in an arc containing (a) the integer 0; (b) an
integer n in the interval 11 < n I; 20 ; (c) an odd integer.
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10. A random variable is said to have a Cauchy distribution with parameters a and b, where a > 0,
if its density function is given by

f(‘) = ; a2  + ; _ b)2  *

Verify that the integral offfrom - co to + co is 1, and determine the distribution function F.
11. Letf,(t) = 1 for 0 < t < 1, and letf,(t) = 0 otherwise. Define a sequence of functions (fn}

by the recursion formula

fn+~(x)  = ~~J(x  - t)f,(t>dt.

(a) Prove thatf,+,(x) = Jo& dt.
(b) Make a sketch showing the graphs of fi , f2, and f 3.

12.  Refer to Exercise 11. Prove that each functionf,, is a probability density.

14.13 Exponential distributions

Let jl be a positive constant. A one-dimensional random variable X is said to have an
exponential distribution F with parameter A if

1 - e-At
F(t) =

f o r  t20,

0 f o r  t<o.

A corresponding density functionf is given by the formulas

1

AecAt
f(t)  =

f o r  t>O,
o

f o r  t < O .

The graphs of F and f are like those shown in Figure 14.8.

A A

-------_--  - - - -  - - - - - -

0 0
ct

(a) The distribution function F. (b) The density functionf.

FIGURE 14.8 An exponential distribution and the corresponding density function.
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Exponential distributions have a characteristic property which suggests their use in
certain problems involving radioactive decay, traffic accidents, and failure of electronic
equipment such as vacuum tubes. This property is analogous to that which characterizes
uniform distributions and can be described as follows.

Let X denote the observed waiting time until a piece of equipment fails, and let F be the
distribution function of X. We assume that F(t) = 0 for r 5 0, and for the moment we
put no further restrictions on F. If t > 0, then X 5 t is the event “failure occurs in the
interval [0, t].” Hence X > t is the complementary event, “no failure occurs in the interval
[O,  t].”

Suppose that no failure occurs in the interval [0, t]. What is the probability of continued
survival in the interval [t, t + s]? This is a question in conditional probabilities. We wish
to determine P(X  > t + s 1 X > t), the conditional probability that there is no failure in
the interval [0, t + s], given that there is no failure in the interval [0, t].

From the definition of conditional probability we have

(14.22) P(X  > t + s ( X > t) = ‘[(’ > ;:,‘;:,‘” ’ t)l = ‘a:; ;; ‘) .

Suppose now that F is an exponential distribution with parameter 1 > 0. Then F(t) =
1 - e-*t for t > 0, and P(X > t) = 1 - P(X  2 t) = e-At. Hence Equation (14.22)
becomes

e--L(t+s)
P(X  > t + s 1 x > t) = 7 = e--As = P(X  > s).

In other words, if the piece of equipment survives in the interval [0, t], then the probability
of continued survival in the interval [t, t + s] is equal to the probability of survival in the
interval [0, s] having the same length. That is, the probability of survival depends only on
the length of the time interval and not on the age of the equipment. Expressed in terms of
the distribution function F, this property states that

(14.23)
1 - F(t  + s)

= 1 - F(s) for all
1 - F(t)

t > 0 and s > 0.

The next theorem shows that exponential distributions are the only probability distribu-
tions with this property.

THEOREM 14.9. Let F be a probability distribution ,function satisfying the functional
equation (14.23), where F(t) < 1 for t > 0. Then there is a positive constant A > 0 such that

F(t) = 1 - e-At for all t > 0.

Proqf. Let g(t) = -log [l - F(t)] for t > 0. Then 1 - F(t) = e-Ott),  so to prove the
theorem it suffices to prove that g(t) = At  for some il > 0.

Now (g is nonnegative and satisfies Cauchy’s functional equation,

g(t  + 4 = g(t)  + g(s)
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for all t > 0 and s > 0. Therefore, applying Theorem 14.8 with c = I, we deduce that
g(t) = tg(1)  for 0 < t 5 1 . Let I = g(1). Then ;I = -log [I - F(l)]  > 0, and hence
g(t)  = At for 0 < t < 1 .

To prove that g(t) = At for all t > 0, let G(t) = g(t) - At. The function G also satisfies
Cauchy’s functional equation, Moreover, G is periodic with period 1 because G(t + 1) =
G(t) + G(1) and G(1) = 0. Since G is identically 0 in (0, I] the periodicity shows that
G(t) = 0 for all t > 0. In other words, g(t) = At for all t > 0, which completes the proof.

EXAMPLE 1. Let X be a random variable which measures the lifetime (in hours) of a
certain type of vacuum tube. Assume X has an exponential distribution with parameter
1 = 0.001. The manufacturer wishes to guarantee these tubes for T hours. Determine T
so that P(X  > T) = 0.95.

Solution. The distribution function is given by F(t)  = 1 - ePAt  for t > 0, where
2 = 0.001. Since P(X > T) = 1 - F(T) = e--IT,  we choose T to make e-IT  = 0.95.
Hence T = -(log 0.95)/J  = - 1000 log 0.95 = 51.25+  .

EXAMPLE 2. Consider the random variable of Example 1, but with an unspecified value
of 1. The following argument suggests a reasonable procedure for determining il. Start
with an initial number of vacuum tubes at time t = 0, and let g(t) denote the number of
tubes still functioning t hours later. The ratio [g(O) - g(t)]/g(O)  is the fraction of the
original number that has failed in time t. Since the probability that a particular tube fails
in time t is 1 - eeat,  it seems reasonable to expect that the equation

(14.24) g(O)  - g(t)  = 1 _ e-“t
g(O)

should be a good approximation to reality. If we assume (14.24) we obtain

g( t )  =  g(0)e-“t.

In other words, under the hypothesis (14.24),  the number g(t) obeys an exponential decay
law with decay constant 2. The decay constant can be computed in terms of the half-life.
If t, is the half-life then 4 = g(tJ/g(O)  = eWAtl,  so il = (log 2)/t,. For example, if the
half-life of a large sample of tubes is known to be 693 hours, we obtain il = (log 2)/693  =
0.001.

14.14 Normal distributions

Let m and c be fixed real numbers, with o > 0. A random variable X is said to have a
normal distribution with mean m and variance o2 if the density function f is given by the
formula

jyt)  _ 1 e-Chn)lol~/2

a&r

for all real t. The corresponding distribution function F is, of course, the integral

F(t)  = -J-oJ27T  :a  e-[(~-dfd2/2  du  .

s



TABLE 14.1 Values of the standard normal distribution function

t 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

5 3 6
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FIGURE 14.9 The standard normal distribu-
tion function: m = 0, G = 1.

FIGURE 14.10 The density function of a
normal distribution with mean m and

variance 02.

It is clear that this function F is monotonic increasing, continuous everywhere, and tends
to 0 as t 4 -co.  Also, it can be shown that F(t) + 1 as t ---f  + cc. (See Exercise 7 of
Section 14.16.)

The special case m = 0, o = 1 is called the standard normal distribution. In this case
the function F is usually denoted by the letter 0.  Thus,

cD(t)  = -& Irn  e-u2’2  du .
s

The general case can be reduced to the standard case by introducing the change of variable
v = (U - m)/o  in the integral for F. This leads to the formula

F(t) = tD t--m .c 1u
A four-place table of values of O(t) for values of t spaced at intervals of length 0.01 is

given in Table 14.1 for t = 0.00 to t = 3.69. The graph of 0 is shown in Figure 14.9. The
graph of the densityfis a famous “bell-shaped” curve, shown in Figure 14.10. The top of
the bell is directly above the mean m. For large values of o the curve tends to flatten out;
for small (5 it has a sharp peak, as in Figure 14.10.

Normal distributions are among the most important of all continuous distributions.
Many random variables that occur in nature behave as though their distribution functions
are normal or approximately normal. Examples include the measurement of the height
of people in a large population, certain measurements on large populations of living
organisms encountered in biology, and the errors of observation encountered when making
large numbers of measurements. In physics, Maxwell’s law of velocities implies that the
distribution function of the velocity in any given direction of a molecule of mass M in a
gas at absolute temperature T is normal with mean 0 and variance M/(kT),  where k is a
constant (Boltzmann’s constant).

The normal distribution is also of theoretical importance because it can be used to
approximate the distributions of many random phenomena. One example is the binomial
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FIGURE 14.11 The density function of a normal distribution considered as an approxi-
mation to the probability mass function of a binomial distribution.

distribution with parameters n and p. If X is a random variable having a binomial distri-
bution with parameters IZ andp, the probability P(a 5 X 5 b) is given by the sum

where 4 = 1 - p. For a large n, laborious computations are needed to evaluate this sum.
In practice these computations are avoided by use of the approximate formula

(14.25)
i

b--p+&

where the symbol ry means that the two sides of (14.25) are asymptotically equal; that is,
the ratio of the left member to the right member approaches the limit 1 as IZ + cc. The
limit relation expressed in (14.25) is a special case of the so-called central limit theorem of
the calculus of probabilities. This theorem (discussed in more detail in Section 14.30)
explains the theoretical importance of normal distributions.

Figure 14.11 illustrates approximate formula (14.25) and shows that it can be accurate
even for a relatively small value of n. The dotted lines are the ordinates of the probability
mass function p of a binomial distribution with parameters n = 10 and p = +. These
ordinates were computed from the formula

p(t)=P(X=t)= (:~)[~J~~-’  f o r  t=0,1,2,...,10.
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The ordinates for t = 7, 8, 9, and 10 are not shown because their numerical values are
too near zero. For example, ~(10)  = (i)‘”  = 210/1010  = 0.0000001024. The smooth
curve is the graph of the density function f of a normal distribution (with mean m = np = 2
and variance 8 = npq = 1.6). To compute the probability P(a < t < b) from the mass
function p we add the function values p(t) at the mass points in the interval a < t < b.
Each value p(t) may be interpreted as the area of a rectangle of height p(t) located over
an interval of unit length centered about the mass point t. (An example, centered about
t = 3, is shown in Figure 14.11.) The approximate formula in (14.25) is the result of
replacing the areas of these rectangles by the area of the ordinate set off over the interval
[a - 4, b + 41.

14.15 Remarks on more general distributions

In the foregoing sections we have discussed examples of discrete and continuous distribu-
tions. The values of a discrete distribution are computed by adding the values of the
corresponding probability mass function. The values of a continuous distribution with a
density are computed by integrating the density function. There are, of course, distribu-
tions that are neither discrete nor continuous. Among these are the so-called “mixed”
types in which the mass distribution is partly discrete and partly continuous. (An example
is shown in Figure 14.3.)

A distribution function F is called mixed if it can be expressed as a linear combination
of the form

(14.26) F(t) = @l(t) + c&(t),

where FI  is discrete and F, is continuous. The constants cr and c2  must satisfy the relations

0 < Cl < 1, 0 < c2  < 1, Cl + c2 = 1 -

Properties of mixed distributions may be found by studying those that are discrete or
continuous and then appealing to the linearity expressed in Equation (14.26).

A general kind of integral, known as the Riemann-Stieltjes integral, makes possible a
simultaneous treatment of the discrete, continuous, and mixed cases.7 Although this
integral unifies the theoretical discussion of distribution functions, in any specific problem
the computation of probabilities must be reduced to ordinary summation and integration.
In this introductory account we shall not attempt to describe the Riemann-Stieltjes integral.
Consequently, most of the topics we discuss come in pairs, one for the discrete case and one
for the continuous case. However, we shall only give complete details for one case, leaving
the untreated case for the reader to work out.

Even the Riemann-Stieltjes integral is inadequate for treating the most general distribu-
tion functions. But a more powerful concept, called the Lebesgue-Stieltjes integral,$ does
give a satisfactory treatment of all cases. The advanced theory of probability cannot be
undertaken without a knowledge of the Lebesgue-Stieltjes integral.

t A discussion of the Riemann-Stieltjes integral may be found in Chapter 9 of the author’s Mathematical
Analysis, Addison-Wesley Publishing Company, Reading, Mass. 1957.
: See any book on measure theory.
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14.16 Exercises
1.

2 .

3 .

Let X be a random variable which measures the lifetime (in hours) of a certain type of vacuum
tube. Assume X has an exponential distribution with parameter A = 0.001 . Determine T
so that P(X > T) is (a) 0.90; (b) 0.99. You may use the approximate formula -log (1 - x) =
x + x2/2  in your calculations.
A radioactive material obeys an exponential decay law with half-life 2 years. Consider the
decay time X (in years) of a single atom and assume that X is a random variable with an
exponential distribution. Calculate the probability that an atom disintegrates (a) in the interval
1 5 X 5 2 ; (b) in the interval 2 5 X 5 3 ; (c) in the interval 2 < X 5 3, given that it has
not disintegrated in the interval 0 < X < 2 ; (d) in the interval 2 5 X < 3, given that it
has not disintegrated in the interval 1 < X 5 2.
The length of time (in minutes) of long distance telephone calls from Caltech is found to be a
random phenomenon with probability density function

( (.,-t/3 f o r  t>O,
j-w =

0 for t 50.

Determine the value of c and calculate the probability that a long distance call will last (a)
less than 3 minutes; (b) more than 6 minutes; (c) between 3 and 6 minutes; (d) more than
9 minutes.

4 . Given real constants 3, > 0 and c. Let

le-l(t-o) i f  t>c,
f-0)  = o

i f  t < c .

5 .

6 .

Verify that J”,/-(t)  dt = 1, and determine a distribution function F havingfas its density.
This is called an exponential distribution with two parameters, a decay parameter 1 and a
location parameter c.
State and prove an extension of Theorem 14.9 for exponential distributions with two parameters
1 and c.

7 .

A random variable X has an exponential distribution with two parameters 1 and c. Let Y =
aX + b, where a > 0. Prove that Y also has an exponential distribution with two parameters
I’ and c’, and determine these parameters in terms of a, 6,  c, and ii.
In Exercise 16 of Section 11.28 it was shown that Jo”  F2 dx = &/2. Use this result to prove
that for u > 0 we have

8 .

9 .

10.

11.

A random variable X has a standard normal distribution Q.  Prove that (a) Q(  -x) = 1 -
Q(x);  (b)P(IXj  < k) = 2@(k)  - 1 ; (c)P(IXI  > k) = 2(1 - Q(k)).
A random variable X has a standard normal distribution @. Use Table 14.1 to calculate each
of the following probabilities: (a) P(X  > 0) ; (b) P(1  < X < 2) ; (c) P(lXl < 3) ; (d)
mfl > a.
A random variable X has a standard normal distribution a. Use Table 14.1 to find a number c
such that (a)P(IXJ  > c) = 4; (b) P(lX( > c) = 0.98.
Assume Xhas a normal distribution function Fwith mean m and variance u2, and let @  denote
the standard normal distribution.
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(a) Prove that
t - m

F ( f )  =  CD  -

( 1u .

(b) Find a value of c such that P(jX  - ml > c) = 4.
(c) Find a value of c such that P(lX - ml > c) = 0.98.

12. A random variable Xis normally distributed with mean m = 1 and variance u2 = 4. Calculate
each of the following probabilities: (a) P( -3 5 X 5 3) ; (b) P( -5 5 X < 3).

13. An architect is designing a doorway for a public building to be used by people whose heights
are normally distributed, with mean m = 5 ft. 9 in., and variance o2  where 0 = 3 in. How low
can the doorway be so that no more than 1 ‘ A of the people bump their heads?

14. If X has a standard normal distribution, prove that the random variable Y = aX + b is also
normal if a Z 0. Determine the mean and variance of Y.

15. Assume a random variable X has a standard normal distribution, and let Y = X2.

(a) Show that Fy(t) = yJtT  o
s

eeu212  du if t 2 0.

(b) Determine Fy(t) when 1 < 0 and describe the density function,fy .

14.17 Distributions of functions of random variables

If p is a real-valued function whose domain includes the range of the random variable
X, we can construct a new random variable Y by the equation

which means that Y(W) = m[X(w)] for each w in the sample space. If we know the distribu-
tion function F,- of X, how do we find the distribution FY of Y? We begin with an impor-
tant special case. Suppose that CJJ  is continuous and strictly increasing on the whole real
axis and takes on every real value. In this case 31 has a continuous strictly increasing
inverse y such that, for all x and y,

Y = v(x) if and only if x = y(v).

By the definition of FY we have

Fy(t) = P(Y I t) = P[y(X)  I t].

Since ~1  is strictly increasing and continuous, the events “p?(X) < t” and “X < y(t)” are
identical. Therefore P[p(X) 5 t] = P[X 5 y(t)] = F,[y(t)]  . Hence the distributions FY
and Fx are related by the equation

(14.27) f’=(t)  = FxMtN.

When the distribution F, and the function y have derivatives we can differentiate both
sides of (14.27), using the chain rule on the right, to obtain

F;(t)  = Edy(Ol * y’(t).
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This gives us the following equation relating the densities:

fu(t>  = fxMt)l  * v’(t).

EXAMPLE 1. Y = aX + b , a > 0. In this case we have

9(x>  = ax + b, Y(Y) = Y--b ) y’(y)  = 1.
a a

Since 9 is continuous and strictly increasing we may write

EXAMPLE 2. Y= x2. In this case q(x) = x2 and the foregoing discussion is not directly
applicable because v is not strictly increasing. However, we can use the same method of
reasoning to determine Fy andf, . By the definition of Fy we have

FY(t) = P(X2  5 t).

If t < 0 the event “X2 5 t” is empty and hence P(X2 < t) = 0. Therefore ISy(t)  = 0 for
t < O .  I f t > O w e h a v e

P(X” < t) = P(-&  2 X 5 Jr)  = F&f)  - F,(-&)  + P(X = -4;).

For a continuous distribution F,  we have P(X  = -4;) = 0 and we obtain the following
relation between Fy and F,:

I 0 i f  t<O,
Fdt)  =

F&t)  - F,(--Jt) i f  t > O .

For all t < 0 and for those t > 0 such that F, is differentiable at 4; and at -&  we have
the following equation relating the densities:

J-u(t)  =

r

0 i f  t<O,

j,(&>  + f,(4)

2&

if f > o

Further problems of this type will be discussed in Section 14.23 with the help of two-
dimensional random variables.

14.18 Exercises

1. Assume X has a uniform distribution on the interval [0, 11. Determine the distribution function
F,  and a probability densityf,  of the random variable Y if:
(a) Y = 3X + 1, (4  Y = log IX/,
(b) Y = -3X + 1, (e) Y = log X2,
(c) Y = x2, (f) Y = 9.
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2. Let X be a random variable with a continuous distribution function F, . If e,  is continuous and
strictly increasing on the whole real axis and if q(x)  --f  a as x -+  - 00  and p(x) -+  b as x ---f $ ~0  ,
determine the distribution function FY of the random variable Y = v(X).  Also, compute a
density fy  , assuming that F, and a,  are differentiable.

3. Assume X has a standard normal distribution. Determine a probability density function of the
random variable Y when
(a) Y=X2, (c)  Y = 9,
(b) Y = IXl’m, (d) Y = arctan  X.

14.19 Distributions of two-dimensional random variables

The concept of a distribution may be generalized to n-dimensional random variables
in a straightforward way. The treatment of the case n = 2 will indicate how the extension
takes place.

If X and Y are two one-dimensional random variables defined on a common sample
space S, (X, Y) will denote the two-dimensional random variable whose value at a typical
point (u  of S is given by the pair of real numbers (X(w), Y(w)). The notation

is an abbreviation for the set of all elements w in S such that X(o) 5 a and Y(w) 5 b ;
the probability of this event is denoted by

P(X<a,  Ylb).

Notations such as a < X I: b, c < Y 5 d, and P(a < X < b, c < Y < d) are similarly
defined.

The set of points (x, J) such that x 5 a and y 5 b is the Cartesian product A x B of
the two one-dimensional infinite intervals A = {x  1 x 2 a} and B = (y 1 y 5 b}. The
set A x B is represented geometrically by the infinite rectangular region shown in Figure
14.12. The number P(X < a, Y < 6) represents the probability that a point (X(o), Y(w))
lies in this region. These probabilities are the two-dimensional analogs of the one-dimen-
sional probabilities P(X 5 a), and are used to define two-dimensional probability distribu-
tions.

DEFINITION. The distribution function of the two-dimensional random variable (X, Y)
is the real-valued,function  F defined for all real a and b b-v  the equation

F(a,b)=P(X<a,  Ylb).

It is also known as the joint distribution of the two one-dimensional random variables X and Y.

To compute the probability that (X, Y) lies in a rectangle we use the following theorem,
a generalization of Theorem 14.2(b).
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FIGURE 14.12 An infinite rectangular
region A x B, where A = {x 1 x < a}

and B = {y I y I b}.

FIGURE 14.13 The event “X < b, Y 5 d”  ex-
pressed as the union of four disjoint events.

THEOREM 14.10. Let F be the distribution function of a two-dimensional random variable
(X, Y). Then if a < b and c < d we have

(14.28) P(a < X < b, c < Y 5 d) = F(b, d) - F(a, d) - F(b, c) + F(a, c).

Proof. The two events “X < a, c < Y 5 d” and “X 5 a, Y < c” are disjoint, and
their union is “X 5 a, Y < d .” Adding probabilities we obtain P(X  5 a, c < Y < d) +
P(X < a, Y < c) = P(X  5 a, Y 2 d); hence

P(X  < a, c < Y 5 d) = F(a, d) - F(u, c).

Similarly, we have

P(a < X 5 b, Y I c) = F(b, c) - F(a, c).

Now the four events

“X  5 a, Y < c,” “X 5 a, c < Y 5 d,”

“a<X<b,  Ylc,” “a < X 5 b, c < Y < d”

are disjoint, and their union is “X < b, Y < d.” (See Figure 14.13.) Adding the corre-
sponding probabilities and using the two foregoing equations we obtain

F(a, c) + [F(u, 4 - F(a, c)]  + [F(b, c) - F(a, c)]  + P(a < X < b, c < Y I d) = F(b,d),

which is equivalent to (14.28).



Two-dimensional discrete distributions 545

Formula (14.28) gives the probability that the random variable (X, Y) has a value in
the rectangle (a, b] x (c, d]. There are, of course, corresponding formulas for the rec-
tangles, [a, b] x [c, d], (a, b) x (c, d), [a, b) x [c, d), and so forth.

Note: The analogy with mass may be extended to the two-dimensional case. Here the
total mass 1 is distributed over a plane. The probability P(a < X 5 b, c < Y < d)
represents the total amount of mass located in the rectangle (a, b] x (c, d]. The number
F(a, b) represents the amount in the infinite rectangular region X < a, Y < b . As in
the one-dimensional case, the two most important types of distributions are those known as
discrete and continuous. In the discrete case the entire mass is located in lumps concen-
trated at a finite or countably infinite number of points. In the continuous case the mass
is smeared all over the plane with a uniform or varying thickness.

14.20 Two-dimensional discrete distributions

If a random variable (X, Y) is given we define a new function p, called the probability
mass function of (X, Y), such that

p(x,y)=P(X=x,  Y=y)

for every pair of real numbers (x, y). Let T denote the set of (x, y) for whichp(x,  y) > 0.
It can be shown that T is either finite or countably infinite. If the sum of the p(x,  y) for
all (x, y) in T is equal to 1, that is, if

(14.29) (r;ETP(X,  Y) = 12

the random variable (X, Y) is said to be discrete (or jointly discrete). The points (x, y)
in Tare called the mass points of (X, Y).

Suppose that x1, x2, x3, . . . and yl, yz, y3, . . . are among the possible values of X and
Y,  respectively, and let

pij  =fyx=xi,  Y=yj).

If each pij  is positive and if the sum of all the pij  is 1, then the probability of an event
“(X, Y) E E” is the sum of all the pij  taken over all xi and yj for which (xi, yj) E E. We
indicate this by writing

J’KX,  Y)EEI = 12 pij.
h;,i&

In particular, since P(X 5 x, Y 5 u) = F(x, J), the joint distribution F (which is also
called discrete) is given by the double sum

The numbers pij  can also be used to reconstruct the probability mass functions px
and py of the one-dimensional random variables X and Y. In fact, if Eii denotes the
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event “X = .yi, Y = yj,” the events Eil, Eiz,  Ei3, .  .  . are disjoint and their union is the
event “X = xi .” Hence, by countable additivity, we obtain

(14.31) P(X  = Xi) = $P(E,,)  = $ pii.
j=l i=l

Similarly, we have

(14.32) P(Y  = yj) = &YE,,)  = 5 Pij f
i=l

Therefore, the corresponding one-dimensional distributions FX and FY can be computed
from the formulas

and

For finite sample spaces, of course, the infinite series are actually finite sums.

14.21 Two-dimensional continuous distributions. Density functions

As might be expected, continuous distributions are those that are continuous over the
whole plane. For the majority of continuous distributions F that occur in practice there
exists a nonnegative function f (called the probability density of F) such that the proba-
bilities of most events of interest can be computed by double integration of the density.
That is, the probability of an event “(X, Y) E Q” is given by the integral formula

(14.33) f’[(X,  y> E Ql  = j jr.
Q

When such anfexists it is also called a probability density of the random variable (X, Y),
or a joint density of X and Y. We shall not attempt to describe the class of regions Q for
which (14.33) is to hold, except to mention that this class should be extensive enough to
include all regions that arise in the ordinary applications of probability. For example, if a
joint density exists we always have

(14.34) P(a < X S b, c < Y I d) = jjf(x,  y) dx dy,
R

where R = [a, b] x [c, d]. The integrand f is usually sufficiently well behaved for the
double integral to be evaluated by iterated one-dimensional integration, in which case
(14.34) becomes

P(a < x 5 by  C < y I 4 = j;  [jabfk  Y> dx] dy = jab  [j;f(x,  y) dy] dx.

In all the examples we shall consider, this formula is also valid in the limiting cases in
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which a and c are replaced by -co  and in which b and d are replaced  by  + co. Thus

we have

(14.35) F(b,  4 = jTa [j:, fh Y)  dx] dy = j_“, [j;;,  Rx, Y)  dy] dx

for all b and d, and

(14.36) j’,”  [j::  f(x.  Y) dx] dy  = j:I [ j;I f(x,  y) dy] dx = 1,

Equations (14.35) and (14.36) are the continuous analogs of (14.30) and (14.29),
respectively.

If a density exists it is not unique, since the integrand in (14.33) can be changed at a
finite number of points without affecting the value of the integral. However, there is at
most one continuous density function. In fact, at points of continuity off we have the
formulas

fk Y> = D,,,F(x,  Y> = &,,WG  Y) 3

obtained by differentiation of the integrals in (14.35).
As in the discrete case, the joint density f can be used to recover the one-dimensional

densities fX and fy. The formulas analogous to (14.31) and (14.32) are

fx(x> = j_+,m Rx, Y>  dy and h.4~)  = jTIf(x,  Y>  dx.

The corresponding distributions F,(t) and Fy(t)  are obtained, of course, by integrating the
respective densitiesf, and fu from - co  to t.

The random variables X and Y are called independent if the joint distribution F(x, y) can
be factored as follows,

F(x, Y) = FxCW,(y)

for all (x, y). Some consequences of independence are discussed in the next set of exercises.

EXAMPLE. Consider the functionfthat has the constant value 1 over the square R =
[0, l] x [0, 11,  and the value 0 at all other points of the plane. A random variable (X, Y)
having this density function is said to be uniformly distributed over R. The corresponding
distributions function F is given by the following formulas:

IXY if (x,y)~R,

X i f  O<x<l and y> 1,

F(x,Y)  = ‘Y i f  O<y<l and x> 1,

1 i f  x21 and y2 1,

(0 otherwise.

The graph of F over R is part of the saddle-shaped surface z = xy . At all points (x, y) not
on the boundary of R the mixed partial derivatives D,,,F(x,  y) and D,,,F(x,  y) exist and
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are equal to f(x, u).  This distribution is the product of two one-dimensional uniform
distributions Fx and Fy  . Hence X and Y are independent.

14.22 Exercises

1. Let X and Y be one-dimensional random variables with distribution functions F, and Fr,
and let F be the joint distribution of X and Y.
(a) Prove that X and Y are independent if and only if we have

P(a < X I; b, c < Y < d) = P(a < X I b)P(c  < Y 2 d)

for all a, b, c, d, with a < b and c < d.
(b) Consider the discrete case. Assume x1,  x2, . . . and y, , yz, . . . are the mass points of X
and Y, respectively. Let ai = P(X  = xi) and bj = P( Y = vj). If pii = P(X  = xi, Y = YJ,
show that X and Y are independent if pij = aibj  for all i and j.
(c) Let X and Y have continuous distributions with corresponding densities fx and fy and
let f denote the density of the joint distribution. Assume the continuity of all three densities.
Show that the condition of independence is equivalent to the statement f(x, y) =fx( x)fr~)
for all (x, y). [Hint:  Expressfas a derivative of the joint distribution F.]

2. Refer to Exercise 1. Suppose that P(X  = x1, Y = yJ = P(X = x2, Y = yz) = p/2 and that
P(X=x,,  Y=J$)  =P(X=x,,  Y =yl)  =q/2, where p and q are nonnegative with sum 1.
(a) Determine the one-dimensional probabilities P(X  = xi) and P( Y = yi) for i = 1, 2 and
j = 1,2.
(b) For what value (or values) of p will X and Y be independent?

3. If a < band  c < d, definefas follows:

fk y> =
I

(b - kid - cl
if (x, y>  E [a,  bl  x [c,  4,

0 otherwise.

(a) Verify that this is the density of a continuous distribution F and determine F.
(b) Determine the one-dimensional distributions F, and Fy .
(c) Determine whether or not X and Y are independent.

4. If P( Y 5 6) # 0, the conditional probability that X < a, given that Y < b , is denoted by
P(X  < a 1 Y 5 6) , and is defined by the equation

P(X  5 a 1 Y < b) =
P(X  < a, Y I b)

P(YSb)  .

IfP(Y<b)=O,wedefineP(X<uIY<b)=P(X<u).  Similarly,ifP(X<u)#O,
we define P(Y<bIX<u)  =P(X<u,  Y<b)/P(X<u).  If P(X<a) =0,  we  define
P(Y<bIX<u)=P(Y<b).
(a) Refer to Exercise 1 and describe the independence of X and Y in terms of conditional
probabilities.
(b) Consider the discrete case. Assume x1, x2, . . . and y, , yz , . . . are the mass points of X
and Y, respectively. Show that

P(x=xi)+(Y=yj)P(x=xcI Y=yr)
j=l

and

P(Y=yj)=~P(X=Xi)P(Y=yj/X=X~).
i=l
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5. A gambling house offers its clients the following game: A coin is tossed. If the result of the
first throw is tails, the player loses and the game is over. If the first throw is heads, a second
throw is allowed. If heads occur the second time the player wins $2, but if tails comes up the
player wins $1.  Let X be the random variable which is equal to 1 or 0, according to whether
heads or tails occurs on the first throw. Let Y be the random variable which counts the number
of dollars won by the player. Use Exercise 4 (or some other method) to compute P( Y = 0))
P(Y  = l), andP(Y = 2).

6. Refer to Exercise 4. Derive the so-called Bayes’ formulas :

P(X=x,I  Y=yj) =
P(x=xk)P(Y=yip=xJ

Ii=", P(X  = Xi)P(  Y = yj 1 x = Xi) '

P(Y=ykIx=xi)  =
P(Y=y,)P(x=xiI  Y=yr)

Ij”, P( Y = y.j)P(X = Xi 1 Y = uj) ’

7. Given two urns A and B. Urn A contains one $5 bill and two $10 bills. Urn B  contains three
$5 bills and one $10 bill. Draw a bill from urn A and put it in urn B. Let Y be the random
variable which counts the dollar value of the bill transferred. Now draw a bill from urn B
and use the random variable Xto count its dollar value. Compute the conditional probabilities

P( Y = 5 1 x = 10) and P(Y=101X=lO).

8 .

9 .

[Hint: Use Bayes’ formulas of Exercise 6.1
Given three identical boxes, each containing two drawers. Box number 1 has one gold piece
in one drawer and one silver piece in the other. Box 2 has one gold piece in each drawer and
Box 3 has one silver piece in each drawer. One drawer is opened at random and a gold piece
is found. Compute the probability that the other drawer in the same box contains a silver piece.
[Hint: Use Bayes’ formulas of Exercise 6.1
Let Q be a plane region with positive area u(Q). A continuous two-dimensional random
variable (X, Y) is said to havr:  a uniform distribution over Q if its density functionfis given by
the following formulas :

f(x,y) = (y”(Q)

(a) If E is a subregion of Q with area a(E), show that a(E)/a(Q) is the probability of the event
(X,  Y)EE.
(b) Raindrops fall at random on the square Q with vertices (1, 0), (0, l), (-1, 0), (0, -1).
An outcome is the point (x, y) in Q struck by a particular raindrop. Let X(x,  y) = x and
Y(x, JJ)  = y and assume (X, Y) has a uniform distribution over Q. Determine the joint
density function f and the one-dimensional densitiesfX  and,f,,  . Are the random variables X
and Y independent?

10. A two-dimensional random variable (X, Y) has the joint distribution function F. Let CT  =
X - a, V = Y - b, where a and b are constants. If G denotes the joint distribution of
(V, V) show that

G(u,v) = F(u + a,v + b).

Derive a similar relation connecting the density functionfof (X, Y) andg of (U, V) whenfis
continuous.
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14.23 Distributions of functions of two random variables

We turn now to the following problem: If X and Y are one-dimensional random
variables with known distributions, how do we find the distributionof new random variables
such as X + Y, XY, or X2 + Y2?  This section describes a method that helps to answer
questions like this. Two new random variables U and V are defined by equations of the
form

u= M(X,  Y), v =  N(X,  Y ) ,

where M(X,  Y) or N(X,  Y) is the particular combination in which we are interested. From
a knowledge of the joint distribution f of the two-dimensional random variable (X, Y)
we calculate the joint distribution g of (U,  V).  Once g is known, the individual distribu-
tions of U and V are easily found.

To describe the method in detail, we consider a one-to-one mapping of the xy-plane
onto the Mu-plane  defined by the pair of equations

u = M(x,y), v = N(x,y).

Let the inverse mapping be given by

x = Q(u,u>, y = m, 4 3

and assume that Q and R have continuous partial derivatives. If T denotes a region in the
xy-plane, let T’ denote its image in the uv-plane, as suggested by Figure 14.14. Let X and
Y be two one-dimensional continuous random variables having a continuous joint distribu-
tion and assume (X, Y) has a probability density functionf.  Define new random variables
U and V by writing U = M(X,  Y),  V = N(X,  Y). To determine a probability density g
of the random variable (U, V) we proceed as follows:

The random variables X and Y are associated with a sample space S. For each cc) in S
we have U(w)  = M[X(w),  Y(w)] and V(w) = N[X(w),  Y(m)].  Since the mapping is
one-to-one, the two sets

1~  1 (u(w),  V(o))  E T’l and

are equal. Therefore we have

(14.37) P[(U,  V) E T’] = P[(X, Y)  E Tl.

Since/is the density function of (X, Y) we can write

(14.38) P[(X,  Y>  E Tl = j-If@, Y>  dx dy.
T

Using (14.37) and the formula for transforming a double integral we rewrite (14.38) as
follows :

P[(U,  Y) E T'] = f[Q(u,  u),  Nu,  u>l  ‘gI , I
du dv.

T’
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FIGURE 14.14 A one-to-one mapping of a region Tin the xy-plane onto a region T’  in
the uv-plane.

Since this is valid for every region T’ in the uu-plane a density g of (U,  V)  is given by the
integrand on the right; that is, we have

(14.39) du, v>  =f[Q(u,  v>,  R(u, v>l

The densities fV and fV can now be obtained by the integration formulas

EXAMPLE 1. The sum and dilference  of two random variables. Given two one-dimensional
random variables X and Y with joint density f, determine density functions for the random
variables U= X+ Yand V= X- Y.

Solution. We use the mapping given by u = x + y , v = x - y . This is a nonsingular
linear transformation whose inverse is given by

X = y = Q(u,  v),

The Jacobian determinant is

u-v
V  = - = R(u,  v)., ?

=

.5

1 1

2 ;

1 1

5 -2

1= --*
2
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Applying Equation (14.39) we see that a joint density g of (U, I’)  is given by the formula

To obtain a density fu = fXfY we integrate with respect to v and find

The change of variable x = $(u + v),  dx = 8 du, transforms this to

Similarly, we find

An important special case occurs when X and Y are independent. In this case the joint
probability density factors into a product,

and the integrals for fx+y and fxMy become

EXAMPLE 2. The sum of two exponential distributions. Suppose now that each of X and Y
has an exponential distribution, say fx(t)  = fu(t)  = 0 for t < 0, and

fx(t) = AeP, fY(t) = pe+ f o r  t>O.

Determine the density of X + Y when X and Y are independent.

Solution. If u < 0 the integral for fXfY(u)  is 0 since the factor fX(x)  = 0 for x < 0,
and the factor fu(u  - x) = 0 for x 2 0. If u 2 0 the integral for fX+y(u)  becomes

fXfY(u)  = J‘d” jle--lx,ue-p(u-r’  dx = ApeP”  1: e(P-l’x  dx .

To evaluate the last integral we consider two cases, p = il and ,LJ  # 1.
If ,u = 1 the integral has the value u and we obtain

fX+y(u)  = A2uemAU f o r  ~20.
If ,U # il we obtain

fX+y(u)  = @e-PU  e(p-A)U - 1 = @ e-“U 1 ;-w

P-A
f o r  ~20.

P
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EXAMPLE 3. The maximum and minimum of two independent random variables. Let X and
Y be two independent one-dimensional random variables with densities fX and fu and
corresponding distribution functions F, and Fy . Let U and V be the random variables

U= max{X, Y}, V= min{X, Y}.

That is, for each w in the sample space, U(w) is the maximum and P’(m)  is the minimum of
the two numbers X(o), Y(o). The mapping u = max {x,~},  v = min {x, y} is not one-
to-one, so the procedure used to deduce Equation (14.39) is not applicable. However, in
this case we can obtain the distribution functions of U and V directly from first principles.

First we note that U 5 t if, and only if, X < t and Y 5 t . Therefore P(U  < t) =
P(X  5 t, Y 5 t). By independence this is equal to P(X < t)P( Y < t) = FX(t)Fr(t).
Thus, we have

F,(t)  = EdW’AO.

At each point of continuity offx and fu we can differentiate this relation to obtain

fv(t)  =fx(WAt)  + KdtK4t).

Similarly, we have V > t if and only if X > t and Y > t. Therefore

FV(t) = P(V 5 t) = 1 - P(V > t) = 1 - P(X > t, Y > t) = 1 - P(X > t)P( Y > t)

= 1 - (1  - Fx(W - Fdt))  = F,(t) + F&t) - Fx(t)F,(t).

At points of continuity of fx and fy we differentiate this relation to obtain

fv(t>  =fx(t)  +fu(t>  -fx(WAf) - Fx(tl!!~(t>~

14.24 Exercises

1. Let X and Y be two independent one-dimensional random variables, each with a uniform
distribution over the interval [0, 11.  Let U = X + Y and let V = X - Y.
(a) Prove that U has a continuous density fu given by

i f  O<u<l,

i f  l<u<2,

otherwise.

(b) Describe, in a similar way, a continuous densityfV  for V.
(c) Determine whether or not U and V are independent.

2. Let X and Y be as in Exercise 1, and let U = max {X,  Y} , V = min {A’, Y} .
(a) Prove that U has a density function such that f&t) = 2t for 0 < t < 1, and fu(t) = 0
otherwise.
(b) Describe a density function fV for V.
(c) Determine whether or not U and I/ are independent.
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3 . Let Xand  Y be two independent one-dimensional random variables, each having an exponential
distribution with parameter 1 = 1, and letf(x, y) =fx(x)fu(y), the product of the densities of
Xand Y.
(a) Let A denote the set of points in the xy-plane at whichf(x, y) > 0. Make a sketch of
A and of its image A’ under the mapping defined by u = x + y , L’ = x/(x  + y) .
(b) Let U = X + Y and V = X/(X + Y) be two new random variables, and compute a
probability density g of (U, V).
(c) Compute a probability density&.
(d) Compute a probability density fv .

4. Let X and Y be two independent random variables, each with a standard normal distribution
(mean = 0, variance = 1). Introduce new random variables U and V by the equations U =
X/Y,  v = Y.
(a) Show that a probability density function of (U, V) is given by the formula

g(u,u) = - ;e-ll+u%~/2 i f  v CO.

(b) Find a similar formula for computingg(u, v) when v 2 0.
(c) Determine a probability density function of U.

5. Assume X has the density function given by

if 1x1  2 1.

If an independent random variable Y has density

f&Y) =

ye-Yzl2

i

i f  ~20,
o

i f  y  < 0 ,

find a density function of Z = X Y.
6. Given two independent one-dimensional random variables X and Y with continuous densities
fx and fu . Let U and V be two random variables such that X = U cos V, Y = U sin V, with
U>Oand--7T<VIm.
(a) Prove that U has a density such that&(u) = 0 for u < 0, and

f&)  = u JI, fx(u  cos  v>fy(u  sin u) dv for u 2 0.

(b) Determinefu and the corresponding distribution F, explicitly when each of X and Y has
a normal distribution with mean m = 0 and variance u2.

7. (a) Assume ur > 0 and u2 > 0. Verify the algebraic identity

where

c72  = a2 + u2
1 29 02 0

u;u; 44 + 0 - m2)4= -
u2 ' and m 0- _ u; + u; ’
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(b) Given two independent one-dimensional random variables X and Y. Assume X has a
normal distribution with mean m,  and variance c;, and that Y has a normal distribution with
mean m2  and variance c$.  Prove that X + Y has a normal distribution with mean m = m,  + m2
and variance C? = UT + 8’

8 . Given two one-dimensionc?lrandom  variables Xand Ywith densities fx andfv and joint density
f. For each fixed y, define

fx(x ) Y = y) = f% whenever ,fy (y) > 0.

This is called the conditional probability density of X, given that Y = y . Similarly, we define
the conditional probability density of Y, given that X = x, by the equation

,fu(y  1 x = x) = f(x9y)
fx (x)

whenever fx(x)  > 0.

(a) Iffy and fx  are positive, prove that J_“, fx(x 1 Y = y) dx = J_“,fY;lo,  1 X = x) dy = 1.
(b) If,fv and fx are positive, prove that

fx(x)  = j:af2;Wfx(x  1 Y = y>  dy and f&y) = j~~,fx(x)fu(y  1 X = x) dx.

9. A random variable (X, Y) is said to have a normal bivariate distribution if its density function
f is given by the formula ,-

f(x,  y)  = @ e-&(“,v)/2
27r ,

where Q(x,  y) is the quadratic form

Q(x,  y> = 4,(x  - xoY + 24,(x  - xo,cy  - yo)  + A,&  - y,,>2.

The numbers AlI, A,, , AZ2  are constants with AlI > 0. The number D = A,,A,,  - A”,, is
called the discriminant of Q and is assumed to be positive. The numbers x0 and y,, are arbitrary.
(a) Show that Q(x,  y) can be expressed as a sum of squares as follows:

Q(x,  y>  = A,, (a +~v~+~vz, where u =x -x,,,u  =y -y,.

(b) Define the “improper” double integral JJ f (x, y) dx dy to be the limit

+m
jjfky)dxdy  = lim jjfky)dxdy,

--a, t-+m  I?(t)

where R(t) is the square [-t,  t] x [-t, t]. Show that

+m

SJ
f ( x , y ) d x d y = 1.

-02
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[Hinr: Use part (a) to transform the double integral over R(t) into a double integral
in the uu-plane. Then perform a linear change of variables to simplify the integral and,
finally, let t -+  + 02  .]

10. If a two-dimensional random variable (X, Y) has a normal bivariate distribution as described
in Exercise 9, show that X and Y themselves are normal one-dimensional random variables
with means x,,  and y,, respectively, and with variances 02(X)  = A,,/D  , 02(Y)  = All/D.

11. If (X, Y) has a normal bivariate distribution as described in Exercise 9, show that the random
variable Z = X + Y has a one-dimensional normal distribution with mean x,,  + y0 and
variance (A,, - 2A,,  + A&/D.

14.25 Expectation and variance

The mass interpretation of probability distributions may be carried a step further by
introducing the concepts of expectation and variance. These play the same role in proba-
bility theory that “center of mass” and “moment of inertia” play in mechanics. Without
the Stieltjes integral we must give separate definitions for the discrete and continuous cases.

DEFINITIONS OF EXPECTATION AND VARIANCE. Let Xbe a one-dimensional random variable.
The expectation of X and the variance of X are real numbers denoted by E(X) and Var (X)
respectively, and are defined as follows:

(a) For a continuous random variable with density function fx ,

E(X) = j-T tfx(t) dt ,

Var  (X)  = j:l [t - E(X)&(r) dt .

(b) For a discrete random variable with mass points x1, x2, . . . having probabilities

Pk = P(X = xk), we define

E(X)  =kt$kpk  3

Var (X)  = : [xk - E(X)12p,.
k=l

Note: We say that E(X) and Var (X) exist only when the integral or series in question
is absolutely convergent. It is understood that the series is a finite sum when the sample
space is finite; in this case E(X) and Var (X) always exist. They also exist when fx is 0
outside some finite interval.

The mathematical expectation E(X) is a theoretically computed value associated with
the random variable X. In some respects, the distribution acts as though its entire mass
were concentrated at a single point, E(X). The true significance of mathematical expecta-
tion in probability theory will be discussed in Section 14.29 in connection with the so-called
“laws of large numbers.”

In mechanics, a knowledge of the center of mass alone gives no indication of how the
mass is spread or dispersed about its center. A measure of this dispersion is provided by
the “second moment” or “moment of inertia.” In probability theory, this second moment



Expectation and variance 557

is the variance. It measures the tendency of a distribution to spread out from its expected
value. In Section 14.28 we shall find that a small variance indicates that large deviations
from the expected value are unlikely.

Although the expectation E(X) may be positive or negative, the variance Var (X) is
always nonnegative. The symbol c2  is also used to denote the variance. Its positive square
root is called the standard deviation and is denoted by CT. The standard deviation is a
weighted average; in fact, a is a weighted root mean square of the distance of each value
of X from the expected value E(X). The analogous concept in mechanics is the “radius of
gyration.”

EXAMPLE 1. Uniform distribution. Let X have a uniform distribution over an interval
[a, b]. ThenS(t) = l/(b  - a) if a < I < b, andf(t)  = 0 otherwise. Therefore the expec-
tation of X is given by

E(X) =
s

+OZ  tf(t) dt = +a
s

b b2 - a2 a+bt&z- =-
--a, a 2(b - a) 2 ’

Thus the mean is the mid-point of the interval. If we write m for (a + b)/2  and note that
m - a = b - m = (b - a)/2 we find

Var (X) = $a
s- a
b(~-m)2d~=~a~~U2d~=~.

- am

Note that the variance depends only on the length of the interval.

EXAMPLE 2. Binomial distribution. If X has a binomial distribution with parameters n
and p we have

E(X) =z k (;) pkqn-l,
k=O

where q = 1 -p. To evaluate this sum, let

and note that

j-(x,  y>  = (x + y>” =-q;)xky-
k=O

k-l n-k _ af(x,  d = n(x  + y>n-'y  - -
ax

If we multiply both sides of this last equation by x and put x = p and y = q, we obtain
E(X) = np.

By a similar argument we may deduce the formula

Var (X) =$(k - VI2
k=O

(z)$q+’  = npq.

Two proofs of this formula are suggested in Exercise 6 of Section 14.27.
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EXAMPLE 3. Normal distribution. The terms “mean” and “variance” have already been
introduced in connection with our description of the normal distribution in Section 14.14.
These terms are justified by the formulas

and

E(X) = -!L-
s

+a,

aJ27  --m
te-~(t-d/O12/~  dt = m

Var (X) = 1
s

+=Q

aJ2rr --m
(t _ m)2e--[(t--m)/O12/2dt  = a2

Proofs of these formulas are requested in Exercise 7 of Section 14.27

Gamblers often use the concept of expectation to decide whether a given game of chance
is favorable or unfavorable. As an illustration we shall consider the game of betting on
“red” or “black” in roulette.

EXAMPLE 4. Roulette. A roulette wheel carries the numbers from 0 to 36. The number
0 appears on a gray background, half of the remaining 36 numbers on a red background,
and the other half on a black background. The usual methods of betting are:

(1) Bet $1 on a color (red or black). Possible return: $2.
(2) Bet $I  on a single number (0 excepted). Possible return: $36.
(3) Bet $1 on any dozen numbers (0 excepted). Possible return: $3.

If 0 is the winning number the house wins and all other players lose.
Let X be the random variable which measures the financial outcome of betting by

method (1). The possible values of X are x1 = - 1 and x2 = + 1 . The point probabilities
are P(X = x1)  = $$,  P(X = x2)  = 34.  Therefore the expectation is

E(X) = (-1)&3  + (+l)+$  = -&;

this is usually interpreted to mean that the game is unfavorable to those who play it. The
mathematical justification for this interpretation is provided by one of the laws of large
numbers, to be discussed in Section 14.29 The reader may verify that the expectation has the
same value for methods (2) and (3) as well.

EXAMPLE 5. A coin-tossing game. In a coin-tossing game there is a probability p that
heads (H)  will come up and a probability q that tails (T) will come up, where 0 < p < 1
a n d q  = 1 - p . The coin is tossed repeatedly until the first outcome occurs a second time;
at this point the game ends. If the first outcome is H we are paid $1 for each T that comes
up until we get the next H. For example, HTTTH pays $3, but HH pays $0. If the first
outcome is T the same rules apply with Hand T interchanged. The problem is to determine
how much we should pay to play this game. For this purpose we shall consider the random
variable which counts the number of dollars won and compute its expected value.

For the sample space we take the collection of all possible games that can be played in
this manner. This set can be expressed as the union of two sets A and B, where

A = (TT, THT, THHT, THHHT, . . .) and B = (HH, HTH, HTTH, HTTTH, . . .>.
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We denote the elements of set A (in the order listed) as a,, , a,, a,, a3, , . . and those of set
Basb,,b,,b,,b,  ,.... Next, we assign the point probabilities as follows:

P&J = p “q2 and P(b,)  = qnp2.

(When p = 0, we put P(aO)  = I and let P(x) = 0 for all other x in A U B. Whemq  = 0
we put P(b,) = 1 and let P(x) = 0 for all other x.) In Section 13.21 it was shown that this
is an acceptable assignment of probabilities.

The random variable X in which we are interested is defined on the sample space A U B
as follows :

X(a,)  = X(b,)  =  n f o r  n=0,1,2  ,....

The event “X = n”  consists of the two games a, and b, , so we have

P(X  = n) = pnq2  + qnp2,

where p” and q”  are to be interpreted as 1 when p = 0 or q =’  0. The expectation of X is
given by the sum

(14.40) E(X) = 5 nP(X = n) = q2z  np”  + P2nzonq”.
Tl=O W=O

If either p = 0 or q = 0, we obtain E(X) = 0. Otherwise we may compute the sums of
the series in (14.40) by noting that for 0 < x < 1 we have00c nxn

Tl=O

Using this in (14.40) with x = p and x = q we obtain, for 0 < p < 1,

E(X)  = -h-
2

(1 - p)”  + (1 p_44)2
------=p+q=1.

We interpret this result by saying that the game is unfavorable to those who pay more than
$1 to play it.

This particular example is of special interest because the expectation E(X) is independent
ofp when 0 < p < 1. In other words, loading the coin in favor of heads or tails does not
affect the expected value except in the extreme cases in which it is so loaded that it always
falls heads or always falls tails. Note that, as a function of p, the expectation E(X) is
discontinuous at the points p = 0 and p = 1. Otherwise it has the constant value 1. This
interesting example was suggested to the author by H. S. Zuckerman.

14.26 Expectation of a function of a random variable

If a new random variable Y is related to a given one X by an equation of the form
Y = v(X), its expectation is given (in the continuous case) by the equation

(14.41) E(Y)  = s_‘,”  tf,(t) dt.
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The expectation E(Y) can be computed directly in terms of the density fx without deter-
mining the density of Y. In fact, the following formula is equivalent to (14.41):

(14.42) E(Y)  = j:l dt)fx(t)  dt .

A proof of (14.42) in the most general case is difficult and will not be attempted here.
However, for many special cases of importance the proof is simple. In one such case, v
is differentiable and strictly increasing on the whole real axis, and takes on every real value.
For a continuously distributed random variable X with density fx we have the following
formula for the density function fu (derived in Section 14.17):

f3-4)  = fx Ma * Y’(t)  3

where y is the inverse of q~. If we use this in (14.41) and make the change of variable
u = y(t) [so that t = v(u)], we obtain

E(Y)  = j:I U-t-(t)  dt = j;l tfx[y(Ol * y’(t)  dt = j-_‘,”  y(u)fx(u)  du,

which is the same as (14.42).
When Equation (14.42) is applied to Y = (X - m)“,  where m = E(X), we obtain

E(Y) = j:I (t - m)“fx(t)  dt = Var (X).

This shows that variance is itself an expectation. A formula analogous to (14.42) also
holds, of course, in the discrete case. More generally, it can be shown that

E[dX,  VI = j:I j:,” vP(x,  YMX, Y> dx dy

if (X, Y) is a continuous random variable with joint density f.

Note: For two-dimensional random variables, expectation and variance may be
defined in a manner similar to that used for the one-dimensional case, except that double
integrals and double sums are employed. We shall not discuss this extension here.

14.27 Elxercises

1. A die is rolled. Let X denote the number of points on the upturned face. Compute E(X)
and Var (X).

2. Assume that X is a continuous random variable with a probability density function. Let
Y = (X - m)/~,  where m = E(X) and G = JVar  (X) . Show that E(Y) = 0 and E( Y2)  = 1.

3. Derive the following general properties of expectation and variance for either the discrete or
the continuous case.
(a) E(cX) = cE(X), where c is a constant.
(b) Var (cX) = c2  Var (X) , where c is a constant.
(c) E(X + Y) = E(X) + E(Y).
(d) Var (X) = E(X2) - [E(X)]2.
(e) Var (X + Y) = Var (X) + Var (Y) + 2E[(X  - E(X))( Y - E(Y))].
(f) E[v,,(X)  + v2( Y)] = E[v,,(X)]  + E[p,(  Y)] . [Part (c) is a special case.]
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4. If X and Y are independent random variables, show that
(a) Var (X + Y) = Var (X) + Var (Y).
(b)  EtdX)~ w(Y)1  = E~PW)I.  E[YJ(YH.
(4 IfXl,X,,...  , X, are independent random variables with E(X,)  = mk,  show that

Var i (X, - mk)
k=l 1 =k$Var (X, - mk)  =k$Var (X,J  .

5. LetX,,X,,X,  ,..., X, be n independent random variables, each having the same expectation,
E(X,)  = m, and the same variance, Var (X,) = u2. Let 8 denote the arithmetic mean, X =
(l/n)~;==,  Xi. Use Exercises 3 and 4 to prove that E(X) = m and Var (X) = (r2/n.

6. (a) If q = 1 -p,  prove the formula

n
c (k - np)”  ; pkq””  = npq,
k=O 0

thereby showing that Var (X) = npq  for a random variable X having a binomial distribution
with parameters n andp. [Hint: k2  = k(k - 1) + k.]
(b) If X has a binomial distribution with parameters n and p,  show that X can be expressed
as a sum of n independent random variables X1,  X2,  . . . , X, , each assuming the possible values
0 and 1 with probabilities p and y, respectively, and each having a binomial distribution. Use
this result and Exercise 5 to show that E(X) = np and Var (X) = npq.

7. Determine the expectation and variance (whenever they exist) for a random variable X having
(a) a Poisson distribution with parameter 1.
(b) a Cauchy distribution.
(c) an exponential distribution with parameter L.
(d) a normal distribution.

8. A random variable X has a probability density function given by

C(r)
f(t) = pjF if ItI > 1, f(t) = 0 if ItI  < 1,

where r > 1 and C(r) is independent of t.
(a) Express C(r) in terms of r and make a sketch to indicate the nature of the graph off.
(b) Determine the corresponding distribution function F,- and make a sketch to indicate the
nature of its graph.
(c) Compute P(X < 5) and P(5 < X < 10) in terms of r.
(d) For what values of r does Xhave a finite expectation ? Compute E(X) in terms of r when the
expectation is finite.
(e) For what values of r does X have a finite variance ? Compute Var (X) in terms of r when
the variance is finite.

9. A gambler plays roulette according to the following “system.” He plays in sets of three games.
In the first and second games he always bets $1  on red. For the third game he proceeds as
follows :
(a) If he wins in the first and second games, he doesn’t bet.
(b) If he wins in one of the first or second and loses in the other, he bets $1 on the color
opposite to the outcome of the second game.
(c) If he loses in both the first and second, he bets $3 on red.
Let X, Y, and Z denote, respectively, the financial outcomes of the first, second, and third
games. Compute E(X), E(Y), E(Z), and E(X  + Y + Z) .
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10. (Petersburg Problem). A player tosses a coin and wins $1 if his first toss is heads. If he tosses
heads again he wins another dollar. If he succeeds in tossing heads a third time he gets another
$2 (for a total of $4). As long as he tosses heads in succession n times, his accumulated winnings
are 2%-l  dollars. The game terminates when he tosses tails. Let X denote the number of dollars
won in any particular game. Compute E(X). In view of your result, how much would you
be willing to pay Harold’s Club in Reno for the privilege of playing this game?

11. (a) Assume X is a continuous random variable with probability density fx. Let Y =
(X - m)/o,  where m = E(X) and c = JVar  (X) . Prove that

E(eY)  = e-*/a _‘,”  et/a fx(f)  dt..r

(b) Let X be a discrete random variable having a Poisson distribution with parameter jl.
Define Y as in part (a) and prove that

E(eY) = e-““(A), where G(A) = 1 +

12. A random variable X has a standard normal distribution. Compute: (a) E(IX(),  (b) E(ex>,

(c) Var (exj, (d) E(JX2  + Y2).  In part (d), Y also has a standard normal distribution but is
independent of X.

14.28 Chebyshev’s inequality

As mentioned earlier, a small value for the variance means that it is unlikely that a
random variable X will deviate much from its expected value. To make this statement more
precise we introduce the absolute value 1X  - E(X)(  which measures the actual distance
between X and E(X). How likely is it that this distance is more than a given amount? To
answer this question we must determine the probability

PM  - EGOI  > cl,

where c is a given positive number. In the continuous case we have

P[(X  - E(X)1  > c] = 1 - P[lX - E(X)!  2 c] = 1 - P[E(X) - c 5 X < E(X) + c]

(14.43)

therefore, the calculation of this probability can be accomplished once the density function
fx is known, Of course, iffy is unknown this method gives no information. However, if the
variance is known, we can obtain an upper bound for this probability. This upper bound is
provided by the following theorem of P. L. Chebyshev (1821-1894),  a famous Russian
mathematician who made many important contributions to probability theory and other
branches of mathematics, especially the theory of numbers.
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THEOREM 14.11. CHEBYSHEV'S INEQUALITY. Let X be a one-dimensional random variable
withjnite expectation E(X) and variance Var (A’). Then for every positive number c we have

P[IX - E(X)/  > c]  5 v’.

Proof. In the continuous case we have

Var (X) = 1:: [t - E(X)]2fY(t) dt

2 j--TX)-’  [t  - E(x)l”fx(t)  dt + j.;c;j+c  [t - E(X)]&(t)  dt&

2 c2(j-~)-cfx(0 dt + j-~~;,+Jx(O  dt) .

Because of (14.43), the coefficient of c2  on the right is P[(X  - E(X)1 > c]. Therefore, when
we divide by c2  we obtain (14.44). This completes the proof for the continuous case; the
discrete case may be similarly treated.

Chebyshev’s inequality tells us that the larger we make c the smaller the probability is
that (X - E(X)(  > c. In other words, it is unlikely that X will be very far from E(X);
it is even more unlikely if the variance Var (X) is small.

If we replace c by ka, where k > 0 and G denotes the standard deviation, o = JVar (X),
Chebyshev’s inequality becomes

P[IX  - E(X)] > ko]  I I_.
k2

That is, the probability that X will differ from its expected value by more than k standard
deviations does not exceed l/k2. For example, when k = 10 this inequality tells us that
the probability P[IX  - E(X)/  > loo] does not exceed 0.010. In other words, the probability
is no more than 0.010 that an observed value of X will differ from the expected value by
more than ten standard deviations. Similarly, when k = 3 we find that the probability
doesnotexceed$  = 0.111.. . that an observed value will differ from the mean by more than
three standard deviations.

Chebyshev’s inequality is a general theorem that applies to all distributions. In many
applications the inequality can be strengthened when more information is known about
the particular distribution. For example, if X has a binomial distribution with parameters
n andp it can be shown (by use of the normal approximation to the binomial distribution)
that for large n the probability is about 0.003 that an observed value will differ from the
mean by more than three standard deviations. (For this result, n 2 12 suffices.) This is
much smaller than the probability 0.11 I provided by Chebyshev’s inequality.

EXAMPLE. Testing a coin for fairness. We want to decide whether or not a particular
coin is fair by tossing it 10,000 times and recording the number of heads. For a fair coin
the random variable X which counts the number of heads has a binomial distribution with
parameters n = 10,000 and p = +. The mean of X is np = 5,000 and the standard
deviation is u = Jnpq  = 50. (See Example 2 in Section 14.25.) As mentioned above, the
probability for a binomially distributed random variable to differ from its expected value
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by more than 30 is about 0.003. Therefore, let us agree to say that a coin is not fair if
the number of heads in 10,000 tosses differs from the mean by more than 30. Since
E(X) = 5,000 and 30 = 150, we would say the coin is unfair if the number of heads in
10,000 tosses is less than 4,850 or more than 5,150.

14.29 Laws of large numbers

In connection with coin-tossing problems, it is often said that the probability of tossing
heads with a perfectly balanced coin is $. This does not mean that if a coin is tossed twice
it will necessarily come up heads exactly once. Nor does it mean that in 1000 tosses heads
will appear exactly 500 times. Let us denote by h(n) the number of heads that occur in n
tosses. Experience shows that even for very large n, the ratio h(n)/n  is not necessarily 4.
However, experience also shows that this ratio does seem to approach 4 as n increases,
although it may oscillate considerably above and below 3 in the process. This suggests that
it might be possible to prove that

(14.45) limh(n)=I
n-+m  n 2’

Unfortunately, this cannot be done. One difficulty is that the number h(n) depends not
only on n but also on the particular experiment being performed. We have no way of
knowing in advance how h(n) will vary from one experiment to another. But the real
trouble is that it is possible (although not very likely) that in some particular experiment
the ratio h(n)/n  may not tend to 4 at all. For example, there is no reason to exclude the
possibility of getting heads on every toss of the coin, in which case h(n) = n and h(n)/n  + 1.
Therefore, instead of trying to prove the formula in (14.45), we shall find it more reasonable
(and more profitable) to ask how likely it is that h(n)/n  will differ from + by a certain
amount. In other words, given some positive number c, we seek the probability

By introducing a suitable random variable and using Chebyshev’s inequality we can get
a useful upper bound to this probability, a bound which does not require an explicit
knowledge of h(n). This leads to a new limit relation that serves as an appropriate substitute
for (14.45).

No extra effort is required to treat the more general case of a Bernoullian sequence of
trials, in which the probability of “success” is p and the probability of “failure” is q.
(In coin tossing, “success” can mean “heads” and for p we may take +.) Let X denote the
random variable which counts the number of successes in n independent trials. Then X
has a binomial distribution with expectation E(X) = np and variance Var (X) = npq.
Hence Chebyshev’s inequality is applicable; it states that

(14.46) P(IX - npj > c) 5 y.

Since we are interested in the ratio X/n,  which we may call the relative frequency of success,
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we divide the inequality IX - npl > c by n and rewrite (14.46) as

(14.47)

Since this is valid for every c > 0, we may let c depend on n and write c = en, where
E is a fixed positive number. Then (14.47) becomes

The appearance of n in the denominator on the right suggests that we let n + 03.  This
leads to the limit formula

(14.48) $zP(I:-pi>3  = 0  f o r e v e r y f i x e d  E>O,

called the law of large numbers for the Bernoulli distribution. It tells us that, given any
E > 0 (no matter how small), the probability that the relative frequency of success differs
from p by more than E is a function of n which tends to 0 as n ---f  co. This limit relation
gives a mathematical justification to the assignment of the probability + for tossing heads
with a perfectly balanced coin.

The limit relation in (14.48) is a special case of a more general result in which the
“relative frequency” X/n  is replaced by the arithmetic mean of n independent random
variables having the same expectation and variance. This more general theorem is usually
referred to as the weak law of large numbers; it may be stated as follows:

THEOREM 14.12. WEAK LAWOF LARGE NUMBERS. Let X1,X,,  . . ..X. ben independent
random variables, each having the same expectation and the same variance, say

E(X,)  = m and Var (X,)  = o2 for k=1,2  ,...,  n.

Define  a new random variable x (called the arithmetic mean of XI, X2,  . . . , X,)  by the
equation

X=  iZXk.
k=l

Then, for every$xed  E > 0, we have

(14.49) limP((X-ml>E)=O.
n-tm

An equivalent statement is

(14.50) limP(IF- ml  SE)  = 1.
n-tm
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Prooj: We apply Chebyshev’s inequality to x. For this we need to know the expectation
and variance of 8. These are

E(X)  =  m and Var(Z)=s.

(See Exercise 5 in Section 14.27.) Chebyshev’s inequality becomes P(li3  - ml  > c) <
a”/(nc”).  Letting IZ --f  co  and replacing c by E we obtain (14.49) and hence (14.50).

Note: To show that the limit relation in (14.48) is a special case of Theorem 14.12, we
assume each X, has the possible values 0 and 1, with probabilities P(X, = 1) = p and
P(A’, = 0) = 1 - p . Then X is the relative frequency of success in n independent trials,
E(X) = p , and (14.49) reduces to (14.48).

Theorem 14.12 is called a weak law because there is also a strong law of large numbers
which (under the same hypotheses) states that

(14.51) P  lim]X- ml  = 0
(

= 1.
12’4 i

The principal difference between (14.51) and (14.50) is that the operations “limit” and
“probability” are interchanged. It can be shown that the strong law implies the weak law,
but not conversely.

Notice that the strong law in (14.51) seems to be closer to formula (14.45) than (14.50) is.
In fact, (14.51) says that we have lim,+, x = m “almost always,” that is, with probability
1. When applied to coin tossing, in particular, it says that the failure of Equation (14.45)
is no more likely than the chance of tossing a fair coin repeatedly and always getting heads.
The strong law really shows why probability theory corresponds to experience and to our
intuitive feeling of what probability “should be.”

The proof of the strong law is lengthy and will be omitted. Proofs appear in the books
listed as References 1, 3, 8, and 10 at the end of this chapter.

14.30 The central limit theorem of the calculus of probabilities

In many applications of probability theory, the random variables of interest are sums of
other random variables. For example, the financial outcome after several plays of a game
is the sum of the winnings at each play. A surprising thing happens when a large number
of independent random variables are added together. Under general conditions (applicable
in almost every situation that occurs in practice) the distribution of the sum tends to be
normal, regardless of the distributions of the individual random variables that make up the
sum. The precise statement of this remarkable fact is known as the central limit theorem of

the calculus qf  probabilities. It accounts for the importance of the normal distribution
in both theory and practice. A thorough discussion of this theorem belongs to the
advanced study of probability theory. This section will merely describe what the theorem
asserts.

Suppose we have an infinite sequence of random variables, say X, , X2,  . . . , with finite
expectations and variances. Let

mk = E(Xk) and GE  = Var (X,)  , k = 1,2,,  . . .



The central limit theorem of the calculus of probabilities

We form a new random variable S, by adding the first n differences X, - mk  :

567

(14.52) S, =2(X,  - mk).
k=l

We add the difSerences  rather than the X, alone so that the sum S,  will have expected
value 0. The problem here is to determine the limiting form, as n + CO,  of the distribution
function of S,,

If X,,  X,,  . . . ) X,  are independent, then [by Exercise 4(c) of Section 14.271  we have

Var(S,)=~\lar(Xk-mk)=~Var(Xk)=~~~.
k=l k=l k = l

Ordinarily, Var (S,) will be large even though the individual variances u: may be small.
Random variables with a large variance are not fruitful objects of study because their
values tend to be widely dispersed from the expected value. For this reason, a new random
variable T, is introduced by the equation

(14.53)

This new variable has expectation 0 and variance 1 and is called a standardized random
variable. The standardized variable T, is meaningful even if the random variables X,,

x2,  * * * 9 X, are not independent.
We now introduce the following definition:

DEFINITION OF THE CENTRAL LIMIT PROPERTY. Let

be a sequence of random variables (not necessarily independent), where each X, has a finite
expectation m, and a$nite  variance a:. Define S, and T, by (14.52) and (14.53). The
sequence in (14.54) is said to satisfy the central limit property if,  for all a and b with a < b,
we have

(14.55)

In other words, the random variables in (14.54) satisfy the central limit property if the
distribution of the standardized variable T, approaches a standard normal distribution
as n + cc. [Equation (14.55) is to hold also if a = --oo  or b = + CO.]

Laplace  was the first to realize that this property is shared by many sequences of random
variables, although a special case (random variables describing a Bernoullian sequence of
trials) had been known earlier by DeMoivre.  (Figure 14.11 shows a binomial distribution
and a corresponding normal approximation.) Laplace  stated a general central limit
theorem which was first completely proved by the Russian mathematician A. Lyapunov in
1901. In 1922, J. W. Lindeberg generalized Laplace’s result by showing that the property
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is satisfied if the random variables are independent and have a common distribution giving
them the same expectations and variances, say E(X,)  = m and Var (X,)  = 8 for all k.
In this case the standardized variable becomes

Tn  = X=A - nm
o&l .

Lindeberg realized that independence alone is not sufficient to guarantee the central limit
property, but he formulated another condition (now known as the Lindeberg condition)
which, along with independence, is sufficient. In 1935, W. Feller showed that the Lindeberg
condition is both necessary and sufficient for independent random variables to satisfy the
central limit property. We shall not discuss the Lindeberg condition here except to mention
that it implies

Var (S,) + co a s  n+co.

Fortunately, many independent random variables that occur in practice automatically
satisfy the Lindeberg condition and therefore also have the central limit property. Up
to now, the theory for dependent random variables is incomplete. Only a few special
cases have been treated. Much of the contemporary research in probability theory centers
about the search for general theorems dealing with dependent variables.

14.31 Exercises

1. Carry out the proof of Chebyshev’s inequality in the discrete case.
2. If a is any real number, prove that

for every c > 0, where d2 = jzz (t - a)2f,(t)dt. Chebyshev’s inequality is the special case
in which a = E(X).

3. Let X denote the random variable which counts the number of successes in n independent
trials of a Bernoullian sequence; the probability of success is p. Show that, for every l > 0,

4. A fair coin is tossed n times; the number of heads is denoted by X. Find the smallest n for
which Chebyshev’s inequality implies

P 0.4 < ; < 0.6 > 0.90.

5. In a production line the number X of the defective articles manufactured in any given hour is
known to have a Poisson distribution with mean E(X) = 100,  Use Chebyshev’s inequality
to compute a lower bound for the probability that in a given hour there will be between 90 and
110 defective articles produced.

6. Assume that a random variable X has a standard normal distribution (mean 0 and variance
1). Let p denote the probability that X differs from its expectation E(X) by more than three
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1 0 .

times its standard deviation. Use Chebyshev’s inequality to find an upper bound for p. Then
use suitable tables of the normal distribution to show that there is an upper bound for p that
is approximately one-fiftieth of that obtained by Chebyshev’s inequality.
Given a sequence of independent random variables X,  , X, , . . . , each of which has a normal
distribution. Let mk = E(X,)  and let uk’ = Var (X,) . Show that this sequence has the central
limit property. [Hint: Refer to Exercise 7 in Section 14.24.1
Let X1,X,,  .  .  . be independent random variables having the same binomial distribution.
Assume each X, takes the possible values 0 and 1 with probabilities P(X,  = 1) =p  and
P(X,  = 0 )  = q , w h e r e p  + q  =  1 .  LetZ, =X1  +.. . + X, . The random variablez,  counts
the number of successes in II  Bernoulli trials.
(a) Show that the central limit property takes the following form:

(b) Use the approximation suggested by part (a) to estimate the probability of obtaining
between 45 and 55 heads if a fair coin is tossed 100 times. Refer to Table 14.1, p. 536 for the
computation.
With the notation of Exercise 8, the central limit theorem for random variables describing a
Bernoullian sequence of trials can be written in the form

lim

P(,, I z% I t2)

n+m aqt2) - aqtl) = l ’

where Q is the standard normal distribution. For this particular case it can be shown that the

formula is also valid when I, and t2  are functions of n given by t,  = (a - np)/Jnpq  and I, =-
@ - W&pq,  hw ere a and b are fixed positive constants, a < b .
(a) Show that this relation implies the asymptotic formula

(b) An unbiased die is tossed 180 times. Use the approximation suggested in part (a) to esti-
mate the probability that the upturned face is a six exactly 30 times. Refer to Table 14.1,
p. 536 for the computation.
An unbiased die is tossed 100 times. Use the approximation suggested in Exercise 9(a) to
estimate the probability that the upturned face is a six (a) exactly 25 times, (b) at least 25
times. Refer to Table 14.1, p. 536 for the computation.
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15
INTRODUCTION TO NUMERICAL ANALYSIS

15.1 Historical introduction

The planet Uranus was discovered in 1781 by a gifted amateur astronomer, William
Herschel (1738-1822),  with a homemade IO-ft. telescope. With the use of Kepler’s laws,
the expected orbit of Uranus was quickly calculated from a few widely separated observa-
tions. It was found that the mean distance of Uranus from the sun was about twice that
of Saturn and that one complete orbit would require 84 years. By 1830 the accumulated
empirical data showed deviations from the scheduled orbit that could not be accounted
for. Some astronomers felt that Newton’s law of universal gravitation might not hold for
distances as large as that of Uranus from the sun; others suspected that the perturbations
were due to a hitherto undiscovered comet or more distant planet.

An undergraduate student at Cambridge University, John Couch Adams (1819-1892),
was intrigued by the possibility of an undiscovered planet. He set himself the difficult
task of calculating what the orbit of such a planet must be to account for the observed
positions of Uranus, assuming the validity of Newton’s law of gravitation. He completed
his calculations in 1845 and asked the Royal Observatory at Greenwich to search for the
hypothetical planet, but his request was not taken seriously.

A similar calculation was made independently and almost simultaneously by Jean
Joseph Leverrier (1811-1877) of Paris, who asked Johann Galle, head of the Berlin
Observatory, to confirm his prediction. The same evening that he received Leverrier’s
letter, Galle found the new planet, Neptune, almost exactly in its calculated position.
This was another triumph for Newton’s law of gravitation, and one of the first major
triumphs of numerical analysis, the art and science of computation.

The history of numerical analysis goes back to ancient times. As early as 2000 B.C.
the Babylonians were compiling mathematical tables. One clay tablet has been found
containing the squares of the integers from 1 to 60. The Babylonians worshipped the
heavenly bodies and kept elaborate astronomical records. The celebrated Alexandrian
astronomer Claudius Ptolemy (circa 1.50 A.D.) possessed a Babylonian record of eclipses
dating from 747 B.C.

In 220 B.C., Archimedes used regular polygons as approximations to a circle and
deduced the inequalities 318  < rr < 3;. Numerical work from that time until the 17th
century was centered principally around the preparation of astronomical tables. The
advent of algebra in the 16th century brought about renewed activity in all branches of

5 7 1
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mathematics, including numerical analysis. In 1614, Napier published the first table of
logarithms. In 1620, the logarithms of the sine and tangent functions were tabulated to
seven decimal places. By 1628, fourteen-place tables of the logarithms of the numbers
from 1 to 100,000 had been computed.

Computations with infinite series began to flourish near the end of the 17th century,
along with the development of the calculus. Early in the 18th century Jacob Stirling and
Brook Taylor laid the foundations of the calculus ofjnite dzfirences,  which now plays a
central role in numerical analysis. With the prediction of the existence and location of
the planet Neptune by Adams and Leverrier in 1845, the scientific importance of numerical
analysis became established once and for all.

Late in the 19th century the development of automatic calculating machinery further
stimulated the growth of numerical analysis. This growth has been explosive since the
end of World War II because of the progress in high-speed electronic computing devices.
The new machines have made possible a great many outstanding scientific achievements
which previously seemed unattainable.

The art of computation (as distinct from the science of computation) lays much stress
.on  the detailed planning required in a particular calculation. It also deals with such
matters as precision, accuracy, errors, and checking. This aspect of numerical analysis
will not be discussed here; it is best learned by carrying out actual numerical calculations
with specific problems. For valuable advice on practical methods and techniques the
reader should consult the existing books on numerical analysis, some of which are listed
in the bibliography at the end of this chapter. The bibliography also contains some of the
standard mathematical tables; many of them also give practical information on how to
carry out a specific calculation.

This chapter provides an introduction to the science of computation. It contains some
of the basic mathematical principles that might be required of almost anyone who uses
numerical analysis, whether he works with a desk calculator or with a large-scale high-
speed computing machine. Aside from its practical value, the material in this chapter is
of interest in its own right, and it is hoped that this brief introduction will stimulate the
reader to learn more about this important and fascinating branch of mathematics.

15.2 Approximations by polynomials

A basic idea in numerical analysis is that of using simple functions, usually polynomials,
to approximate a given functionf. One type of polynomial approximation was discussed
in Volume I in connection with Taylor’s formula (Theorem 7.1). The problem there was
to find a polynomial P which agrees with a given function f and some of its derivatives
at a given point. We proved that iff is a function with a derivative of order n at a point
a, there is one and only one polynomial P of degree In which satisfies the n + 1 relations

p(a) = f@>, P’(a) = f’(a), . . . , P(“)(a) = f(“)(a).

The solution is given by the Taylor polynomial,

P(x) =se (x - a)k.
k=O  '
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We also discussed the error incurred in approximatingf(x)  by P(x) at points x other than a.
This error is defined to be the difference E,(x) =f(~) - P(x), so we can write

(x - a)”  + E,(x).

To make further statements about the error we need more information about J For
example, iff has a continuous derivative of order n + 1 in some interval containing a, then
for every x in this interval the error can be expressed as an integral or as an (n + 1)st
derivative :

E,(X) = 1 Iz (x - t)7Lf(n+1)(t) dt = ‘2 (x - a)n+l,
n. a n .

where c lies between a and x. (See Sections 7.5 and 7.7 in Volume I.)
There are many other ways to approximate a given functionfby polynomials, depending

on the use to be made of the approximation. For example, instead of asking for a poly-
nomial that agrees with f and some of its derivatives at a given point, we can ask for a
polynomial that takes the same values as f at a number of distinct points. Specifically, if
the given distinct points are x0, x1, . . . , x, we seek a polynomial P satisfying the
conditions

(15.1) Wo) =f(xo>, ml> =fW, . * * , WJ =fc%L>-

Since there are IZ + 1 conditions to be satisfied we try a polynomial of degree In, say

P(x) = i akxk,
k=O

with n + 1 coefficients a,, a,, . . . , a, to be determined. The n + I conditions (15.1) lead
to a system of n + 1 linear equations for the coefficients. From the theory of linear equa-
tions it can be shown that this system has one and only one solution; hence such a poly-
nomial always exists. If the equations are solved by Cramer’s rule the coefficients a,,

a,, . . . . a, are expressed as quotients of determinants. In practice, however, the poly-
nomial P is seldom determined in this manner because the calculations are extremely
laborious when n is large. Simpler methods have been developed to calculate the poly-
nomial approximation. Some of these will be discussed in later sections. The polynomial
which solves the foregoing problem is called an interpolating polynomial.

Another common type of polynomial approximation is the so-called least-square
approximation. Here the given function f is defined and integrable on an interval [a, b]
and we seek a polynomial P of degree In such that the mean-square error

s,” If(x)  - Pb)12 dx
will be as small as possible. In Section 15.4 we shall prove that for a continuous f such a
polynomial exists and is uniquely determined. The Legendre polynomials introduced in
Section 1.14 play a fundamental role in the solution of this problem.
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15.3 Polynomial approximation and normed  linear spaces

All the different types of polynomial approximation described in the foregoing section
can be related by one central idea which is best described in the language of linear spaces.

Let V be a linear space of functions which contains all polynomials of degree In and
which also contains the function f to be approximated. The polynomials form a finite-
dimensional subspace  S, with dim S = n + 1. When we speak of approximating f  by a
polynomial P in S, we consider the difference f - P,  which we call the error of the approxi-
mation, and then we decide on a way to measure the size of this error.

If V is a Euclidean space, then it has an inner product (x, JJ)  and a corresponding norm
given by 11.x (1  = (x, x)!~, and we can use the norm Ilf- PII as a measure of the size of
the error.

Sometimes norms can be introduced in non-Euclidean linear spaces, that is, in linear
spaces which do not have an inner product. These norms were introduced in Section 7.26.
For convenience we repeat the definition here.

DEFINITION OF A NORM. Let V be a linear space. A real-valued function N defined on V
is called a norm if it has the following properties:

(a) N(f) 2 Ofor  allf in V.
(b) N(cf)  = ICI  N(f) for alff in V and every scalar c.

(c)  NC  f  + g) I N(f) + N(g)  for all f and g in V.
(d) N(f) = 0 implies f = 0.

A linear space with a norm assigned to it is called a normed  linear space.
The norm off is sometimes written Ilf II  instead of N(f ). In this notation, the funda-

mental properties become :

(4 Ilfll 2 0,
@I Ilcfll = ICI llfll ,
cc>  llf + g II I llfll + Ml >
(d) II  f 11 = 0 implies f = 0.
A function N that satisfies properties (a), (b), and (c), but not (d), is called a seminorm.

Some problems in the theory of approximation deal with seminormed linear spaces;
others with normed  linear spaces. The following examples will be discussed in this chapter.

EXAMPLE 1. Taylor seminorm. For. a fixed integer n 2 1, let V denote the linear space of
functions having a derivative of order n at a given point a. Iff  E V, let

N(f) =k$olf(x)(a)l  .

It is easy to verify that the function N so defined is a seminorm. It is not a norm because
N(f) = 0 if and only if

f(a) = f ‘(a) = * * * =f(“)(a)  = 0,

and these equations can be satisfied by a nonzero function. For example, N(f) = 0 when
f(x) = (x - a)“+l  .
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EXAMPLE 2. Interpolation seminorm. Let V denote the linear space of all real-valued
functions defined on an interval [a, b]. For a fixed set of n + 1 distinct points x0,
x1,-**, x, in [a, b], let N be defined by the equation

if f E V. This function N is a seminorm  on V. It is not a norm because N(f) = 0 if and
only if f (x0)  = f (x1)  = * * . = f (x,) = 0, and it is clear that these equations can be satis-
fied by a function f that is not zero everywhere on [a, b].

EXAMPLE 3. Square norm. Let C denote the linear space of functions continuous on
an interval [a, b]. Iff e C define

(15.2) N(f)  = (Jab  IfWl” q2 *

This is a norm inherited from the inner product

(f, d = /abf(xk(4  dx.

Note: Let S denote the set of functionsfthat are integrable on [a, b]. The set S is a
linear space, and the function N defined by (15.2) is a seminorm  on S. It is not a norm
because we can have N(f) = 0 withoutfbeing identically zero on [a, b].

EXAMPLE 4. Max norm. Let C denote the linear space of functions continuous on an
interval [a, b]. If f 6 C, define

where the symbol on the right stands for the absolute maximum value of 1 f I on [a, b]. The
verification of all four norm properties is requested in Exercise 4 of Section 15.5.

15.4 Fundamental problems in polynomial approximation

Let C be the space of functions continuous on a given interval [a, b], and let S be the
linear subspace  consisting of all polynomials of degree In. Assume also that a norm or
seminorm  has been defined on C. Choose a function f in C. If there is a polynomial P in S
such that

Ilf  - PII  I llf - Qll

for all polynomials Q in S, we say that P is a best polynomial approximation to f with the
specified degree. The term “best” is, of course, relative to the given norm (or seminorm).
The best polynomial for one choice of norm need not be best for another choice of norm.

Once a norm or seminorm  has been chosen, three problems immediately suggest them-
selves.

1. Existence. Given f in C, is there a best polynomial approximation to f with the
specified degree ?
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2. Uniqueness. If a best polynomial approximation to f exists with the specified degree,
is it uniquely determined?

3. Construction. If a best polynomial approximation to f exists with the specified degree,
how can it be determined ?

There are, of course, many other problems that can be considered. For example, if a
unique best polynomial P,  of degree In exists, we may wish to obtain upper bounds for
]lf- P, 11 that can be used to satisfy practical requirements. Or we may ask whether
\lf - P, 1)  -+  0 as n -+  co for the given norm or possibly for some other norm. If so, we

say that the polynomial approximations converge to f in this norm. In such a case
arbitrarily close approximations exist relative to this norm if n is sufficiently large. These
examples illustrate some of the types of problems considered in the general theory of
polynomial approximation. In this introductory treatment we restrict our attention
primarily to the three problems of existence, uniqueness, and construction, as described
above.

For approximation by Taylor polynomials these three problems can be completely
solved. Iff has a derivative of order n at a point a, it is easy to prove that the best poly-
nomial approximation of degree <n  relative to the Taylor seminorm  for this n is the
Taylor polynomial

(15.3) P(x) =c
n P%+, _ a)k.

k4J  k!

In fact, for this polynomial we have

Ilf - PII  =k~PYa)  - P’%>l = 0,

so the inequality I(  f - P/I  5 llf - Q 1) is trivially satisfied for all polynomials Q. Therefore
P is a best polynomial approximation relative to this seminorm. To establish uniqueness,
we consider any polynomial Q of degree In such that II  f - Qll = 0. This equation
implies that

Q(a)  = f(a) , Q’(a)  =f'M, . . . , Q(*)(a) = f (“)(a).

From Theorem 7.1 of Volume I we know that the Taylor polynomial in (15.3) is the only
polynomial satisfying all these equations. Therefore Q = P. Equation (15.3) also solves
the problem of construction.

All three problems can also be solved for any norm derived from an inner product. In
this case, Theorem 1.16 tells us that there is a unique polynomial in S for which the norm

11  f - PII  is as small as possible. In fact, this P is the projection off on S and is given by
an explicit formula,

where e, , e, , . . . , e,  are functions forming an orthonormal basis for S.
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For example, if C is the space of real functions continuous on the interval [- 1, l] and if

(f,  d = 1;~fWg(x)  dx,

the normalized Legendre polynomials p,, , pl, . . . , P)~  form an orthonormal
and the projection fn off on S is given by

We recall that the normalized Legendre polynomials are given by

basis for S,

P)?%(x)  = Jy P*(x), where Pk(x)  = -&  -$  (x” - 1)“.

The first six normalized polynomials are

vow  = Jt  , f&(x)  = Ji x, p2(x) = 4J;  (3x2 - I>, 9)3(x)  = +Ji  (5x3  - 3x),

p4(x)  = &Ji  (35x4 - 30x2  + 3)) p5(x) = +Jy  (63 x5  - 70x3 + 15x).

The corresponding problems for the interpolation seminorm  will be treated next in
Section 15.6. In later sections we discuss polynomial approximation relative to the max
norm.

15.5 Exercises

1. Prove that each of the following collections of functions is a linear space.
(a) All polynomials.
(b) All polynomials of degree <n.
(c) All functions continuous on an interval I.
(d) All functions having a derivative at each point of I.
(e) All functions having a derivative of order n at each point of I.
(f) All functions having a derivative of order n at a fixed point x,,.
(g) All functions having power-series expansions in a neighborhood of a given point x,,  .

2. Determine whether or not each of the following collections of real-valued functions is a linear
space.
(a) All polynomials of degree II.
(b) All functions defined and bounded on an interval [a, b].
(c) All step functions defined on an interval [a, b].
(d) All functions monotonic on an interval [a, b].
(e) All functions integrable on an interval [a, b].
(f) All functions that are piecewise monotonic on an interval [a, b].
(g) All functions that can be expressed in the form f - g, where f and g are monotonic in-
creasing on an interval [a, b].

3. Let C denote the linear space of real-valued functions continuous on an interval [a, b]. A
function N is defined on C by the equation given. In each case, determine which of the four



578 Introduction to numerical analysis

properties of a norm are satisfied by N, and determine thereby whether N is a norm, a seminorm,
or neither.

(4 N(f)  = f(a). (4 N(f)  = 1 jlf(x)  dx  I.

(b) N(f) = If(a>l.

Cc)  N(f)  = If@)  -f(a)1  .

(d) N(~ = j~f(x) dx .

(0 Nfl  = jab  IfWl  dx  .

(g)  N(f) = j,” If(  dx.

(h) N(f)  = 1 jabfW  dx 12.
4. Let C be the linear space of functions continuous on an interval [a, b]. IffE C, define

N(f) = max IfWl  .

Show that N is a norm for C.
5. Let B denote the linear space of all real-valued functions that are defined and bounded on an

interval [a, 61. Iffg B, define
N(f)  = a vb If(x

where the symbol on the right stands for the supremum (least upper bound) of the set of all
numbers I,f(x>]  for x in [a, 61.  Show that N is a norm for B. This is called the sup norm.

6. Refer to Exercise 3. Determine which of the given functions N have the property that
N(fg)  < N(f)N(‘g)  for allfandg in C.

7. For a fixed integer n 2 1, let S be the set of all functions having a derivative of order II at a
fixed point x0. IffE S, let

N(f) = 2; If’“‘(x,)l  .
k=O

(a) Show that N is a seminorm  on S.
(b) Show that N(fg) < NON(g)  for allf, g in S. Prove also that the Taylor seminorm  does
not have this property.

8. Let f be a real continuous function on the interval [ - 1, 11.
(a) Prove that the best quadratic polynomial approximation relative to the square norm on
[-1, l] is given by

pcx)  = 4 j:lf(t)  dt  + 2x  j-t, tf(t>dt + 9(3x2 - 1) j-;,  (3t2  - l)f(t)dt.

(b) Find a similar formula for the best polynomial approximation of degree <4.
9. Calculate constants a, 6,  c so that the integral I’,  le” - (a + bx + cx2)12  dx will be as small as

possible.
10. L&f(x) = 1x1  for -1 I x < 1 . Determine the polynomial of degree 54  that best approxi-

matesfon [ - 1, l] relative to the square norm.
11. Let C denote the linear space of real continuous functions on [a, b] with inner product

Cf, g) = J8fWg<x) dx . Let e. , . . . , e, be an orthonormal basis for the subspace S of poly-
’ nomials of degree <n.  Let P be the polynomial in S that best approximates a given f in C

relative to the square norm.
(a) Prove that the square of the norm of the error is given by

iif- pii2 = ihi" -kto(& ek)2.

(b) Calculate this error explicitly when [a, b] = [-1, 11,  n = 2, andf(x) = 1x1  .
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12.

13.

14.

15.

Letf(x) = l/x for x # 0.
(a) Show that the constant polynomial P that best approximates f over the interval [l, n]
relative to the square norm is P(x) = (log n)/(n - 1). Compute IIP -f/l2 for this P.
(b) Find the linear polynomial P that best approximates f over the interval [l , n] relative to
the square norm. Compute IIP -fjlz for this P when n = 2.
Let f(x) = eZ .
(a) Show that the constant polynomial P that best approximates f over the interval [0, n]
relative to the square norm is P(x) = (en - 1)/n.  Compute 11 P -f  II2 for this P.
(b) Find the linear polynomial P that best approximates f over the interval [0, l] relative to
the square norm. Compute IIP - f iI2 for this P.
LetP,,P,,... , P,  be n + 1 polynomials orthonormal on [a, b] relative to the inner product
in Exercise 11. Assume also that Pk has degree k.
(a) Prove that any three consecutive polynomials in this set are connected by a recurrence
relation of the form

Pk+dx) = (akx  + bk)pk(x)  + ~kp~-~(x)

for 1 I k < n - 1, where akr  bk,  ck  are constants.
(b) Determine this recurrence relation explicitly when the polynomials are the orthonormal
Legendre polynomials.
Refer to Exercise 14, and let pk denote the coefficient of xk in P&c).
(a) Show that ak = pk+Jpk.
(b) Use the recurrence relation in Exercise 14 to derive the formula

m

c P,(x)P,(y)  = p$
pm+l(-4p&>  - p,(x)p,+l(y)

7
k=O

m x - Y

valid for x # y . Discuss also the limiting case x = y .

15.6 Interpolating polynomials

We turn now to approximation by interpolation polynomials. The values of a function
fare known at n + 1 distinct points x0, x1, . . . , x, and we seek a polynomial P of degree
fn  that satisfies the conditions

(15.4) P(xo> =f(xo), %> =fW, * * * > p&J  =fbJ*

First we prove that if such a polynomial exists it is unique. Then we prove it exists by
explicit construction. This polynomial minimizes the distance from f to P, measured in
the interpolation seminorm  for this n,

Ilf - PII  =k~Mx,,  - JY%)l  *

Since this distance is 0 if P satisfies (15.4),  the interpolating polynomial P is the best
approximation relative to this seminorm.

THEOREM 15.1. UNIQUENESS THEOREM. Given n + 1 distinct points x0, x1, . . . , x,,  let
P and Q be two polynomials of degree <n  such that

P&J = Q&J
for each k = 0, 1, 2, . . . , n . Then P(x) = Q(x) for all x.
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Proof. Let R(x) = P(x) - Q(x). The function R is a polynomial of degree <n  which
has n + 1 distinct zeros at the points x,,  , x1, . . . , x,. The only polynomial with this
property is the zero polynomial. Therefore R(x) = 0 for all X, so P(x) = Q(X)  for all x.

The interpciating polynomial P can be constructed in many ways. We describe first a
method of Lagrange. Let A(x) be the polynomial given by the equation

(15.5) A(x)=(x-xx,)(x-xx,)~-(x-xx,)=fi(x-x,).
i=O

This polynomial has a simple zero at each of the points xj. Let F&(X)  denote the poly-
nomial of degree n obtained from A(x) by deleting the factor x - x, . That is, let

(15.6) AR(X)  = fi(x - Xj).
j=O
I#k

The polynomial Ak(x) has a simple zero at each point xj # x,. At the point X, itself we
have

(15.7) Ak(xk)  = -f,-  cxk  - xi> ’
j=O
5+k

This is nonzero  since no factor in the product is zero. Therefore the polynomial
Ak(x)/Ak(xk)  has the value 1 when x = xk and the value 0 when x = xj for xi # x,. Now
let

When x = xj, each term in this sum vanishes except the jth term, which has the value
f(xj). Therefore P(xJ =f(xJ for each j. Since each term of this sum is a polynomial of
degree n, the sum itself is a polynomial of degree In. Thus, we have found a polynomial
satisfying the required conditions. These results can be summarized by the following
theorem :

THEOREM 15.2. Given n + 1 distinct points x0, x1, . . . , x, and n + 1 real numbers

f(xo>7fW  ’ * . , f (x,), not necessarily distinct, there exists one and only one polynomial P of
degree In such that P(xJ = f (xi) for each j = 0, 1,  2, . . . , n , This polynomial is given by
the formula

(15.8)

where A,(x)  is the polynomial defined by (15.6).
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Formula (15.8) for P(x) is called Lagrange’s interpolation formula. We can write it in
the form

P(x) =k~o-f~~kwk(x) 9

where Lk(x)  is a polynomial of degree IZ given by

(15.9)
Arc(x)Lk(X)  = - .
4SxJ

Thus, for each fixed x, P(x) is a linear combination of the prescribed valuesf(x,),f(x,),
. . . ,f(xJ. The multipliers Lk(x)  depend only on the points x,,  , x1, . . . , x, and not on the
prescribed values. They are called Lagrange interpolation coejficients.  If we use the
formulas in (15.6) and (15.7) we can write Equation (15.9) in the form

(15.10) Lk(X)  = fl= .
j=o Xk - xj
i#k

This product formula provides an efficient method for evaluating the number Lk(x)  for
a given x.

Note: The Lagrange coefficients &(x) are often expressed in the form

A,(x)
Lk(x)  = I

A (xk)  ’

where A’ is the derivative of the polynomial in (15.5). To prove this formula it suffices to
show that A’(xJ = A,(x,)  . Differentiating the relation

A(x) = (x - %cb’b(--d

we obtain A’(x) = (x - x,)Ak(x)  + Ak(x).  When x = xk this gives us A’(&) = Ak(xk)  .

EXAMPLE. Determine the polynomial of degree 13  that takes the values yo,  y, , yz , y3
at the points -2, - 1, 1, 2, respectively.

Solution. We take x0 = -2, x1 = -1  , x2 = 1, xg = 2. The polynomials Lk(x)  in
(15.10) are given by the formulas

Lo(x)  = (x + 1)(x  - 1)(x  - 2)
=( - 2  +  l)(-2 - l)(-2 2) - + - -- ; (x 1)(x 1)(x 2),

(x + 2)(x 1)(x- -
L1(x) 2)= =

( - 1  +  2)(-l  - 1)(-l - 2)
f(x+2)(x-1)(x-2),
6

L,(x) = (x + 2)(x + w - 2)
(1 + 2)(1 + l)(l - 2) =

4,+2)(x+1)(x-2),
6

L3(x) = (x + 2)(x + 1)(x  - 1)
(2 + 2)(2  + 1x2 - 1) = ;1;(x + 2)(x + 1)(x - 1).
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Therefore the required polynomial is

P(x) = YoLo(X)  + Y&,(X) + Y&(X)  + Y&,(X)

= - ; (x + 1)(x - 1)(x - 2) + 2 (x + 2)(x - 1)(x - 2)

- f (x + 2)(x + 1)(x - 2) + ; (x + 2)(x + 1)(x - 1).

To compute the value of P(x) for a specific x it is usually better to leave the polynomial
in this form rather than to rewrite it in increasing powers of x. For example, if y0 = -5,
y,=l,y,=l,andy,=7,thevalueofP(x)forx=+isgivenby

15.7 Equally spaced interpolation points

In the foregoing discussion the interpolation points x,,  , x1, . . . , x, were assumed to be
distinct but otherwise arbitrary. Now we assume they are equally spaced and show that
the Lagrange coefficients &(x)  can be considerably simplified. Suppose x,,  < x1 <
x0 < * * * < x,,  and let h denote the distance between adjacent points. Then we can write

xj = x0  +jh

fori = 0, 1, 2,. . . , IZ. Since xk - xj = (k - j)h , Equation (15.10) becomes

(15.11)

where
x - x0

t=-

h *

In the last term on the right of (15.11) the product of the factors independent of t is

(15.12)

(- l)n-k

= k! (n - k)!
(-l)“-” n=-

0n! k’

where ($)  is the binomial coefficient. Since x = x0 + th , Equation (15.11) now becomes

(15.13) Lk(xo + th) =‘+(i)  c(t  -j).
3-O
i#k
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For each fixed n, the right member of (15.13) is a function of k and t that can be tabulated.
Extensive tables of the Lagrangian coefficients for equally spaced interpolation points have
been prepared by the National Bureau of Standards. (See Reference 13 in the bibliography
at the end of this chapter.) If x and h are chosen so that the number t = (x - x,)/h is one
for which the Lagrangian coefficients L,(x,  + th) are tabulated, the actual calculation of
P(x,, + th) is reduced to a multiplication of thef(x,) by the tabulated L,(x,  + th), followed
by addition.

15.8 Error analysis in polynomial interpolation

Let f be a function defined on an interval [a, b] containing the n + 1 distinct points

x0, Xl,  ***,x,, and let P be the interpolation polynomial of degree In which agrees
with f at these points. If we alter the values off at points other than the interpolation
points we do not alter the polynomial P. This shows that the function f and the poly-
nomial P may differ considerably at points other than the interpolation points. If the
given function f has certain qualities of “smoothness” throughout the interval [a, b] we
can expect that the interpolating polynomial P will be a good approximation to f at points
other than the xk. The next theorem gives a useful expression that enables us to study the
error in polynomial interpolation when the given function has a derivative of order n + 1
throughout [a, b].

THEOREM 15.3 . Let  x0,  x1,  .  .  .  , x,  be n + 1 distinct points in the domain of a function f,
and let P be the interpolation polynomial of degree In that agrees with fat these points.
Choose a point x in the domain off and let [c(,  p]  be any closed interval containing the points
x0,  Xl,. * f , x,, and x. lff has a derivative of order n + 1 in the interval [LX,  /I] there is at
least one point c in the open interval (CI,  1) such that

(15.14)

where

f(x) - P(x) = (of’“+“,

A(x) = (x - x0)(x  - x1)  * * . (x - x,).

Note: Point c depends on both x and n.

Proof. If x is one of the interpolation points x,, then A(x,) = 0 and Equation (15.14)
is trivially satisfied for any choice of c in (CC,  @).  Suppose, then, that x is not one of the
interpolation points. Keep x fixed and define a new function F on [a, p] by the equation

(15.15) F(t)  = &)[f(t)  - P(t)1  - AW[f(x)  - JWl.

The right-hand side of this equation, as a function of t, has a derivative of order n + 1 ;
hence the same is true of the left-hand side. Since P(t) is a polynomial in t of degree In,
its (n + 1)st derivative is identically zero. The polynomial A(t) has degree n + 1, the
term of highest degree being P+l,  and we have A(‘+l)(t) = (n + l)! . Therefore, if we
differentiate Equation (15.15) n + 1 times with respect to t we obtain the formula

(15.16) F(n+l)(t) = A(x)- (n+l)(t)  - (n + l)! [f(x) - P(x)].
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From the definition in Equation (15.15) we see that F has the value zero at the n + 1
interpolation points x,,  , x1, . . . , x, and also at the point x. Therefore F(t) = 0 at n + 2
distinct points in the interval [M,  /3].  These points determine n + 1 adjacent subintervals
of [a, p] and the function F vanishes at both endpoints of each of these subintervals. By
Rolle’s theorem, the derivative F’(t) must be zero for at least one t interior to each sub-
interval. If we choose exactly one such t from each subinterval we obtain n + 1 distinct
points in the open interval (c(, j3)  at which F’(t) = 0. These points, in turn, determine n
subintervals at whose endpoints we have F’(t) = 0. Applying Rolle’s theorem to F’ we
find that the second derivative F”(t) is zero for at least n distinct points in (a, p). After
applying Rolle’s theorem n + 1 times in this manner we finally find that there is at least
one point c in (a, ,Q at which FCn+l) (c) = 0. Substituting this value of c in Equation
(15.16) we obtain

(n + l)! [f(x) - P(x)] = A(x)f(“+l)(c),

which is the same as (15.14). This completes the proof.

It should be noted that, as with approximation by Taylor polynomials, the error term
involves the (n + 1)st derivativef (nfl)(~)  evaluated at an unknown point c. If the extreme
values of ffn+l)in [K,  p] are known, useful upper and lower bounds for the error can be
obtained.

Suppose now that the interpolation points are equally spaced and that x0 < x1 <
x2<-.-<x,. If h denotes the spacing we can write

xj = x0  + jh and x = x0  + th,

where t = (X - x,)/h. Since x - xj = (t -j)h,  the polynomial A(x) can be written as

&xl  = fi- (x
i=O

- xj) = h”+’  c (t - j).

Formula (15.14) now becomes

(15.17) f(x) - P(x) = e hnfl fi (t - j),
n . j=O

with t = (x - x,)/h.

EXAMPLE. Error in linear interpolation. Suppose a function f with a second derivative
is tabulated and we wish to estimate its value at a point x intermediate to two consecutive
entries x0 and x0 + h . If we use linear interpolation we approximate the graph off over
the interval [x0, x0 + h] by a straight line, as shown in Figure 15.1. If P denotes the linear
interpolating polynomial, the error estimate in (15.17) becomes

(15.18) f(x)  - P(x)  = ‘$ h’t(t  - 1))

where t = (x - x,)/h. When x lies between x0 and x0 + h we have 0 < t < 1 and the
maximum value of It(t - l)] in this interval is 4. Therefore (15.18) gives us the estimate

If(x)  - P(x)]  5 If”(c8)l  h2.



Exercises 585

I I
X0 .X”  + h

FIGURE 15.1 Linear interpolation.

The point c is an unknown point in the interval (x0,  x,,  + h). If the second derivative
f' is bounded in this interval, say If”(x)1  5 M, the error estimate becomes

In particular, iffis a sine or cosine, then lj”(x)l 5 1 for all x and we have If(x) - P(x)1 5
P/8.  If a table of sines or cosines has entries for every degree (one degree = n/180
radians) we have h = n-/180,  so

h2 r2 < 10 < 1- -  ~- = 0.00004.
- - 8(180)2  259 ,200  25 ,0008

Since this error does not exceed Q in the fourth decimal place, linear interpolation would be
satisfactory in a four-place table. The error estimate can be improved in portions of the
table where If”(c)1 is considerably less than 1.

15.9 Exercises

1. In each case find the polynomial P of lowest possible degree satisfying the given conditions.
(a) P(-1) = 0, P(0) = 2, P(2) = 7.
(b) P(1) = 1, P(2) = 0, P(3) = 0, P(4) = 1.
(c) P(1) = 1, P(2) = 2, P(3) = 3, P(0) = 1.
(d) P(0) = -2, P(1) =0, P(-1) = -2, P(2) = 16.
( e )  P ( - 2 )  =  11 ,  P( -1 )  =  - 11 ,  P ( 0 )  =  - 5 ,  P(1)  =  -1 .

2. Letf(x) = cos (CC/~).  Find the polynomial of smallest possible degree that takes the same
values as f at the points -2, -$, 0, 8,  2.

3. Let P be a polynomial of degree s;n and let A(x) = (X  - x&(x - x,) . (x - A$,  where
x0,x1,. *. , x, are n + 1 distinct points.
(a) Show that for any polynomial B the polynomial Q given by Q(x) = P(x) + A(x)B(x)
agrees with P at the points x0, x1, . . . , x,,.
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(b) Prove also the converse. That is, if Q is any polynomial that agrees with P at the points
xo,xl,.*~  ,&, then Q(x) = P(x) + A(x)B(x)  for some polynomial B.

4. (a) Find the polynomial Q of lowest possible degree that satisfies the conditions

Q ( - 2 )  =  - 5 , Q ( - 1 )  =  - 1 , Q(l)  = 1, Q’(0)  =  - 1 .

[Hint: First find a polynomial P that takes the prescribed values at -2, - 1, 1,
and then use Exercise 3 to determine Q.]

(b) Find the polynomial Q of lowest possible degree that satisfies the conditions in part (a)
with Q’(0) = -3 instead of Q’(0) = -1.

5. Letf(x) = lo&x for x > 0. Compute P(32),  where P is the polynomial of lowest possible
degree that agrees with f at the points :
(a) x = 1,64. (c) x = 4, 16,64.
(b) x = 1, 16,256. (d) x = 1,4,  16,64,256.
In each case compute the differencef(32)  - P(32). These examples show that the accuracy in
polynomial interpolation is not necessarily improved by increasing the number of interpolation
points.

6. The Lagrange interpolation coefficients &(x) given by Equation (15.10) depend not only on
x but also on the interpolation points x0, x1, . . . , x, . We can indicate this dependence by
writing L,(x) = L,(x; X), where X denotes the vector in (n + I)-space given by X =
(x0,x1,...  ,&J. For a given real number b, let b denote the vector in (n + 1)-space all of
whose components are equal to b. If a # 0, show that

L&x  + b ; ax + b)  = &(x; X).

This is called the invariance property of the Lagrange interpolation coefficients. The next
exercise shows how this property can be used to help simplify calculations in practice.

7. Let P denote the polynomial of degree <4 that has the values

P(2.4) = 72, P(2.5) = 30, P(2.7) = 18, P(2.8) = 24, P(3.0)  = 180.

(a) Introduce new interpolation points uj related to the given points x by the equation
10  = 10xj - 24. The ui are integers. For each k = 0, 1,2,  3,4,  determine the Lagrange
interpolation coefficients &(x) in terms of u, where u = 10x - 24.
(b) Use the invariance property of Exercise 6 to compute P(2.6).

8. A table of the functionf(x) = log x contains entries for x = 1 to x = 10 at intervals of 0.001.
Values intermediate to each pair of consecutive entries are to be computed by linear inter-
polation. Assume the entries in the table are exact.
(a) Show that the error in linear interpolation will not exceed & in the sixth decimal place.
(b) For what values of x will linear interpolation be satisfactory for a seven-place table?
(c) What should be the spacing of the entries in the interval 1 5 x 2 2 so that linear inter-
polation will be satisfactory in a seven-place table?

In Exercises 9 through 15, x0, x1, . . . , x, are distinct points and

44 = fi (x - Xj),
GO

AkW  = fi (x - $1,
60
ifk

Mx)Lk(X)  = - .
A&k)
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9. Derive the formula A’(x) = zz==, A,(x) by use of (a) logarithmic differentiation; (b)
Lagrange’s interpolation formula.

10. Prove each of the following formulas:

(a) 2 &Ax) = 1 and R  A&d
c

y---  = o
k=O A CxJ

for all x.
k=O

Cb)  IL&
= 0. [Hint: Use part (a) with suitable values of x.1

kc=0

11. Let P be any polynomial of degree <;n. Show that the coefficient of xn is equal to

n m/J
c
k=O

AI *

12. (a) Determine a and b so that the polynomial

pk(x)  = {a + b(x  - &)}&(x)2
will have the following properties :

Pk(XJ = 0 for all i, p;<xk,  =  1 , and P;(q)  = 0 f o r  i#k.

(b) Determine c and d so that the polynomial

Qk(X>  =  {C  +  4x - xk)}Lk(x)2

will have the following properties:

Q&k)  = 1 9 Q&i)  = 0 f o r  i#k, and Q;<xi> = 0 for all i .

6) Let  f&d  = cEso  f(xk)Qk(x)  + zE=t=,  f’(Xk)Pk(X)T where f is a given function that is
differentiable at x0, x1, . . . , x,. Prove that

ff(xJ  = f(Xi) and H’(xJ = f’(xJ for all i.

Prove also that there is at most one polynomial H(x)  of degree 12n  + 1 with this property.
13. (a) Let P and Q be two polynomials of degree In satisfymg  the n + 1 conditions

P(xo)  = Q(xo)  , P’W = Q’W, P”(x2)  = Q”(x~), . . . , Pcn)(x,)  = Qtn’(x  )n *

Prove that P(x) = Q(x) for all x.
(b) Let B,(x)  = 1, and for n 2 1 define

B,(x) =
x(x - n)+-l

tt!

Show that B;(x)  = B,-,(x  - 1) for n 2 1 and deduce that

B,(O)  = B;(l)  = B;(2)  = . . . = B;-l’(n  - 1) = 0 and B:)(n)  = 1.
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14.

15.

16.

(c) Show that the one and only polynomial of degree In satisfying the conditions

P(O)  = co, P’(1) = Cl, p”(2) = c2, . . . , P’“‘(n) = c,
is given by

P(x) = 2 CJJ?k(X)  .
k=O

(d)Ifx,=x,+khfork=0,1,2,... , n, where h > 0, generalize the results in (b) and (c).
Assumex,,x,,..., x, are integers satisfying x0 < x1 < . . * < x,.
(a) Prove that IA’ 2 k! (n - k)! and deduce that

n

c
1 2”

k=olA’ol  -<n!.

(b) Let P be any polynomial of degree n, with the term of highest degree equal to xn. Let M
denote the largest of the numbers /P(x,)l,  IP(x  . . . , IP(x  Prove that M 2 n!/2”. [Hint:

Use part (a) and Exercise 11.1
Prove the following formulas. In parts (a) and (b), x is any point different from x0, x1, . . . , x, .

A’(x) R 1
(a) - = -

A(x) c
j=O

x - xj .

(b) A”(x)  A,(x)  nA (xl?=A’0 c
j=O
&+i:&-g$&.

j=O
i#k i#k i#k

A”(x,) n 1
(cl ) =2

A cxk) cj=. xk  - xj  *

j+k

Let P,(x) be the polynomial of degree In that agrees with the functionf(x) = ea”  at the n + 1
integers x =O,l,... ,n. Since this polynomial depends on u we denote it by P,(x;  a).
Prove that the limit

lim
P,(x;  a) - 1

a-0 a

exists and is a polynomial in x. Determine this polynomial explicitly.

15.10 Newton’s interpolation formula

Let P, denote the interpolation polynomial of degree <n that agrees with a given
functionfat IZ + 1 distinct points x0, x1, . . . , x,. Lagrange’s interpolation formula tells
us that

p,(x>  =Lz5(x)f(xk)  3

where Lk(x) is a polynomial of degree n (the Lagrange interpolation coefficient) given by
the product formula

(15.19) Lk(x)=fix, for k=0,1,2 ,...,  n.
GO  Xk - xj
i+k
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Suppose we adjoin a new interpolation point x,+~ to the given points x,,  , x1, . . . , x, . To
determine the corresponding polynomial P,+l by Lagran,ge’s  formula it is necessary to
compute a new interpolation coefficient Lnfl and to recompute all the earlier coefficients

Lo, L,, *. ., L,,  each of which is now a polynomial of (degree n + 1. In practice this
involves considerable labor. Therefore it is desirable to have another formula for deter-
mining P, that provides an easier transition from P,  to P,+l.  One such formula was
discovered by Newton; we shall derive it from the following theorem.

THEOREM 15.4. Given n + 2 distinct points x,, , x1, . . . , x,, x,+~. Let P,  be the poly-
nomial of degree In that agrees with a given function f at x0, . . . , x,,  and let P,+l  be the
polynomial of degree In + 1 that agrees with f at x,, , x1, . . . , x,  , x,+~. Then there is a
constant c,+~, uniquely determ&ied  by  f and by the interpolation points x,, , . . . , x,+~, such
that

(15.20) P,+,(x) = P,(x) + %+1(X - x3 * * * (x - x,).

Proof. Let Q(x) = P,(x) + c(x - x,,)  .  . . (x - x,) , whlere c is an unspecified constant.
Then Q is a polynomial of degree In + 1 that agrees with P,  and hence with f at each of
then+lpointsx,,...,x,. Now we choose c to make Q agree with f also at x,+~. This
requires

f (x,+1)  = P,(x,+1)  + 4x,+1  - x0) * * * (x,+1  - xn)  *

Since the coefficient of c is nonzero,  this equation has a unique solution which we call
c,+~. Taking c = c,,+~  we see that Q = P,+l.

The next theorem expresses P,(x) in terms of the numbers cl, . . . , c,.

THEOREM 15.5. NEWTON'SINTERPOLATIONFORMULA. ZfxO,...,x,  aredistinct, wehave

(15.21)

Proof. We define P,,(x) = f (x,-J  and take n = 0 in (15.20) to obtain

PI(X) = f (xcl)  + c1(x - xll) *

Now take n = 1 in (15.20) to get

Pz(x> = PI(X) + cz(x - x&t - Xl>  = f (x0)  + c1(x - x0) + 4x - x0)(x  - x1) *

By induction, we obtain (15.21).

The property of Newton’s formula expressed in Equation (15.20) enables us to calculate
Pnil simply by adding one new term to P, . This property is not possessed by Lagrange’s
formula.

The usefulness of Newton’s formula depends, of course, on the ease with which the
coefficients cr,  cZ, . . . , c, can be computed. The next thelorem  shows that c, is a linear
combination of the function values f (x,), . . . , f (x,).
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THEOREM 15.6. The coeficients  in Newton’s interpolation formula are given by

(15.22) c = n f(Xk)n c where Ak(xk)  = c (xk - xj>.
k=O

A,kJ  ’
i+k

Proof. By Lagrange’s formula we have

P,(x)  =k~oww(~k~  f

where Lk(x)  is the polynomial of degree IZ given by (15.19). Since the coefficient of xn in
Lk(x)  is 1/,4,(x,),  the coefficient of x” in P,(x) is the sum appearing in (15.22). On the other
hand, Newton’s formula shows that the coefficient of xn in P,(x) is equal to c,. This
completes the proof.

Equation (15.22) provides a straightforward way for calculating the coefficients in
Newton’s formula. The numbers A,(x,) also occur as factors in the denominator of the
Lagrange interpolation coefficient Lk(x).  The next section describes an alternate method
for computing the coefficients when the interpolation points are equally spaced.

15.11 Equally spaced interpolation points. The forward difference operator

In the case of equally spaced interpolation points with xk = x0 + kh for k = 0, 1,  . . . , n
we can use Equation (15.12) to obtain

-=fi’=Lfl’=-1 (-l)“-”  n

Ak(xk) i=o  Xk  - xj 0
j*k

h”;;;k-j n!h” k’

In this case the formula for c, in Theorem 15.6 becomes

(15.23) c n = -$-&-l,n-k(;)f(xk),

The sum on the right can be calculated in another way in terms of a linear operator A
called the forward dtyerence  operator.

DEFINITION. Let h be a fixed real number and let f be a given function. The function
Af dejmed by the equation

AfCx)  = f<x  + h) - f(x)

is called theJirst  forward dtperence  off. It is dejined at those points x for which both x and
x + h are in the domain off. Higher order d@erences A"f,  A"f,  . . . are dejned  inductively as
follows:

A”+‘f=A(A”f) f o r  k =  1,2,3  ,....

Note: The notations Ah  f (x) and Af (x; h) are also used for Af(x)  when it is desirable to
indicate the dependence on h. It is convenient to define Aof = f.
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The nth difference Anf(x is a linear combination of the function valuesf(x),S(x  + h),)
. . . ,f(x  + nh). F or example, we have

@t-(x>  = U-(x + 2h)  - f-(x + h)) -- {j-(x  + h) -f(x))

=f(x + 2h)  - 2f(x + h) + f(x).
In general, we have

(15.24) A”f(x)  =$-l)‘+k(;)f(x  + kh).
k=O

This is easily proved by induction on it, using the law of Pascal’s triangle for binomial
coefficients :

(kii-1)  + (i) = (“Y).
Now suppose f is defined at n + 1 equally spaced points xk = x0 + kh for k = 0, 1, . . . ,

n . Then from (15.23) and (15.24) we obtain the formula

cn = j& A"f(xo)  .

This provides a rapid method for calculating the coefficients in Newton’s interpolation
formula. The diagram in Table 15.1, called a diflerence  table, shows how the successive
differences can be systematically calculated from a tabulation of the values offat equally
spaced points. In the table we have written fk forf(x,).

Newton’s interpolation formula (15.21) now becomes

(15.25) P,(x) =f(x,>  +ZAS  kg(x  - Xi).

TABLE 15.1

x

x0

Xl

x2

X3

Tf(X) Af (x> A"f (xl A3fW

h
L

fi - f o  =  Af(xo)

fl;

L

Af  (x1) - Af(x,)  = A2f(;lco)

fi - fi = AfCx3’

‘x
A”f(xJ  - @f(x,,> = @fCxo>

hf

L
AfCx,,  - Af(xJ = Aafd

L
fs -fi = AfCxd’

f3f
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k-l k-l

x0-jh)=h"E(T-j)  =h'TJ(t-j),

where t = (x - x,)/h,  Equation (15.25) becomes

(15.26) P,(x)  = f(x0> +gl  '* 'E (t - j) .

15.12 Factorial polynomials

The product t(t - 1) . . * (t - k + 1) which appears in the sum in (15.26) is a polynomial
in t of degree k called a factorial polynomial, or the factorial kth power of t. It is denoted
by the symbol t ck). Thus, by definition,

k - l

t(k)  =  TJ 0 - j) .

We also define t(O)  = 1. If we consider the forward difference operator A with h = 1,
that is, Af (x) = f (x + 1) - f(x), we find that

At(n)  = nt(-l) f o r  n>l.

This is analogous to the differentiation formula Dt” = ntn-l for ordinary powers. Thus,
the factorial power ten) is related to differences much in the same way that the ordinary
power tn is related to derivatives.

With the use of factorial polynomials, Newton’s interpolation formula (15.26) becomes

P,(x, + th) =cA+ tfk).
k=O '

Expressed in this form, Newton’s formula resembles the Taylor formula for the poly-
nomial of degree In that agrees with f and its first n derivatives at x0. If we write

t0
+k' t(t - 1) * * . (t - k + 1)=-=

k k ! k !
,

Newton’s formula takes the form

P&o + th)  =z(;)  W(xo>.
k=O

Further properties of factorial polynomials are developed in the following exercises.
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15.13 Exercises

1. Let Af<x) =f(x + h) -f(x). Iffis a polynomial of degree n, say

with a, # 0, show that (a) A’“f(x)  is a polynomial of degree n - /c if k 5 n ; (b) A”f(x)  =
?l! h%n; (c)A?(x)  =Ofork  >n.

2. Let Af<x) =f<x + h) -f(x). Iff(x) = sin (ax + b) , prove that

Anf(x)  =(2sin$rsin(ax +b  +‘v).

3. Let Af(x)  =f(x + h) -f(x).
(a) Iff(x) = a”, where a > 0, show that Alcf(x)  = (ah ‘- 1)“~~.
(b) Ifg(x) = (1 + c@@, where u > 0, show that A”g(x) = @g(x).
(c) Show that the polynomial P,,  of degree n that takes: the values P,(k) = (1 + a)”  for k  =
0,1,2 )...) n is given by

P,(x) = -$$x?
k=O

4. Let xtn) be the factorial nth power of x. Since xt”)IS  a polynomial in x of degree n with the value
0 when x = 0, we can write

X(n’  =
2 sk,nxk  *
k=l

The numbers Sk8,  are called Stirling numbers of thefirst  kind. From the definition of x(“) it is
clear that S,., = 1 for n 2 0.
(a) Show that S,-,  It = -n(n - 1)/2  and that S, n = (--l)+l(n  - l)! for n 2 1.
(b) Prove that Sk,i+1  = Sk--l,n  - nSk  lE. Use this relation to verify the entries in Table 15.2,
a table of Stirling numbers of the first’kind, and construct the next three rows of the table.

TABLE 15.2

n S1.n S2.n S3.n S4.5% S 5.m s h6.n

1 1
2 - 1 1
3 2 - 3 1
4 - 6 1 1 - 6 :1
5 24 - 5 0 3 5 - 1 0 1
6 -120 274 -225 85 - 1 5 1
7 720 -1764 1624 -73s 1 7 5 -21 1

(c) Express the polynomial xt4) + 3~‘~)  + 2x(l) + 1 as a. linear combination of powers of x.
5. (a) Prove that

x = $1)  ) x2  = x(1’  + x(2’ , x3  =: $1) + 3x’2’  + x(3),
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and that, in general,

xn =
c
’ A”f(o) (k)
xx ’

k=l

where f(x) = xn and Af(x)  =f(x + 1) -f(x). The numbers Tk,n  = AkCf(0)/k! are called
Stirling numbers of the second kind.
(b) Prove that

Akxnfl  = (x + k) Akxn  + k Ak-lx”

and use this to deduce that Tk,,+l = Tk-l,n  + kT,,,  .
(c) Use the recursion formula in part (b) to verify the entries in Table 15.3, a table of Stirling
numbers of the second kind, and construct the next three rows of the table.

TABLE 15.3

n Tl.,,  Tzen T3.n T4.n Tb.  n T6.n  T,,n

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 3 0 1 350 140 21 1

(d) Express the polynomial x4 + 3x3  + 2x - 1 as a linear combination of factorial poly-
nomials.

6. (a) If p is a positive integer and if a and b are integers with a < b , prove that

b-l

c
k(P)  =

b(P+l)  _ &'+l)

k=a
p+l  -

This formula is analogous to the integration formula for Jl xp dx. It should be noted, however,
that the upper limit in the sum is b - 1, not b.
(b) Verify that k(k + 3) = 4k w + kc2).  The use part (a) to show that

n
c k(k  + 3) = 4 (n  +21’(2)  + (n +31P  = n(n  + 1;‘”  + 5).

k=l

(c) If f (k) is a polynomial in k of degree r, prove that

kzlf(k)

is a polynomial in n of degree r + 1.
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7. Use the method suggested in Exercise 6 to express each of the following sums as a polynomial
in n.

(a) i (4P  -t 7k + 6).
k=l

Cc)  kzlk(k  + l)(k -t- 2).

(b) 3 k2(k  + 1). (d) 5 k4.
k=l k=l

8. Let A denote the linear operator defined by the equation

A(f)  = a, A”f  + al  Anplf  + . . + unpIL  Af  + a,f,

where a,,, a,, . . . , a, are constants. This is called a constant-coeficient difference operator.
It is analogous to the constant-coefficient derivative operator described in Section 6.7. With each
such A we can associate the characteristic polynomial pA defined by

PA(r)  = a#  + ulrn--l  + . . . + a,-,r  + a,.

Conversely, with every polynomialp  we can associate an operator A having this polynomial as its
characteristic polynomial. If A and B  are constant-coefficient difference operators and if A is a
real number, define A + B, AB, and iA by the same formulas used in Section 6.7 for derivative
operators. Then prove that Theorem 6.6 is valid for constant-coefficient difference operators.

15.14 A minimum problem relative to the max norm

We consider a problem that arises naturally from the theolry of polynomial interpolation.
In Theorem 15.3 we derived the error formula

(15.27) .f(x> - P(x)  = *f(n+lyc))

where
A(x) = (x - x0)(x  - x1).  * * (x - xJ.

Here P is the unique polynomial of degree < n that agrees with f at n + 1 distinct points

x0, Xl, . . * ? x, in [a, b]. The function f is assumed to have a derivative of order n + 1
on [a, b], and c is an unknown point lying somewhere in [or,  b]. To estimate the error in
(15.27) we need bounds for the (n + 1)st derivative f (+l) and for the product A(x). Since
A is a polynomial, its absolute value has a maximum somewhere in the interval [a, b].
This maximum will depend on the choice of the points x0, X~ , . . . , x, , and it is natural to
try to choose these points so the maximum will be as small as possible.

We can denote this maximum by 1) A I/, where 11 A II  is the max norm, given by

IMII  = max  IA(x>l.
a<rSb

The problem is to find a polynomial of specified degree that minimizes )I  A 1). This problem
was first solved by Chebyshev; its solution leads to an interesting class of polynomials that
also occur in other connections. First we give a brief account of these polynomials and then
return to the minimum problem in question.
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15.15 Chebyshev polynomials

Let x + iy be a complex number of absolute value 1. By the binomial theorem we have

(x + iy)” =s($x+‘(iy)’
k=O

for every integer n 2 0. In this formula we write x = cos 8, y = sin 0, and consider the
real part of each member. Since

(x + iy)” = (cos 0 + i sin Qn = eine = cos nf3 + i sin no,

the real part of the left member is cos no. The real part of the right member is the sum over
even values of k. Hence we have

(15.28)

Since y2 = sin2 8 = 1 - cos2 e = 1 - x2, the right-hand member of (15.28) is a poly-
nomial in x of degree n. This polynomial is called the Chebyshev polynomial of the first
kind and is denoted by T,(x).

DEFINITION. The Chebyshev polynomial T,(x) is dejned for all real x by the equation

T,(x) =[$I  ( ;k) X-yX2  - 1)“.
k=O

From Equation (15.28) we obtain the following theorem.

THEOREM 15.7. If -1 5 x 5 1 we have

T,(x) = cos (n arccos x) .

Proof. If t7 = arccos x then x = cos 8 and T,(x) = cos nf3.

The Chebyshev polynomials can be readily computed by taking the real part of (x + &)”
with y2 = 1 - x2, or by using the following recursion formula.

THEOREM 15.8. The Chebyshev polynomials satisfy the recursion formula

T,+,(x)  = 2x5”&) - T,-,(x) for nkl,

with T,(x) = 1 and T,(x) = x.
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Proof. First assume -1  <x< landputx= cos 19 in the trigonometric identity

cos (n + 1)0  + cos (n - 1)0  = 2 cos 0 cos nf3.

This proves that T,+,(x) + Z’,-,(x)  = 2xT,(x) for x in the interval -1 5 x 5 1. But
since both members are polynomials, this relation must hold for all x.

The next five polynomials are

T,(x) = 2x2 - 1 T3(x) = 4x3 -) 3X) T*(x) = 8x4 - 8x2 + 1,

T5(x) = 1 6x5  - 20x3 + 5x, To(x) =32xfi-48x4+  18x2-  1 .

The recursion formula shows that all the coefficients of T,(x) are integers; moreover,
the coefficient of x” is 2n-1.

The next theorem shows that T,(x) has exactly n first order zeros and that they all lie in
the interval [ - 1, 11.

THEOREM 15.9. If n 2 1 the polynomial T,(x) has zeros at the n points

X, = ~0s~~~ ’ ‘IT,
2 n

k = 0, 1,2,  . . . , n - 1.

Hence T,(x) has the factorization

!I--1

T,(x) = 27x  - x&(x - x1)  * * * (x - x,-,)  = 2+l  n x - cos
(2k + 1)~

k=O 2n

Proof. We use the formula T,(x) = cos no. Since cos n0 = 0 only if n0 is an odd
multiple of 7r/2,  we have T,(x) = 0 for x in [- 1, l] only if n arccos x = (2k + l)n/2 for
some integer k. Therefore the zeros of T, in the interval [ - 1, l] are to be found among the
numbers

(15.29) x,=cos2=-t  k=O,fl,:&2  ,....
n 2’

The values k = 0, 1, 2, . . . , n - 1 give n distinct zeros x0, x1, . . . , x,-~,  all lying in the
open interval (- 1, 1). Since a polynomial of degree n cannot have more than n zeros,
these must be all the zeros of T,,  . The remaining xk in (15.29) are repetitions of these n.

THEOREM 15.10. In the interval [- 1, l] the extreme values of T,(x) are + 1 and - 1,
taken alternately at the n + 1 points

(15.30) t, = cos !eJ ) for k = 0,1,2,.  . . , n.
n

Proof. By Rolle’s theorem, the relative maxima and minima of T, must occur between
successive zeros; there are n - 1 such points in the open interval (- 1, 1). From the cosine
formula for T, we see that the extreme values, f 1, are taken at the n - 1 interior points
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$ Tz  64 $ TX  (4 $ T,  (4 $ T.5  (x)

FIGURE 15.2 Graphs of Chebyshev polynomials over the interval [- 1, 11.

cos(kn/n),  k= 1, 2, . . . , n - 1, and also at the two endpoints x = 1 and x = - 1.
Therefore in the closed interval [- 1, l] the extreme values + 1 and - 1 are taken alter-
natelyatthen+lpointst,,t,,...,t,givenbyt,=cos(kn/n)fork=0,1,2,...,n.

Figure 15.2 shows the graphs of Tz , . . . , T5 over the interval [ - 1, 11.

15.16 A minimal property of Chebyshev polynomials

We return now to the problem of finding a polynomial of a specified degree for which the
max norm is as small as possible. The problem is solved by the following theorem.

THEOREM 15.11. h?tp,(X) = Xn -i- -* * be any polynomial of degree n 2 1 with leading
coeficient 1, and let

lIPnIl  = max  IP,(x>l  .
--11z<l

Then we have the inequality

(15.31) llpnll 2 lm9

where Fn(x) = T,(x)/2”-*.  Moreover, equality holds in (15.31) ifpn  = Tn.

Proof. In the interval [-1, l] the polynomial Fn  takes its extreme values, 1/2%-l’  and
- 1/27”-1,  alternately at the n + 1 distinct points t, in Equation (15.30). Therefore /I Fn II  =
l/2”-‘.

We show next that the inequality

(15.32)

leads to a contradiction. Assume, then, thatp, satisfies (15.32) and consider the difference

44 = ~k4  - P,(X).

At the points t, given by (15.30) we have

r(tJ = (2 - PJfk)  = (-1)”
[
& - (-VP?&) 1 *
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Because of (15.32) the factor in square brackets is positive. Therefore r(tJ has alternating
signsatthen+ lpointst,,t, ,...,  t,. Since r is continuous it must vanish at least once
between consecutive sign changes. Therefore r has at least n distinct zeros. But since r is a
polynomial of degree 5 n - 1, this means that r is identically zero. Therefore P,  = Fm,,
so IIP,  I I = IlrT,II = 1/2’+1,  contradicting (15.32). Thiis proves that we must have llpn 11 2
l/2”-1 = I(  Fn  11 .

Although Theorem 15.11 refers to the interval [- 1, l] and to a polynomial with leading
coefficient 1, it can be used to deduce a corresponding result for an arbitrary interval [a,  b]
and an arbitrary polynomial.

THEOREM 15.12. Let qn(x) = c,xn  + * * * be  any  polynomial  of degree  n 2 1, and  let

Then  we  have  the  inequality

(15.33)

Moreover,  equality  holds  in (15.33) if

(b - a)”  T
4n(x>  = cn  22n--1  n

(
---

Proof.  Consider the transformation

t=2x-a-bb
b-a

This maps the interval a 5 x 5 b in a one-to-one fashion onto the interval - 1 2 t 5 1.
Since

b-a
2

t+b+ax=-  --
2

we have

hence

P + terms of lower degree,

p,(t)  7

where p,(t) is a polynomial in t of degree n with leading coefficient 1. Applying Theorem
15.11 top%  we obtain Theorem 15.12.

15.17 Application to the error formula for interpolation

We return now to the error formula (15.27) for polynomial interpolation. If we choose
the interpolation points x0,  x1,  . . . , x, to be the n + 1 zeros of the Chebyshev polynomial
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r,-,  we can write (15.27) in the form

f(x) - P(x)  = 2n2y)!  f’“+l’(c).

The points x0, x1,.  . . , x, all lie in the open interval (- 1, 1) and are given by

XkECOS  (S;) for k=0,1,2 ,...,  n.

If x is in the interval [- 1, l] we have Ir,+,(x)l 5 1 and the error is estimated by the
inequality

If(x)  - P(x)1  I 2”(n1+  1),  P+%)l.

If the interpolation takes place in an interval [a, b] with the points

b - a
x +b+ay,=-  -

2k 2

as interpolation points, the product

ml = (x - YONX  - Yl) * * - (x - y,>

satisfies the inequality IA(x)/  < (b - a)n+1/22n+1  for all x in [a, b]. The corresponding
estimate forf(x) - P(x) is

If(x) - W)l  I 2!f+ina;;), 1 f (n+l’(C)I  .

15.18 Exercises

In this set of exercises T, denotes the Chebyshev polynomial of degree n.

1. Prove that T,(  -x) = (- l)nT,(x). This shows that T, is an even function when n is even
and an odd function when n is odd.

2. (a) Prove that in the open interval ( - 1, 1) the derivative TA is given by the formula

n sin n6
T;(x) = sin 9 where 8 = arccos x.

(b) Compute T;(l) and TL(  -1).

s 2
3. Prove that

T,-,(x)  - T,-,(O)

I
i f  n22.

0 n - l

4. (a) Prove that 2T,(x)T,(x)  = T,+,(x) + T,,-n(x).
(b) Prove that Tm,(x) = T,[T,(x)] = T,[T,(x)] .

5. If x = cos 0, prove that sin 6 sin n0 is a polynomial in x, and determine its degree.
6. The Chebyshev polynomial T,,  satisfies the differential equation

(1 - x2)y” - xy’  + n2y = 0
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7.

8 .

9.

10.

over the entire real axis. Prove this by each of the following methods:
(a) Differentiate the relation T(x)  sin 19  = n sin n0 obtained in Exercise 2(a).
(b) Introduce the change of variable x = cos 8 in the differential equation

d2 (cos ne>

do2 =
-9cos  no.

Determine, in terms of Chebyshev polynomials, a polynomial Q(x) of degree <n which best
approximates xn+l on the interval [ - 1, l] relative to the max  norm.
Find a polynomial of degree 14  that best approximates the functionf(x)  = x5 in the interval
[0, 11, relative to the max norm.
A polynomial P is called primary if the coefficient of the lterm  of highest degree is 1. F o r  a
given interval [a, b]  let 11  PII  denote the maximum of 1 PI  on [u, 61. Prove each of the following
statements :
(a) If b - a < 4, for every E  > 0 there exists a primary polynomial P with lIPI\ < E.
(b) If for every E  > 0 there exists a primary polynomial P with lIPI/  < E, then b - a < 4.

In other words, primary polynomials with arbitrarily small norm exist if, and only if, the
interval [a, b]  has length less than 4.
The Chebyshev polynomials satisfy the following orthogonality relations:

0 i f  n#m,

s

l Tn(x)TmW
-l  Ji-,z  dx =

I

1

i f  n=m=O,

2
i f  n=m>O.

Prove this by each of the following methods:

(a) From the differential equation in Exercise 6 deduce that

T,(x)  2 Jl  - ~2 T;(X)
( )

TTJx)Tm(x)
+ n2  -+==-  = 0.

dl  -x2

Write a corresponding formula with n and m interchanged, subtract the two equations, and
integrate from -1 to 1.
(b) Use the orthogonality relations

0 if n #m, n >0, m >0,

s

I
cos m0cosn8d0  =

i

v
i f  n=m=O,

0 x

2
i f  n=m>O,

and introduce the change of variable x = cos 0.
11. Prove that for -1 < x < 1 we have

T,(x) 2%! dn

Jr2
= (-  1)” W! dx”  (1 -- x2)*-1’2.

12.  Lety,,y,,  . . . ,y, be n real numbers, and let

(2k - 1)~
Xk  = cos

2n
for k=1,2  ,...,  n.
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Let P be the polynomial of degree In - 1 that takes the value ylc at xk for 1 5 k 5 n. If x is
not one of the xk show that

P(x) = ; 2 ( -l)‘c-lyk  Jl - xi s .
k=l

k

13. Let P be a polynomial of degree In - 1 such that

J1 -x2 IPcd  I;  1

for -1 < x 5 1. Prove that /P/l I n , where llP/l  is the maximum of IPI  on the interval [ - 1 , 11.

[Hinr: Use Exercise 12. Consider three cases: x1 < x < 1 ; - 1 < x < x, ;
x, 5; x 5 Xl  ,* in the first two use Exercise 15(a) of Section 15.9. In the third
case note that Jl - x2 2 sin (7r/2n)  > l/n.]

In Exercises 14 through 18, V,(x)  = Ti+,(x)/(n  + 1) for n = 0, 1,2,  . . . .

14. (a) Prove that V,(x)  = 2xU,-r(x)  - U,,(x) for n > 2.
(b) Determine the explicit form of the polynomials U,,  (/1, . . . , U,.
(c) ProvethatIU,(x)l <n+lif-1 5x51.

15. Show that U, satisfies the differential equation

(1  - X2)y” - 3xy’ + n(n + 2)~  = 0.

16. Derive the orthogonality relations
0 i f  m  #n,

x2 U,(x)U,(x)  dx = rr

5
i f  m  = n .

17. Prove that

Ji-z  U,(x)  = (- l)n :;I: +’  $ -$  (1 - Xa)n+l/z.

18. Lety,,y2,.  . . , y, be n real numbers and let

krr
-

xk = ‘OS n + 1
for k=1,2 ,..., n.

Let P be the polynomial of degree I;n - 1 that takes the value yk at xk for 1 5 k 5 n. If x is
not one of the xk show that

P(x)  = j& 2 (-l)k-I(1 Udx)
- $yk  - *

kc1
x - xk

15.19 Approximate integration. The trapezoidal rule

Many problems in both pure and applied mathematics lead to new functions whose
properties have not been studied or whose values have not been tabulated. To satisfy
certain practical needs of applied science it often becomes necessary to obtain quantitative
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a a+h u + 2h . u . a+nh=b

FIGURE  15.3 The trapezoidal rule obtained by piecewise linear interpolation.

information about such functions, either in graphical or numerical form. Many of these
functions occur as integrals of the type

where the integrandfis given by an explicit analytic formula or is known in part by tabular
data. The remainder of this chapter describes some of the most elementary methods for
finding numerical approximations to such integrals. The basic idea is very simple. We
approximate the integrand f by another function P whose integral is easily computed, and
then we use the integral of P as an approximation to the integral off.

Iffis nonnegative the integral Ji f(x) dx represents the area of the ordinate set off over
[a, b]. This geometric interpretation of the integral immediately suggests certain proce-
dures for approximate integration. Figure 15.3 shows an example of a function f with
known values at n + 1 equally spaced points a, a + h , a + 215,  . . . , a + nh  = b, where
h = (b - a)/n. Letx,=a+kh. Foreachk=0,1,2,...,n-lthegraphoffover
the interval [x~  , xkfl] has been approximated by a linear function that agrees with f at the
endpoints x, and xk+r. Let P denote the corresponding piecewise linear interpolating
function defined over the full interval [a, b]. Then we have

(15.34) jyx) = %+1 - xh f(Xk)  + yvcxk+J

Integrating over the interval [xk  , xk+J  we find that

s %+I
p(x) dx = h fcXk)  + f(Xk+l)- -

*lc 2 *

When f is positive this is the area of the trapezoid determined by the graph of P over

Lxk,  xk+ll. Th e formula holds, of course, even iff is not positive everywhere. Adding the
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integrals over all subintervals [A-~,  s,+J  we obtain

(15.35) P ( x )  d x  =  ;h ‘2 D-(Xk)  + f(%+dl
k=O

=k(f(a)+gf(a+kh)+f(b)).

To use this sum as an approximation to the integral Jif(x) dx we need an estimate for
the error, j”zf(x) dx - ji P(x) dx. Ifs has a continuous second derivative on [a, b] this
error is given by the following the&em.

THEOREM 15.13. TRAPEZOIDAL RULE. Assume f has a continuous second derivative f”
on [a, b]. Zf n is a positive integer, let h = (b - a)/n  . Then we have

(15.36) /‘f(x)  dx = e(f(a) + 2zf(a + kh) + f(b)) - (*f”(c)
.n k=l

for some c in [a, b].

Note: Equation (15.36) is known as the trapezoidalrule,  The term -f”(c)@  - a)3/12n2
represents the error in approximating Ji f(x) dx by Ji P(x) dx. Once the maximum value
off” on [a, b] is known we can approximate the integral off to any desired degree of
accuracy by taking n sufficiently large. Note that no knowledge of the interpolating
function Pis required to use this formula. It is only necessary to know the values off at the
points a, u + h, . . . , u + nh, and to have an estimate for If”(c)j.

ProoJ Let P be the interpolating function given by (15.34),  where xK = a + kh . In each
subinterval [xk, xktl] we apply the error estimate for linear interpolation given by Theorem
15.3 and we find

(15.37) f(x) - P(x) = (x - Xk)(X  - x,+$+

for some c, in (xk,  xk+l). Let M2  and rn,  denote the maximum and minimum, respectively,
off” on [a, b], and let

B(x) = (x - Xk)(Xk+l  - x)/2.

Then B(x) 2 0 in the interval [xk, x,,,], and from (15.37) we obtain the inequalities

m2Wx) I; P(x)  - f(x) S M2W)

in this interval. Integrating, we have

(15.38) m2 Jr+‘B(x)  dx 5 j+;+” [P(x) - f(x)] dx < M, j-z+’ B(x) dx  .

The integral of B is given by

B(x) dx = 1
s

W-h

x)dx=I
s

h

2
(x - xk)(xktl -

=h 2 0
t(h - t) dt = $.
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Therefore the inequalities (15.38) give us

605

m < 12 xk+h
2-

sh3 z,t
[P(x)  - fW1 dx  I M, -

Adding these inequalities for k = 0, 1, 2, . . . , n - 1 and dividing by n, we obtain

m <122-
s

b[P(x)-f(x)]dxIM2.
nh3  a

Since the functionf” is continuous on [a, b], it assumes every value between its minimum
m2  and its maximum M, somewhere in [a, b]. In particular, we have

f”(c)  = -$ Jb [P(x)  - ./-(x)1  dxa
for some c in [a, b]. In other words,

sI/(x)  dx = 1’
a

P(x) dx - gf”(c).

Using (15.35) and the relation h = (b - a)/n  we obtain (15.36).

To derive the trapezoidal rule we used a linear polynomial to interpolate between each
adjacent pair of values off. More accurate formulas can be obtained by interpolating with
polynomials of higher degree. In the next section we consider an important special case
that is remarkable for its simplicity and accuracy.

15.20 Simpson’s rule

The solid curve in Figure 15.4 is the graph of a function f over an interval [a, b]. The
mid-point of the interval, (a + b)/2,  is denoted by m. The dotted curve is the graph of a
quadratic polynomial P that agrees with f at the three points a, m, and 6. If we use the
integral 1: P(x) dx as an approximation to jlf(~)  dx we are led to an approximate inte-
gration formula known as Simpson’s rule.

Instead of determining P explicitly, we introduce a linear transformation that carries the
interval [a, b] onto the interval [0,2].  If we write

x - at=- 3 or x = a + (m - a)t,
m - u

we see that t takes the values 0, 1, 2 when x takes the values a, m, b. Now let

p)(t)  = P[u + (m - u)t].

Then v(t) is a quadratic polynomial in t that takes the values P(u), P(m), P(b) at the points
t = 0, 1, 2, respectively. Also, we have

lpl(fW= c P[u  + (m - a)t]  dt := & bP(x)  dx ;
s
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.

a m b

FIGURE  15.4 Interpolation by a quadratic polynomial P.

hence

f

b

P(x) dx = (m - a)
s

2p(t)  dt = -
b - a  2

a 0 s2 0
v(t) dt.

Now we use Newton’s interpolation formula to construct 9. We have

A2do)
$40  = P(O)  + r AT(O)  + t(t - 1) -

2! ’

where A&t) = y(t + 1) - y(t). Integrating from 0 to 2 we obtain

io2 v,(t)  dt = 2940)  + 2 AM(O)  + ; A”q(O).

Since AF’(O)  = ~(1) - P(O)  and A2v(0)  = ~(2) - 29?(l)  + p(O), the integral is equal  to

. o2 P(t)  dt = %dO)  + 4~(1)  + q(2)]=  $[P(a> + 4P(m) + P(b)].1

Using (15.39) and the fact that P agrees with f at a, m, b, we obtain

(15.40) s b b - aP(x) dx = -6 [f(a)  + V(m) + f(b)].a

Therefore, we may write

sabf(x) dx = + [f(a) + 4f(m> + f(b)] + R ,

where R = jif(x) dx - J; P(X) dx.
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IfSis a quadratic polynomial, P is identical tofand the error R is zero. It is a remark-
able fact that we also have R = 0 when f is a cubic polynomial. To prove this property we
use the error estimate for Lagrange interpolation given by Theorem 15.3, and we write

(15.41) f(x) - P(x) = (x - a)(x - m)(x -- b)‘: ,

where c E  (a, b). When f is a cubic polynomial the third derivative f”’ is constant, say
f”‘(x) = C, and the foregoing formula becomes

f(x) - P(x) = 2 (x - a)(x  - m)(x - b) = : (t + h)t(t - h),

where t = x - m and h = (b - a)/2.  Therefore

R =
s

b [f(x) - P(x)] dx = : -;,(t3  -- h’t) dt = 0,
a s

since the last integrand is an odd function. This property is illustrated in Figure 15.5. The
dotted curve is the graph of a cubic polynomialf that agrees with P at a, m, b. In this
case R = Jz [f(x) - P(x)] dx = A, - A,, where A, and A, are the areas of the two shaded
regions. Since R = 0 the two regions have equal areas.

We have just seen that Equation (15.40) is valid if P is a polynomial of degree 5 3 that
agrees with f at a, m, and 6. By choosing this polynomial carefully we can considerably
improve the error estimate in (15.41). We have already imposed three conditions on P,
namely, P(a) =f(u), P(m) =f(m), P(b) =f(b)  . Now we impose a fourth condition,
P’(m) =f’(m).  This will give P andfthe same slope at (m,f(m)), and we can hope that
this will improve the approximation off by P throughout [a, b].

FIGURE  15.5 The two shaded regions have equal areas, for every cubic interpolating
polynomial.
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To show that such a P can always be chosen, we let Q be the quadratic polynomial that
agrees with f at a, m, b, and we let

P(x) = Q(x) + A(x - a)(x - m)(x  - b),

where A is a constant to be determined. For any choice of A, this cubic polynomial P
agrees with Q and hence with f at a, m, b. Now we choose A to make P’(m) = f ‘(m).
Differentiating the formula for P(x) and putting x = m we obtain

P’(m) = Q’(m) + A(m  - a)(m  - b),

Therefore if we take A = [f’(m) - Q’(m)]/[(m  - a)(m - b)] we also satisfy the condition
P’(m) = f’(m).

Next we show that for this choice of P we have

(15.42) f(x) - P(x) = (x - a)(x - m)“(x  - b)fq

for some z in (a, b), provided that the fourth derivative ft4) exists in [a, b]. To prove
(15.42) we argue as in the proof of Theorem 15.3. First we note that (15.42) is trivially
satisfied for any choice of z if x = a, m, or 6. Therefore, assume x # a, x # m , x # b ,
keep x fixed, and introduce a new function F defined on [a, b] by the equation

where
F(t)  = AWW) - P(t)1 - AWfW  - P(x)l,

A(t) = (t - a)(t - m)“(t  - b).

Note that F(t)  = 0 for t = a, ~2,  b, and x. By Rolle’s theorem, F’(t) vanishes in each of
the three open intervals determined by these four points. In addition, F’(m) = 0 because
A’(m) = 0 and f’(m) = P’(m). Therefore F’(t) = 0 for at least four distinct points in
(a, 6). By Rolle’s theorem F”(t) = 0 for at least three points, F”‘(t) = 0 for at least two
points, and Fc4)(t)  = 0 for at least one point, say for t = z. From the definition of F we
find

Fc4)(t)  = A(x)[ft4)(t)  - P’“‘(t)]  - At4)(t)[f(x)  - P(x)]

= A(x)fc4)(t)  - 4! [f(x) - P(x)].

When we substitute t = z in this equation we obtain (15.42).
Now it is a simple matter to prove Simpson’s rule in the following form.

THEOREM 15.14. SIMPSON'S RULE. Assume f has a continuous fourth derivative on
[a, b], and let m = (a + b)/2.  Then \+‘e  have

(15.43)
s
)(x) dx = y [f(a)  + 4f(m)  +f(b>l  - ‘of

for some c in [a, b].
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Proof. Let M4 and m4 denote, respectively, the maximum and minimum values of
f(“) on [a, b], and let B(x)  = -(x - a)(x  - m)“(x - 6)/4!. Since B(x) 2 0 for each x
in [a, b], Equation (15.42) leads to the inequalities

Integrating, we find
m4  Nx)  I P(x)  -f(x) I W B(x).

(15.44) m4 j,”  B(x) dx 5 jab [P(x) - f(x)] dx 5 MM, jb”  B(x) dx .

To evaluate the integral sl B(x) dx we let h = (b - a)/2 and we have

s b

a
B(x) dx = - $

f
‘(x - a)(x  - m)“(x  - b) dx = - 1

. a .s
4r :(t + h)t’(t  - h) dt

2 h= --
s4! 0

tz(t2 _ h2) dt = I 4h5 = (b--
4!  15 2880 ’

Therefore the inequalities in (15.44) give us

2880

m4 s (b - a)5 s
b  P’(x)  - f(x)1  dx I Ma.

a

But sincefc4) is continuous on [a, b], it assumes every value between its minimum m4 and
its maximum M4 somewhere in [a, b]. Therefore

f’“‘(c)  = s 1’ V’(x)  - f(x)1  dxn

for some c in [a, b]. Since ji P(x) dx = Q(b  - a)[f(a)  + Y(m)  +f(b)] , this equation
gives us (15.43).

Simpson’s rule is of special interest because its accuracy is greater than might be expected
from a knowledge of the functionfat only three points. If the values offare known at an
odd number of equally spaced points, say at a, a + h, . . . , u + 2nh,  it is usually simpler
to apply Simpson’s rule successively to each of the intervals [a, a + 2h],  [a + 2h, a + 4/z],
. . . ) rather than to use an interpolating polynomial of degree <2n  over the full interval
[a, a + 2nh].  Applying Simpson’s rule in this manner, we obtain the following extension
of Theorem 15.14.

THEOREM 15.15. EXTENDED SIMPSON’S RULE. Assume f has a continuous fourth derivative
in [a, b]. Let h = (b - u)/(2n)  and let fk  =f(u  + kh) for k = 1, 2, . . . , 2n - 1. Then
we have

for some E in [a, 61.

The proof of this theorem is requested in Exercise 9 of the next section.
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15.21 Exercises

1. (a) Apply the trapezoidal rule with n = 10 to estimate the value of the integral

s 2 dx

log2=  1X’

Obtain upper and lower bounds for the error. (See Exercise 10(b)  to compare the accuracy
with that obtained from Simpson’s rule.)
(b) What is the smallest value of n that would ensure six-place accuracy in the calculation of
log 2 by this method?

2. (a) Show that there is a positive number c in the interval [0, l] such that the formula

s;,f(x) dx =f<c> +./X-c)

is exact for all polynomials of degree 13.
(b) Generalize the result of part (a) for an arbitrary interval. That is, show that constants c1
and c2  exist in [a, b] such that the formula

sa
bf(~) dx = 7 [f<cl,  + j-(c2)]

is exact for all polynomials of degree <3. Express c1 and c2  in terms of a and b.
3. (a) Show that a positive constant c exists such that the formula

is exact for all polynomials of degree 13.
(b) Generalize the result of part (a) for an arbitrary interval. That is, show that constants c1
and c2  exist in [a, b] such that the formula

sabf(x) dx = $[fh)  +f (y) +/(4-j
is exact for all polynomials of degree 13.  Express cr and c2 in terms of a and 6.

4. Show that positive constants a and b exist such that the formula

i m e-Y-(x)  dx = &f(b)  + bf(u)].O

is exact for all polynomials of degree 13.
5. Show that a positive constant c exists such that the formula

s
m e”“f(x) dx = ?!i6 rfc -4 + 4fW) + f<41-co

is exact for all polynomials of degree 15.
6. Let P, be the interpolation polynomial of degree In that agrees with fat n + 1 distinct points

XO,.q,.~~,&.
(a) Show that constants A,(n),  A,(n), . . . , A,(n) exist, depending only on the numbers
xo,q,...,x,,a, and b, and not on f, such that

k=O

The numbers A,(n)  are called weights. (They are sometimes called Christoffel numbers.)
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(b) For a given set of distinct interpolation points and a given interval [a, b], let IV,,(n),
WI(n),  . . . , W,(n) be n + 1 constants such that the formula

I abf(x)  dx =,z wmf(Xk)r
is exact for all polynomials of degree <n. Prove that

12c b'+l  -(f+1

x;Kc(n>  =
r + l

f o r  r=O,l,..., n.
k=O

This is a system of IZ + 1 linear equations that can be used to determine the weights. It can
be shown that this system always has a unique solution. It can also be shown that for a suitable
choice of interpolation points it is possible to make all the weights equal. When the weights
are all equal the integration formula is called a Chebyshev integration formula. Exercises 2
and 3 give examples of Chebyshev integration formulas. The next exercise shows that for a
proper choice of interpolation points the resulting integration formula is exact for all poly-
nomials of degree <2n + 1 .

7. In this exercise you may use properties of the Legendre polynomials stated in Sections 6.19
and6.20. Letx,,x, ,..., x, be the zeros of the Legendre polynomial P,+l(x).  These zeros
are distinct and they all lie in the interval [ -1, 11.  Letf(x) be any polynomial in x of degree
12n  + 1 . Dividef(x) by P,+l(x) and write

f(x) = f’n+,WQW  -t R(x),

where the polynomials Q and R have degree In.
(a) Show that the polynomial R agrees with f at the zeros of Pn+l  and that

s1, f(x) dx = j’ R(x) dx.
-1

(b) Show that n + 1 weights IVo(n),  . . . , W,(n) exist (independent off) such that

s;,f(x)dx =kzo  w,(n)f(xk).

This gives an integration formula with n + 1 interpolation points that is exact for all poly-
nomials of degree <2n + 1.
(c) Take n = 2 and show that the formula in part (b) becomes

s
f,f(x)dx  =$f(--&>  ++f(O)  +$f(&

This is exact for all polynomials of degree 15.
(d) Introduce a suitable linear transformation and rewrite the formula in part (c) for an
arbitrary interval [a, b].

8. This exercise describes a method of Peano for deriving the error formula in Simpson’s rule.
(a) Use integration by parts repeatedly to deduce the relation

J u(t>d”(t) dt = u(t)/(t) - u’(tb’(t)  + u”(t>u(t)  - j&t)  dt,

whereg(r)  = u”‘(t)u(t).
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(b) Assume p has a continuous fourth derivative in the interval [ - 1,  11.  Take

u(t) = t(1  - t)2/6, u(f)  = P(t) + d--t),

and use part (a) to show that

j:,  p(t)  dt  = i[d  -1) + 4p(O)  + p(l)]  - jig(t)&.

Then show that Jtg(t)  dt = p(*)(c)/90  for some c in [ - 1, 11.
(c) Introduce a suitable linear transformation to deduce Theorem 15.14 from the result of
part (b).

9. (a) Let a,, a2,  . . . , a, be nonnegative numbers whose sum is 1. Assume IJJ  is continuous on
an interval [a, b]. If cl, c2, . . . , c, are any n points in [a, b] (not necessarily distinct), prove
that there is at least one point c in [a, b] such that

[Hint: Let M and m denote the maximum and minimum of q~  on [a, b] and use
the inequality m I &ck)  I M.]

(b) Use part (a) and Theorem 15.14 to derive the extended form of Simpson’s rule given in
Theorem 15.15.

10. Compute log 2 from the formula log 2 = J,”  x-l  dx by using the extension of Simpson’s rule
with (a) n = 2 ; (b) n = 5. Give upper and lower bounds for the error in each case.

11. (a) Let p(t)  be a polynomial in t of degree 53. Express p)(t) by Newton’s interpolation
formula and integrate to deduce the formula

3 v(f)dt  = $[P(O)  + 3N)  + 3&2)  + p(3)].

(b) Let P be the interpolation polynomial of degree 53  that agrees with f at the points a,
a +h,a +2h,a  +3h,whereh  >O. Usepart(a)toprovethat

s

a-!-3h

a
P(x)  dx = ; [f (a> + 3f (a + h)  + 3f(a  + 2h)  + f(a  + 3h)3.

(c) Assume f has a continuous fourth derivative in [a, b], and let h = (b - a)/3. Prove that

s
aiif(x)dx  = 7 [f(a) + 3f(a + h) + 3f(a  + 2h) +f(b)]  -

for some c in [a, b]. This approximate integration formula is called Cotes’ rule.
(d) Use Cotes’ rule to compute log 2 = Jf x-l  dx and give upper and lower bounds for the
error.

12. (a) Use the vector equation r(t) = a sin t i + b cos t j, where 0 < b < a, to show that the
circumference L of an ellipse is given by the integral

L =4a  j;”  ,/mdt,

where k = da2  - b2/a.
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(b) Show that Simpson’s rule gives the formula

for some c in [0, p/2], wheref(t) = Jl - k2 sin2 1.

15.22 The Euler summation formula

Let n be a positive integer. When the trapezoidal formula (Theorem 15.13) is applied to
the interval [0, n] it becomes

s
b’j(x)  dx =-f f(k) + *(f(n)  -S(O)) -‘F

b=O

for some c in [0, n]. If f is a quadratic polynomial thenf” is constant and hence f “(c) =
f”(0). In this case the formula can be rewritten in the form

(15.45)

It is exact when f is any polynomial of degree 12.
Euler discovered a remarkable extension of this formula that is exact for any function

with a continuous first derivative. It can be used to approximate integrals by sums, ‘or, as
is more often the case, to evaluate or estimate sums in terms of integrals. For this reason
it is usually referred to as a “summation” formula rat’her  than an integration formula. It
can be stated as follows.

THEOREM 15.16. EULER’S SUMMATION FORMULA. Assume f has a continuous derivative on
[0, n]. Then we have

(15.46) dx + ‘(‘)  ; f(n) + j+”  (x - [x] - Qf’(x)  dx,
0

where [x] denotes the greatest integer Ix.

Proof. Integration by parts gives us

(15.47) s,“(x  - &)f’(x)  dx = (n - t)f(n)  + &f(O)  - /:-f(x) dx.

Now we consider the integral j’,” [x]f  ‘(x) dx and write it as a sum of integrals in each of
which [x] has a fixed value. Thus, we have

/,” [x]f’(x)  dx =;z; j-;+l [x]f’(x)  dx =z;r j-Tdlf’(x) dx

n-1 n-l 11-l

= .Xor(f(r  + 1) - f(r)>  =rz rf(r + 1) -rz rf(r>

n-1 n-1 n-1

= - zof(r  + 1) +TzCr  + l>f(r + 1) -Tzyf(r)

= -kzl.f@)  + nf(n>  = -k$o-f(k) +fW  + nf(n>.
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Subtracting this from Equation (15.47) we obtain

s
“(x - [x] - +)f’(x) dx =$ f(k) -f(o) ; j(n) - fa’f(x)  dx ,

0
k=O

which is equivalent to (15.46).

The last integral on the right of (15.46) can be written as

lb”  (x - [xl - f>f’(x>  dx = sb”  dx)f’(x)  dx,

where IJJ~ is the function defined by

VI(X)  =
i

x - [x]  - + if x is not an integer,

0 if x is an integer.

The graph of (pl  is shown in Figure 15.6(a). We note that vr(x + 1) = QI~(x),  which means
that e)l is periodic with period 1. Also, if O<x<l  we have ~~(x)=x-4,  so
J;  VI(t)  dt = 0.

Figure 15.6(b) shows the graph of qz, the indefinite integral of ql, given by

P,(X) = 6 ~(0 dt.

It is easily verified that p2 is also periodic with period 1. Moreover, we have

x(x - 1)
G%(x)  = * i f  O<x<l.

This shows that -Q 5 v2(x)  < 0 for all x. The strict inequalities -&  < v,(x) < 0 hold
except when x is an integer or half an integer.

The next theorem describes another version of Euler’s summation formula in terms of
the function v2.

X
0 0I3

- l-- -l--

( 4 (b)

FIGURE 15.6 Graphs of the periodic functions q1  and vz.
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THEOREM 15.17. Zf f U is continuous on [0, n] we have

(15.48) dx + ‘(‘) ; f(n)  - j”~~(x)f”(x)  dx .
0

Proof. Since p:(x)  = pi(x)  at the points of continuity of qua,  we have

1: v,W’(x)  dx = 1; P&W(~)  dx .

Integration by parts gives us

lb” &(x)f’(x)  dx = dx)f’(x) I;- J; &>f”(x) dx = -Jon  gdx).f”(x) dx ,

since p&n) = ~~(0)  = 0. Using this in (15.46) we obtain (15.48).

Note: Although Theorems 15.16 and 15.17 refer to the interval [0, n], both formulas
are valid when 0 is replaced throughout by 1 or by any positive integer < n.

To illustrate the use of Euler’s summation formula we derive the following formula for
l o g n ! .

THEOREM 15.18. For any positive integer n we have

(15.49) log n! = (n + $>  log n - n + C + E(n),

where 0 < E(n) < 1/(8n) and C = 1 + j,”  t-“p2(t) dt .

Proof. We take f(x) = log x and apply Theorem 15.17 to the interval [l, n]. This
gives us

log x dx + 4 log n +
sI

n!??$d,x.

Using the relation j log t dt = t log t - t we rewrite this equation as follows,

(15.50) logn! =(n + $)logn  - n + 1  +
r
“%&&.

.1  t2

Since Iy2(t)l  < + the improper integral s; te2y2(t)  dt converges absolutely and we can
write

s “f.@dt =1 t2 s “pj20df-
1 t2 s “j7”(t>dt.

12 t2
Therefore Equation (15.50) becomes

logn!=(n+~)logn-n+C-
s
m 92(0&- ,

12 t2
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where C = 1 + j,” t-“y2(t) dt . Since we have -$  < y2(t)  < 0 except when t is an integer
or half an integer, we obtain

o<-
f

“%@dt<-..$
It  t2

This proves (15.49), with E(n) = -jz  t-2p,(t)  dt.

From Theorem 15.18 we can derive Stirling’s formula for estimating n!.

THEOREM 15.19. STIRLING’S FORMULA. If n is a positive integer we have

Proof. Using Equation (15.49) and the inequalities for E(n) we obtain

exp((n+$)logn-n+C)<n!<exp (n+,L)logn-n+C+i  ,
1

where exp (t) = et. Using the relation e” < 1 + 2x,  with x = l/(&z), we can rewrite these
inequalities as

(15.51) Ann+l+---n < n! < An7+112e--n  1 + r
( 14n ’

where A = ec. To complete the proof we need to show that A = Jg.
We shall deduce this from the inequality

(15.52)
7Tn  < 22yn!)2  2

( 1

42n + 1)
- (2n)!  ’ 2 ’

discovered by John Wallis (1616-1703). First we show how Wallis’  inequality implies

A = ~‘2;  ; then we discuss the proof of (15.52).
If we let

A,= ‘!
n n+1/2e--n

the inequality in (15.51) implies

A<A,<A I+&.
( )

ThisshowsthatA,-+Aasn+co. In (15.52) we write n! = nn+1i2e--nA,  to obtain

which is equivalent to
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We let n --f  co in this last inequality. Since A = ec > 0 we obtain

A4
rr<-<rr.

2A2 -

This shows that A2  = 27r,  so A = Jg, as asserted.
It remains to prove Wallis’  inequality (15.52). For this purpose we introduce the numbers

I, = J:12 sina t dt ,

where n is any nonnegative integer. We note that I, = 7~12  and I1 = 1. For 0 5 t 5 n/2
we have 0 < sin t 5 1 ; hence 0 < sinn+l t 5 sin?’ t. This shows that the sequence {I,}
is monotonic decreasing. Therefore we can write

(15.53)
1

I2J2,-1

Now we shall evaluate each member of this inequality; this will lead at once to Wallis’
inequality.

Integration of the identity

2 (cos t sin”+l t) = (n + 1) sin” t - (n + 2) sinn+2 t

over the interval [0,77/2] gives us

or

(15.54)

0 = (n + 1>4 - (n + 2)1n+2,

Using this recursion formula with n replaced by 2k - 2 we find

2k(2k - 1)

(2k)2 ’

Multiplying these equations for k = 1, 2, . . . , n, we find

fi 2k(2k - 1) (2n)!=-
k=l (2k)2 22”(n  !)”  *

The product on the left telescopes to Izn/Io.  Since I, = 7r/2 we obtain

(15.55) I,,  = o! .4.
22n(n!)2  2
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In a similar way we apply the recursion formula (15.54) with n replaced by 2k - 1 and
multiply the resulting equations for k = 1, 2, . . . , n to obtain

l-rn I,,+1 _(2kY n 22”(n  !)” 1 77 1=-.-.-
k=l  I,,-, k=l  2k(2k + 1) = (2n + l)! 2n + 1 2 I,, .

The product on the left telescopes to 12n+1/Z1  = Z2n+l,  so we get

(15.56) ~2J2n+l  = =
2(2n + 1) ’

Since Z2n.t-1 = 2nZ2,-,/(2n  + 1)) Equation (15.56) implies

~2J2n--1  = :.

We use this in (15.53), together with the two relations (15.55) and (15.56). Then we multiply
by .rr2/4  to obtain Wallis’  inequality (15.52).

15.23 Exercises

1. Iffis a polynomial of degree < 2, show that Euler’s summation formula (15.48) reduces to the
trapezoidal formula, as expressed in Equation (15.45).

2. Euler’s constant C is defined by the limit formula

c =JLn( 2;  -1ogn).

(See Section 10.17 in Volume I.) Use Euler’s summation formula to prove that

n 1
c

-=1ogn+c+;-F,
k

k=l

where 0 < E(n) 5 4. Also, show that

C=l-
s

* t - [t]
1

t2dt.

3. (a) Ifs > 0, s # 1, use Euler’s summation formula to prove that

n 1c
nl-"

jp-- rs + C(s)  + s
s

cc Gdt,
kc1 n

where

C(s)  = 1 + -&  - s
s1

* f$d;.
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(b) If s > 1,  show that C(S) = 4(s), where 5 is the Riemann zeta function defined for s > 1
by the series

m 1
5(s) = c jp *

k=l

The series for l(s) diverges for s I 1 . However, since the formula for C(S)  in part (a) is meaning-
ful for 0 < s < 1, it can be used to extend the definition of 4(s) to the open interval 0 < s < 1 .
Thus, for s > 0 and s # 1 we have the formula

C(s)  = 1 + -&  - s
s

m t - [t]

1
tS+1dt-

This is a theorem ifs > 1, and a definition if 0 < s < 1 .

In Exercises 4 through 6, qZ is the function introduced in Section 15.22.

4. (a) Use Euler’s summation formula to prove that

11
c log2 k = (n + +)  log’n - 2 n l o g n  +2n - 2  +  2
k=l

s
n log x - 1

1
R(X) 7 dx .

(b) Use part (a) to deduce that for n > e we have

2 log” k = (n + a) log2 n - 2nlogn + 2n + A - E(n),
k=l

log n
where A is a constant and 0 < E(n) < z .

5. (a) Use Euler’s summation formula to prove that

n logk 1
c

1 logn
- =210g2n  +-2n  -

s

“2logx - 3

k X3
~)a(4 dx .

k=l
1

(b) Use part (a) to deduce that for n > ex we have

n logk 1
c

1 logn
- =slog2n  +~n  + A - E ( n ) ,

k
k=l

log n
where A is a constant and 0 < E(n) < q .

6. (a) If n > 2 use Euler’s summation formula to prove that

R
c 1

k=2
k l o g k

1 1
= log (log n) + -+- - log (log 2) -

s ?a
%(X)

2 + 310gx + 2log2x
dx.

2n log n 4log2 2 (x log x)3
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(b) Use part (a) to deduce that for n > 2 we have

12c 1 1
- =log(logn)  +A +

k=2
klogk - - E(n),2n log n

1
where A is a constant and 0 < E(n) < ~.

4n2  log n
7. (a) If a > 0 andp > 0, use Euler’s summation formula to prove that

m
c

00
e-ak’ =

s
~l(x)x~-le-“”  dx ,

k=O

where I’ is the gamma function.
(b) Use part (a) to deduce that

m
c e-ak’ = where 0 < 0 < 1.
kc0

8. Deduce the following limit relations with the aid of Stirling’s formula and/or Wallis’ inequality.

(c) lim ( -l)n
-4

( )n n=-
n-a, ;:

s

nl2
9. Let Z, = sinn t dt, where n is a nonnegative integer. In Section 15.22 it was shown that the

0
sequence {Zn}  satisfies the recursion formula

n+l

Letf(n) =&/Gr I is the gamma function.

(a) Use the functional equation I(s + 1) = sl?(s) to show that

f(n  + 2) = s2 f(n).

(b) Use part (a) to deduce that
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Yes 15. Yes
Yes 16. Yes
Yes 17. Yes
No 18. Yes
Yes 19. Yes
Yes 20. Yes
No 21. Yes

Cc) No (4 No

1.10 Exercises (page 13)

1. Yes; 2 5. Yes; 1 9 . Yes; 1
2 . Yes; 2 6 . No 10. Yes; 1
3. Yes; 2 7 . No 11. Yes; n
4 . Yes; 2 8 . No 12. Yes; n

17. Yes; dim = 1 + &PZ  if n is even, !&z + 1) if n is odd
18. Yes; dim = & if n iseven, i(n + 1) if n is odd
19. Yes; k + 1

22. Yes
23. No
24. Yes
25. No
26. Yes
27, Yes
28. Yes

13. Yes; n
14. Yes; n
15. Yes; n
16. Yes; n

20. No
21. (a) dim = 3 (b) dim = 3 (c) dim = 2 (d) dim = 2
23. (a) If a # 0 and b # 0, set is independent, dim = 3 ; if one of a or b is zero, set is de-

pendent, dim = 2 (b) Independent, dim = 2 (c) If a # 0, independent, dim = 3 ;
if a = 0, dependent, dim = 2 (d) Independent; dim = 3 (e) Dependent; dim = 2
(f) Independent; dim = 2 (g) Independent; dim = 2 (h) Dependent; dim = 2
(i) Independent; dim = 2 (j) Independent; dim = 2

1.13 Exercises (page 20)

1. (a) No @I No Cc)  No (4 No (e) Y e s

~8. (a) &de2  + 1 (b) &T(X) =b(x - y), barbitrary

10. (b)
(n + 1)(2n  + 1) n+l

6n
a+-

2 b
(C)  g(r)=a(r  -%$),  aarbi t rary

11. (c) 43 (d) g(t) = a(1 - St), a arbitrary
12. (a) No (b) No Cc>  No Cd)  No
13. (c) 1 (d) e2  - 1
14. (c) n!/2n+’

622
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1.17 Exercises (page 30)

1. (a) and (b) id3 (1, 1, l), gJ6 (1, -2, 1)

2 .  ( a )  +Jz(l,l,O,O), $J6(-1,1,2,0),  +J3(1,-1,1,3)

(b) 6$ (1, 1, 0, l), L (1,
JG

- 2 , 6 , 1 )

6. 8 - 4 log2 3 9 . 77 - 2 sin x
7 . e2  - 1 10. 2 -ax

*(e  - e-9 +
3

8. ; x ; 1 - 7em2

2.4 Exercises (page 35)

Chapter 2

1. Linear; nullity 0 , rank 2 13. Nonlinear
2 . Linear; nullity 0 , rank 2 14. Linear; nullity 0, rank 2
3 . Linear; nullity 1 , rank 1 15. Nonlinear
4 . Linear; nullity 1 , rank 1 16. Linear; nullity 0, rank 3
5. Nonlinear 17. Linear; nullity 1, rank 2
6 . Nonlinear 18. Linear; nullity 0, rank 3
7 . Nonlinear 19. Nonlinear
8. Nonlinear 20. Nonlinear
9 . Linear; nullity 0 , rank 2 21. Nonlinear

10. Linear ; nullity 0, rank 2 22. Nonlinear
11. Linear ; nullity 0 , rank 2 23. Linear ; nullity 1, rank 2
12. Linear ; nullity 0 , rank 2 24. Linear; nullity 0, rank n + 1
25. Linear; nullity 1, rank infinite 26. Linear; nullity infinite, rank 2
27. Linear; nullity 2 , rank infinite
28. N(T) is the set of constant sequences; T(V) is the set of sequences with limit 0
29. (d) { 1, cos x, sin x} is a basis for T(V); dim T(V) = 3 (e) N(T) = S (0 If T(f) =

cf with c # 0, thencET(V)so  wehavef(x) =c, +c,cosx+c,sinx;  ifcr =0 ,  then
c = TT andf(x) = cr cos x + c2  sin x, where cl, c2  are not both zero but otherwise arbitrary;
if cr # 0, then c = 2n andf(x)  = cl, where cr is nonzero  but otherwise arbitrary.

2.8 Exercises (page 42)

3. Yes; x =v, y =u 10. Yes; x=u-1, y = v - 1
4. Yes; x=u, y = -v 11. Yes; x=&(v+u),  y=gv-u)
5. No 12. Yes; x =Q(v +u), y =Q(Zv -U)
6. No 1 3 .  Y e s ;  x=w, y = v ,  z=u
7 .  N o 14. No
8 .  Y e s ;  x =logu, y  =logv 1 5 .  Y e s ;  x =u, y E&V,  z =#w

9. No 1 6 .  Y e s ;  x=u, y=v, Z=W-U-V
1 7 .  Y e s ;  x=u-1,  y=v-1,  z=w+l
1 8 .  Y e s ;  x=u-1, y=v-2,  Z=W-3
1 9 .  Y e s ;  x=u, y - v - u ,  Z=W-v

20. Yes; x=i(u-vu+),  y=gv-w+u),  z=gw-u+v)
25. (S + T)2 = S2  + ST + TS + T2  ;

(s + T)3  = S3  -I-  TS2  + STS + S2T  + ST2  + TST + T2S + Z-3
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26. (a) (ST)(x,y, z) = (x + y + z, x + y, x) ; (TS)(x,  y, z) = (z, z + y, z + y + x) ;
(ST - TWX, y, z) = (x + y, x - z, -y  - z) ; SYX,  y, z) = (x, y, z) ;
T2(x,y,z) = (x ,2x  +y,3x  +2y  +z);
(ST)2(x, y, 2) = (3x + 2y + z, 2x + 2y + z, x + y + z) ;
(T.!q2(x,y,z)  = (x +y +z,x +2y  +2z,x  +2y  +3zj;
(ST - TS)2  = (2x + y - z, x + 2y + z, -x + y + 22)
(b) S-‘(u,  v, w) = (w, v, U) ; T-l(u, v, w) = (u, v - u, w - v) ;
(ST)-l(u,v, w) = (w, v - w, I.4 - v); (TS)-‘(u,  v, w) = (w - v, v - u, u)
cc>  CT--Nx,y,d  =(%x,x +y>; (T-02(x,y,d  =(0,0,x);
(T - Z)n(x,y,  z) = (0, 0,O)  if n 2 3

28. (a) Q(x)  = 3 - 2x + 12x2; 7”(x) = 3x - 2x2  + 12x3  ; (Dr)p(x) = 3 - 4x + 36x2  ;
(T@(x)  = -2x + 24x2  ; (DT  - TD)p(x)  = 3 - 2x + 12x2;
( T2D2 - D2T2)p(x)  = 8 - 192x (b) p(x) = ax, a an arbitrary scalar
(c) p(x) = ax2  + 6, a and b arbitrary scalars (d) Allp in V

3 1 .  ( a )  Rp(x) =2; Sp(x) =3 -x+x2;  Tp(x) = 2 x  +3x2  -x3  +x4;
(ST)p(x) = 2 + 3x - x2 + x3 ; (z-S)p(x) = 3x - x2 + x3 ; (TS)2p(x)  = 3x - x2 + x3 ;
(zv)p(x)  = -x2 + x3 ; (ST)p(x)  = 2 + 3x - x2 + x3 ; (TRS)p(x) = 3x ;
(RST)p(x)  = 2 (b) NW = {p 1 p(O)  = 01; R(V) = {p ) p is constant} ; N(S) =
{p 1 p is constant} ; S(V) = V; N(T) = (0); T(V) = {p Ip(0) = 0} ( c )  T-1  =  s
(d) (Z-S)n  = Z - R ; SnTn  = Z

32. T is not one-to-one on V because it maps all constant sequences onto the same sequence

2.12 Exercises (page 50)

1. (a) The identity matrix Z = (a&, where aj, = 1 ifj = k, and fij, = 0 ifj # k
(b) The zero matrix 0 = (uik)  where each entry ujk = 0
(c) The matrix (cajr), where (Sjk)  is the identity matrix of part (a)

2. (4

3. (a) -5 + 7j, 9i - 12j

Cb) [: J [: J (4 [-i -g* [: I]

- 1 - 1 i

5. (a) 3 i + 4j + 4k ; nullity 0 , rank 3 (b) 1 - 3 3

- 1 - 5 5.

6.
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7. (a) T(4i - j + k)  = (0, -2) ; nullity 1, rank 2

(c) [i i -iI ( d )  e,=j,  e2=k,  e,=i,  w,=(~,l), wz=(l,-l)

1 - 1

8. (a) (5, 0, -1); nullity 0, rank 2 (b) 0 0

[ I1 1

(4 e, =i, e2 =  i + j , Wl =  Cl,09  11,  w, =  (O,O,  21, w 3 =  (0,  1,O)

1 1

9. (a) (-1, -3, -1); nullity 0, rank 2 (b) 0 1

[ I1 1

(4 e, =i, e2=j-i, wl=(l,O,l),  w2=(0,1,0),  w,=(O,O,l)

1 2
10. (a) e, - e2  ; nullity 0, rank 2 (b) 5 4

[ I
(c) a = 5, b = 4

11*  [y  -32 [ -:, -;I

1 2 .  pj. [Z]

13. [% A -g, i & j]

14* [:, :I. [i :]

15* c -:I> [ -:, -:I

16.[:-g qy;]

17. i -;I. 6 !:I

18. [: -;I, [ --;  “;]
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19. (a)19. (a)

0 0 0 04 0(cl0 0  1
9

i 00 00 0 0 0‘0 0 0 0
0 1 0 0

(0
0 0 4 0

p 0 0 9 I

r

0 O - 8

0 0 0 - 4 8
(4 (e)

0 0 0 0

p 0 0 0 10
20. Choose (2,  x2,  x, 1) as a basis for V, and (x2,  x) as a basis for W. Then the matrix of TD is

0 01
2 0

00 6 I0

2.16 Exercises (page 57)

0
A C  =

0

1 II
6. An = [0 1 1
7. A ” =

8. An =
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where b and c are arbitrary, and a is any solution of the equation a2  = -bc

where a is arbitrary

-:I. a n d  [I  -11, where b and c are arbitrary and a is any solution

of the equation a2  = 1 - bc

14. (b) (A + B)* = A* + AB + BA + 82; (A + @(A - B) = A* + IL4 - AB - B*
(c) For those which commute

2.20  Exercises (page 67)

1. (x9  y, z>  = (E,  -;, $)
2. No solution

4 .  (x,y,z>  =u, -1,O)  +t(-3,4,1)

3. b,y, z) = (1,  -1,O)  + t(-3,4, 1)
5. (x,y,z,~)=(l,l,0,0)+t(l,14,5,0)
6 . by,  z,  u>  = (1,&O,  -4) + t(2,7,3,0)

7.  (x,y,z,u,u) =t,(-l,l,O,O,O)  $I,(-1,0,3,  -3,l)
8.  (x,y,z,~)=(1,1,1,-1)+t~(-1,3,7,0)+t~(4,9,0,7)
9. (x, y, z> = (9,  $, 0) + t(5, 1, -3)

10. (4 (x, y, z,  4 = (1,6,3,0)  + t,(4, 11,7,0)  + t,(o,  o, o, I)
(b) (X,)‘,  Z, U) = (&,  4,+f,  0) + t(4, -11, 7, 22)

- 1 2 1

12. [ 5 - 8- 3 5 - 6  14
A#

13. [ -1

Q ?
0; -$ 1 1-Q

i

0 h 0 - 1

1 0 0 0

0 0 0 1

16.

- 3 0 1 0

0 0 0 0

9 0 - 3 0

0 1-

0 0

0 -1

0 0

0 s

1 0

14.

15.

14 8 3

8 5 2

3 2 1 1
‘ 1 -2 0’1

0 l - 2 1

0 0 l - 2

0 0 0 1
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2.21 Miscellaneous exercises on matrices (page 68)

2 1

3 . P = [ 5 - 11
4- T,“o  :]s [:, ;]7 and [: 1 “J where b and c are arbitrary and a is any solution

of the quadratic equation a2 - a + bc = 0

10. (a)
[-:  :]s [: -:]s [-:  :I. [: -:]s [-:  I:]3 [I: -:]p

[-:  I:]9 [I: -:I-
Chapter 3

3.6 Exercises (page 79)

1. (a) 6 (b) 76 (c) a3 - 4a
2. (a) 1 (b) 1 Cc)  1
3. (b) (b - a)(c - a)(c - b)(a + b + c) and (b - a)(c - a)(c - b)(ab + ac + bc)
4. (a) 8 (b) (b - a)(c - a)(d  - a)(c - b)(d  - b)(d  - c)

(4 (b - a)(c - a)@  - a”“( 7 b!t6; b)(d  - c)(a
(d) a(a2 - 4)(a2 - 16) e

fi fi' fi fi fi f3 fl fi f3

7. F’ = 81  g2  g3  + 8;  g;l  gj,  + gl  gz  g3

h,  h,  h, h h,  h, h;  h;; h;

fi h f3 fl b f3

8. (b) If F = fi fi fi then F’ = f; fi fi

f;' f; fi
f; f; ff

p -2

+b+c+d)

10 det A = 16, det (A-l)  = k ,

3.11 Exercises (page 85)

6 . det A = (det B)(det D)
7. (a) Independent (b) Independent (c) Dependent

3.17 Exercises (page 94)



Answers to exercises 629

3 .  ( a )  A=2,  I = - 3 (b) A = 0, I = f3 ( c )  il=3, 1=&-i
5 .  ( a )  x=0, y=l, 2=2 (b) x=1, JJ=~,  ,z= - 1

-x1  yz  -y1  z2 -%]=O;  detk i i! :]O

x3  - Xl  y3 -y1  z3 - z1

(x  - XlP  + 0, - y1Y (x  - x1) fjJ - yl)

(4 det (x2 - x112  + (y2 - ylj2  (x2 - xl)  cy2 - yl)

I

= 0 ;

(x3  - a2  + cy3  -y1Y  (x3  - Xl)  (y3  -yJ

x2 + y2 x y 1

det
4 +Yi  Xl  Yl  1I 1 =
4 +u:

0
x2  Y2 1

4 +Yi  x3  y3 1

Chapter 4

4.4 Exercises (page 101)

5. Eigenfunctions: f(t) = Ct”, where C # 0
6 . The nonzero  constant polynomials
7 . Eigenfunctions : f(t) = Get’”  , where C # 0
8 . Eigenfunctions: f(t) = Ce~~t2/~,  where C # 0

10. Eigenvectors belonging to 1 = 0 are all constant sequences  with limit a # 0. Eigenvectors
belonging to 1 = -1 are aI1  nonconstant sequences with limit a = 0

4.8 Exercises (page 107)

Eigenvalue

1. (a) 1,1
(b) 131
(c) 1,l
Cd) 2

0

2. 1+ Jab
1 - Jab

Eigenvectors dim E(1)

(a,  6) Z (O,O)
t(1, O),  t # 0
t(0, l), t # 0
t(1,11  t #O
t(1, -l), t # 0

t&I; Jb),  r z 0
t(J;  -J&t  #O :
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3. If the field of scalars is the set of real numbers R, then real eigenvalues exist only when
sin tl = 0, in which case there are two equal eigenvalues, I, = I, = cos 0, where cos 8 = 1 or
- 1. In this case every nonzero  vector is an eigenvector, so dim E(I,) = dim E(&)  = 2.

If the field of scalars is the set of complex numbers C, then the eigenvalues are A, =
cos f3 + i sin 0, I, = cos f3 - i sin 8.  If sin 0 = 0 these are real and equal. If sin 8 # 0 they are
distinct complex conjugates; the eigenvectors belonging to I, are t(i,  l), r # 0 ; those be-
longing to 1,  are r(l) i), I # 0 ; dim E(1,) = dim E(1,)  = 1 .

a b
4.

[ I
2 where b and c are arbitrary and a is any solution of the equation a2 = 1 - bc .

c - a
a b

5. Let A = [ 1 , and let A = (a - d)2 + 4bc. The eigenvalues are real and distinct if A > 0,
c d

real and equal if A = 0, complex conjugates if A < 0.
6. a=b=c=d=e=f=l.

Eigenvalue Eigenvectors dim E(I)

7 . (a) l,l,l t(O,0, l), t # 0 1
(b) 1 t(1, -l,O), t # 0 1

2 t(3, 3, -l), t # 0 1
2 1 t(1, 1, 6),  t # 0 1

(cl 1 t(3,  -1,3), t # 0 1
222 t(2,2,  -l), t # 0 1

8. 1, 1, -1, -1 for each matrix

4.10 Exercises (page 112)

2. (a) Eigenvalues 1, 3; C = , where cd # 0

(b) Eigenvalues 6, - 1; C = , where ab Z 0

(c) Eigenvalues 3, 3; if a nonsingular C exists then C-lAC  = 31,  so AC = 3C, A = 31
(d) Eigenvalues 1, 1; if a nonsingular C exists then @AC = I, so AC = C, A = Z

3. C=A-lB.
4 . (a) Eigenvalues 1 , 1 , - 1 ; eigenvectors (1, 0 , l), (0, 1 , 0), (1, 0 , - 1 ) ;

1

c = o  i
0 1

11 0 0 I- 1

(b) Eigenvalues 2, 2, 1; eigenvectors (1, 0, -I),  (0, 1, -l), (1, -1, 1);

c = i
1 0 1

0

l - l- 1 - 1 1I
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5. (a) Eigenvalues 2, 2; eigenvectors t(1, 0), t # 0. If C = , b #O, then

C-‘AC = [2 0

1 21
(b) Eigenvalues 3, 3; eigenvectors t(1, l), t # 0. If C = ,  b#O,  t h e n

@AC  = [3 ’
1 3 1

6 . Eigenvalues 1, 1, 1; eigenvectors t(1, - 1 , -l), I # 0

5.5 Exercises (page 118)

Chapter 5

3 . (b) Tn is Hermitian if n is even, skew-Hermitian if n is odd
7. (a) Symmetric (b) Neither (c) Symmetric (d) Symmetric
9. (4 Q(x  + ty>  = Q(x) + tfQQ>  + fUW,y)  + U(y),  x>

5.11 Exercises (page 124)

1 .

4 .

5 .

6.

7.

(a) Symmetric and Hermitian
(b) None of the four types
(c) Skew-symmetric
(d) Skew-symmetric and skew-Hermitian

Cb)  [;;; -1:  ;]

Eigenvalues A,  = 0, 1,  = 25; orthonormal eigenvectors ICY  = $(4, -3))  u2 = 5(3,4).

c=f
4 3

[ I-3 4

Eigenvalues ii, = 2i, AZ = -2i; orthonormal eigenvectors

u,  = L(1,  -i),
J2

u2  =L(l,i).
1

J2 C=$ yi i[ 1
Eigenvalues 1, = 1, 1,  = 3, 1,  = -4; orthonormal eigenvectors

u1=+1,0,3),J
u2 = -+ (3,2,  -l),

J
ICY  = Lz (3, -5, -1).

J
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8. Eigenvalues A,  = 1, I, = 6, 1,  = -4; orthonormal eigenvectors

I41 = ;<o, 4, -3), 112 =+,3,4),
J

us = - (5, -3, -4).
;50

0 5 5
1

c=-JZi L 4JZ 3-3JZ 4 -3 I- 4

9 . (a), (b), (c) are unitary; (b), (c) are orthogonal
11. (a) Eigenvalues A, = ia, i, = -ia; orthonormal eigenvectors

u1  =--L(l,i), u2  =
J2

-$(l,  - i ) .

5.15 Exercises (page 134)

1. (a) A = ( b )  A,=O,  A,=5

(4

2 . (a) A
0 4

= [ 1 (b)
g 0

Al=+, AZ= -4

=L(l,l),

1 1 1

(c) u1 J2 (d) C = : [J21 - 1 1
3. (a) A = (b) A,  = J2,  A, = - Ji

(c) u1 = t(1  + JZ, I), u2  = t(-1,  1 + Ji), where t = l/d4 + 2 J2

(d) C = t I+ J2 -I
1 Il+Jz’

where t = l/m

3 4  - 1 2
4. (a) A = [ 1 ( b )  1,=50, A,=25

-12 41

(4 Ul  = ; (3, -4), u2 = ; (4,3)

(b) A,  = 0, 1, = $,  A, = -+
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6.

7.

8 .
9 .

10.
11.
12.
13.

(c) 111 = 7 (1,
;3

-1, -l), ue = i (2, 1, l),
J6

us = L (0, 1, - 1)
J2

42 0
( c )  c=i -Ji

J6 i 1
1

-JZ 1 -$
-

2 0 2

(a) A = [ 0 1 0 1 (b) A, = 1, 1, = 3, 1, = - 2

2 0 - 1

cc> 4 = (O,l,O>, u2 =L(2,0,1),
J5

I+ = $ (1,  0, -2)

0 2 1

(d) C = iJ5 [ $ 00 1 0 1- 2

3

(a) A = [ 2

2 4

0 2 1 ( b )  I,=A2=-1, A,=8

4 2 3

(4 4 = 5 (l,O,  -l), u2 =A(-1,4,  -l), u, =k(2,1,2)
3J2

3 - 1

(d) C = L

242

3J2 [ 0 4- 3 - 1 Ji 12JZ

Ellipse; center at (0,O)
Hyperbola; center at (-$, -$)
Parabola; vertex at (&, -)8)
Ellipse; center at (0,O)
Ellipse; center at (6, -4)
Parabola*, vertex at (&, s$)

5.20 Exercises (page 141)

8. a = fi$

Chapter 6
6.3 Exercises (page 144)

1. y =e32-$5 6. (b) y = e*+  - e-r’/3
2. y = %x2  + $5 7. y = cle2@  + c2e-22
3. y = 4 cos x - 2 COG x 8. y = cl cos 2x + c2  sin 2x
4. Four times the initial amount 9. y = @(cl  cos 2x + c2  sin 2x)
5 .  f(x) =  Cxn,  o r  f(x) =  Cxlln 10. y = e+(c,  + c2x)

14. Ellipse; center at (0,O)
15. Parabola; vertex at (2,  Q)
16. Ellipse; center at ( - 1, +)
17. Hyperbola; center at (0,O)
18. Hyperbola; center at ( - 1,2)
19. - 1 4

13. (a),  (b), and  (4
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11. k = $T?  ; fk(x)  = C sin mx (n = 1,2,  3, . . .)
13. (a) y” -y  = 0

(b) y” - 4y’  + 4y = 0

(c) y” + y’ + & =  0
(d) y” + 4y = 0
(e) y” - y = 0

14. y = JJZ,  y"  = -12y = -446

6.9 Exercises (page 154)

1. y = Cl  + c‘p  + cp 3. y = Cl + (c2 + c3x)e-22
2. y = cl + c2ex + c3e@ 4. y = (cl + c2x  + c3x2)ez
5. y = (Cl  + c2x + c3x2 + c,x3)P
6. y = cle2x  + c2e-2x  + c; cos 2x + c,  sin 2x

7. y = ediz(cl  cos JZx + c2 sin JZx)  + e-‘/22(c3  cosJZx  + c,  sin JZx)

8 . y = clee + e-“/2(c2  cos &/%  + c3  sin iJ3x)
9. y = e-“[(cl  + c2x)  cos x + (c3  + c4x)  sin x]

10. y = (cl  + c2x)  cos x + (c3  + c4x)  sin x

11. y = cl  + c2x  + (c3  + cg)  cos JZx + (cc  + cSx)  sin JZx
12. y = c1 + c2x  + (c3  + cqx)  cos 2x + (cg  + csx)  sin 2x

13. f(x) = k2 (em”  - cos mx - sin mx)

15. (4 y (4) - 5y”  + 4y = 0

(b) y”’ + 6~”  + 12~’  + sy = 0

Cc)  y (4) _ Zy”  + y” = 0
(4) _ zy”  + y” = 0(4 y

(4 y (3 - ~~(4)  + yflf  = 0

(f) yt4’  + 8~“’ + 33~”  + 68~’  + 52~  = o

(g) Y (4) - 2y”  + y = 0

(h) yf6’  + 4~”  =  0

6.15 Exercises (page 166)

1. y1 = -2x - x2 - ix” 5. y,  = ix2F  + e2z
2. y1 = $xe2x 6. y, = hxe”
3. y1 = (x - $)e2 7. y1 = x cash  x
4. y,  = 6 sin x 8. y1 = 2L,x4e-r
9. 50yl  = (11 - 5x)e” sin 2x + (2 - 10x)e5 cos 2x

10. y,  = -(fX  + $x2 + &-x3)e-”

xmeoLx
12. Y l  =(m)

P A  (u)

15. (b) 20 ( c )  3D2 ( d )  nD’+l

16. y = Ae” + Be- + i ex
s

e+
; dx - 1 e++

s
;dx

17. y = (A + ix)  sin 2x + (B + 1 log lcos  2x1)  cos 2x
18. y = Ae”  + Be+  + i set  x

19. y = (A + Bx)F  + eez - xe”
s

ee2 dx + e”
s

xeez  dx
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s eP
20. y = - $ log 1x1 + f e” x dx - i ez5

s

e-2x

- dx
X

+ A egx
s
T dx + Ae” + Bezx  + Ce4”

6.16 Miscellaneous exercises on linear differential equations (page 167)

1. u(x) = 6(e4”  - eP)/5  ; v(x) = e” - e-5r
2 . u(x) = $2z--a  sin 5x ; v(x) = $e-2x-*  sin 3x
3. u(x) = ewx2;  Q(x) = 4x2  + 2
5. y = (A + Bx3)e”  + (x2  - 2x + 2)e2”
fj. y = A& J" e-4X-x3/3  & + B&

7. y  = Ax%  +  Bx-?i
8.  y = Ae5  + Bx2e+  - x
9. y = A(x2 - 2) + B/x

10. y = x-~[A + B(x  - 1)3  + ix” + ix” - ;x + 4 - (x - 1)3  log Ix - 111
11. a = 1, -1; y = [Aeg(“)  + Bepg(“)]/x

6.21 Exercises (page 177)

2. f(x) = Ul(X) (a = 1)
3. (a) A = (a - b)/2,  B = (a + b)/2

( b )  -$I’--)$]  -u(cc+l)y=O, where cc  = 1 or -2, and x = (t + 1)/2

4. z+(x)  = 1 -I-  -$  (-1p2m
4~ - 2) Cm - 2m + 2)x2ot  for all x;

V&=1
(2m) !

m

u&x) = x +
c

(-l)m2m
(a - l)(a - 3) . . . (a - 2m  + 1) X2m+l for  all  x

TfZ=l
(2m + l)!

cc

5. Ul(X) = 1 +
c

C-1)”
m=l  (3m + 2)(3m - 1) . . . 8 5

x3m for all x;

u2(x)  =~-~(l  +zzx3n) forallx ZO

11.  (b)  f(x)  =  BP,,(x)  +  +=2(x>  +  &p4(x)

6.24 Exercises (page 188)

+ sin x
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9. (a) y = x~[c,J5~(~x?~)  + c.&&x~)]
(b)  y = ~'~[c,J?,,(+x*)  + cp-,,(+x",l
(c) y = x!*[cJ,(2 axlfm’*) + c*J,(2axl+“‘*)], where do = l/(m + 2), provided that
l/(m  + 2) is not an integer; otherwise replace the appropriate J by K
(d) y = x?~[cJ,(~x*)  + c2S,($x2)],  where t( = &!/8

10. y =g, satisfies x2/’  + (1 - 2c)xy’ + (a*b*~*~  + C*  - C&~)JJ  = 0
(a) y = x-~[cIJ,(2x~)  + c2K5(2xx)]
(b) y = x-x  k&(x)  + c2Lm(x)]
(c) y = x-~[cJ,($x~)  + c,K,($xG)]
(d) y = x[c,J&x’m)  + c&&x”;)]

11. a =2, c = o

12. y=
c
* onx”;

n=O @!I2
y = J&2x5*) if x > 0

13.  b = (p. - aJ/a,,  c = qo/ao
14. y = x*4

co
15. t = 1: y =

c
(-1P  (2;)!-!-  (2x)n

Tk=l

16. Q(X)  = cos x ; ul(x) = 3 - % cos x - + cos 2x

7.4 Exercises (page 195)
Chapter 7

k-1

3. (b) (Pk)’  = 2 ~v”P~-l-m
nko

7.12 Exercises (page 205)

1. (a) A-l =21-A,  A” = nA  - (n - l)Z

(b) etA = et(l - t)Z + tetA  = et

2. (a) A-l = $Z  - $A,  An = (2n - 1)A - (2n - 2)Z

(b) eta  = (2et - e2t)Z  + (ePt  - et)A =
et 0

[ 1$t - et e2t

3. (a) A-l = A, An  =
1 + (-lYz + 1 - (-l)nA

2

(b) eta  = (cosht)Z + (sinht)A = [:~~:2~~]
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1 + 1 -4. (a) A-’ =  A ,  A” (-l)n= (-1)“Z
2

+
2

A

e& 0(b) etA = (cash t)Z + (sinh t)A = [ 1o et

5. ( b )  etA =  Ft[ ‘I;n:, :::I

7. eAtt)  = Z + (e - l)A(t)  ; (eA@))’  = (e - l)A’(t)  =

0 e 0 1
ed(t = [ 1 ; A’(‘)&(t)  =

0 0 [ 0 0  1
8. (a) An = 0 if n 2 3

9 . (a) An = A if n 2 1

etA = 0 et 0

i
e2t 0 0

@I

0 tet et1
11. eta = Z + tA + &t2A2

13. eAeB  = r;  -‘“, ‘)1; eBeA  =

7.15 Exercises @age 211)

1. eta = &(3et - e3t)Z + i(e”” - et)A

2 . eta = (cash $ t)Z + L (sinh $ t)A
J5

3. etA = &et((t2  - 2t + 2)Z + (-2t2  + 2t)A  + t2A2}
4. etA  = (se-t  - 3e-2t +  @)I  +  ($e-t  - 4@t  +  *@)A  +  (&e-t  - e-2t +  $@)A2

5 . eta  = (4et - 3e2t  + 2te2t)Z  + (4e2t  - 3te2t  - 4et)A  + (et - e2t + te2t)A2
6. &A  =

(
&t _ &2t  + &St  _ @)I  +  (  -13aet  +  L2ae2t  - j’$t +  l&&t)A

+  (set  _ 4e2t +  $3 - e4t)A2  +  (-set  +  $,ezt  _ &y3t +  *&)A3

7. (b) etA  = $e”t{(6  - 6A.t + 3A2t2  - L3t3)Z  + (6t - 61t2 + 3a2t3)A + (3t2 - 3;it3)A2  + t3A3}
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yl = cl cash  JS  t +
Cl + 2c, 2c,  - c2
psinh  Jjt, ya  =c,coshJjt  +---8 .

Jj Jj
smh JS  t

9. ,yl = d(COs  3t - sin 3t),  yz = et(cos  3t - 3 sin 3tj
10. y1 = ezt + 4tezt,  yz = -2et + ezt + 4tezt,  y3  = -2et + 4e2t

7.17 Exercises (page 215)

2. (Cj y1. = (b - l)@  + 2(C + 1 - bjxe”  + 1, y,  = ce”  + 2(c + 1 - b)xez
4. y1  = -*et  - +&  +  $$t,  y2  = $et  - $e4t  +  ge2t

5. (a) B, = B, B, = AB, B, =A A2B,.  . . , B, =lA”B

*
RZ!

(b) B = -m!  (A-l)“+lC

6. (a) I + tA  + i t2A2 + it3A3 B, where B = -6A-4C  = - -

‘This gives the particular solution y,  = y2 = -& - &t  - &.t2 - its

I(b)  y?, = y2 = -A - $zt  - &t2  - at3 + iT%e131 4t

7 .  .E=B,  F=;(AB+C)

8. I(a) yI = -COS 2t - 8 sin 2, y2 = -4 sin 2t

I:bj y].  = 2 cash  2t + 8 sinh 2t - cos  2t - & sin 2t, y2 = cash  2t + & sinh 2t - 4 sin 2t
9. x(X)  = e2s + 2” - e5, y2(x) = -2e2x  - e3=  + 38

10. JVl(X)  = &se2  - 3Lae2a:  + (cl  - $$+edx  + (+* - c1 - c2)xeGs,

JV2(Xj  = 2%e3:  + 3%3e2z  + (c2  - $+j$)e-45  + (cl  + c2  - $&)xe-4z

11. y,(x)  = eC4”(2  cos x + sin x) + g+ex - g, y2(xj = eW4”(sin  x + 3 cos x) - Aez + I67
12. n(x)  = eez(x2 + 2x + 3) + x2 - 3x + 3, y2(x) = e-“(-2x  - 2) + x,

y3(x) = 2e-"  +x - 1

7.20 Exercises (page 221)

4. (c:) Y(x) = eze’AzzAB
m

5. If A(x) = zx”A,, then Y(x) = B + XC  + z xkBk,
k=O k=2

where (k + 2j(k + lj&,, = $ A,B,-, f o r  k  20.
7=0

7.24 Exercises (page 230)

1. (a) Y(x) = e”
n

c

Xk
(b) Y,(x)  = 2e”  - F if n is odd;

kc0  ’

Y,(x)  = 2 g if n is even
k=O
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2 . Y,(x) = ; + ;; + so + g(;

x4 x7 Xl0
3. Y,(x) = x + 2 + j-j  + F.

x3 4x’ 8x9  184~~~ 4x13
4 . Y3(x)  = 5 + 63 + 405  +- _ _

51975 + 12285

3 x4 5
5 . (a) YA(x) = 1 + x + x2 + 7 + --6  + g + i

( b )  M=2;  c=&

(c) Y(x) = 1 + x + x3 + y + T + y + . . .

4x13 Xl5
6. (a) Y,(x) = x + z + $s + g + g5 + g + __12285 +

~
59535

(d) Y(x) = tan x = x + I + g + g + gi + . . for 1x1  < ;

8. Y,(x) = 2 + x2 + x3 + F;  + r” ;1 0
z3cx) = 3x2  + ‘G + ‘!! + g + ‘g

x4 x6 2x7  x9
9 . Y,(x) = 5 + x + r2 + 6 + 63 + 72 ;

x3 6 x8 9 7x11
Z,(x)  = 1 + 7 + x5 + g + -g  + g + F4

10. (d) Y,(x) = 0; lim Y,(x) = 0
n-CC

(4 Y,(x)  =
t

x2 if x 2 0 x2 if x 2 0

-X2
; lim Y, (x )  =

if x < 0 n+a -x2 i f  x50

(f) Y,(x) = g ; lim m(x) = 0
7k-CC

x2 if x 2 0 x2 if x 2 0
(g) Y,(x)  =

-x2
; lim Y,(x) =

if x 10 ~l-m -x2 i f  x50

Chapter 8

8.3 Exercises (page 245)

2 . All open except (d), (e), (h), and (j)
3. All open except (d)
5. (e) One example is the collection of all 2-balls B(0;  l/k), where k = 1, 2, 3, . . .
6. (a) Both (b) Both (c) Closed (4 Open (e) Closed (f) Neither

(g) Closed (h) Neither (i) Closed (j) Closed (k) Neither (1) Closed
8. (e) One example is the collection of all sets of the form Sk  = {x 1 IIxlI I 1 - l/k} for

k = 1,2,  3, . . . . Their union is the open ball B(0;  1)
10. No
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8.5 Exercises (page 251)

1. (a>  All (x,y)
(b) AH (x, y) z (0, 0)
(c) All (x, y) withy # 0
(d) All(x,y)withy f Oand:  #f+k~(k  =0,1,2,...)
(e) All (x, y) with x # 0
(0 All <x,  y> z (0,  0)
(g) All (x, y) with xy # 1
U-d All (x, y) # (0,  0)
(0 All k y) z (0,  0)
(j) All(x,y)withy #OandO  5x I;yory  Sx  -$O

5 . lim f[x, y) does not exist if x # 0

6. Ti”- m2)/(1  + m2) ; NO

7. y = 4x2; f not continuous at (0,O)
8. f(O,O) = 1

8.9 Exercises (page 255)

1. f'(x;y)  = a*y

2. (a)  f'(x;~)  = 4 11~11~  x -Y
(b) All points on the line 2x + 3y = &
(c) All points on the plane x + 2y  + 32  = 0

3. f'(x;y>  =x-T(y)  +y-T(x)

af
4. =& =2x +y3cos(xy); af

- = 2y sin (xy) + xy2 cos (xy)
aY

5.
af
7& = x/(x2  + y2)"  ; afI& = y/(x2 + y2)%

6.
af 2,
z = y2/(x2  + y2)s ; af- = -xy/(x2  + y2)3f’

aY

af
7* zi

af
= -2y/(x  -y)"; - =2x/(x -y)2

aY

8. &f(x)  = uk,  where a = (a,, . . . , a,)

9. &f(x)  = 2 2 a,,x,
5=1

af af
10. - =4x3-8~~2;  --=4~3-8~2~ax aY
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,4  K-L. af l
* ax

-=-
x2 + y2 ’ ay x2 + y2

15 af
1 +y2 . af 1 +x2

* is= 1 +x2+y2+.?y2  q=1  +x2+y2+x2yZ

16 af a!. z& = y2x+1  ; gj = 2yxyB log x

17. af 1 af J;;
ax- =  -2Jxo,-x); G=2yJy-x

18. n = -Q
19 .  a=b=l
22. (b) One example is f (x) = x . y , where y is a fixed nonzero  vector

8.14 Exercises (page 262)

1. (a) (2x + y3 cos xy)i  + (2y  sin xy + xy2 cos xy)j
(b) 8 cos yi - eZ sin yj
(c) 2xy3z4i  + 3x2y2z4i  + 4x2y3z3k
(d) 2xi - 2yj + 4zk

2x 62
(4 x2 + 2y2 - 3z2

i + 4Y .x2 + 2y2 - 322 rx2+2y2-322 k

(f) yzx~‘-%  + z~%P” log xj + y*xY’ log x log yk

2 .  ( a )  -2/&i

(b) ll&
3 . (1, 0), in the direction of i; (-1, 0), in the direction of -i
4. 2i + 2j ; L54
5. (a, b, c) = (6,24,  -8) or (-6, -24, 8)
6 . The set of points (x, y) on the line 5x - 3y = 6 ; Vf (a) = 5i - 3j
8. (c) Yes

(4 fk y,  z) = SW  + y2 + z2>
11. (b) implies (a) and (c); (d) implies (a), (b), and (c); (f) implies (a)

8.17 Exercises (page 268)

1. (b)
w ?f ?f- af afF”(t) = Z2 [X’(t)12  + 2 axy X’(t) Y’(t) + - [ Y’(t)12  + z X”(t) + q Y”(t)

aY2

2. (a) F’(t) = 4t3  + 2t ; F”(t) = 12t2  + 2
(b) F’(t) = (2 cos2t  - l)ecostsin~ cos(cos t sin2t) + (3 sin3t - 2 sin t)ecos  t sin t sin(cos t sin2t) ;
F”(t) = (5 co@  t - 3 cos4  t - 4 cos3  t - cos2  t - 4 cos t)ecost  sin  c cos (cos t sin2 I)

+ (14 sin3 t - 12 sin5 t - 4 sin t + 7 cos t - 9 cos3 t)ecostsint  sin (cos t sin2 t)

(c )  F’(t) =
2e2t  exp (e2t) 2e-2t  exp (eC2t)
1 + exp (e2t)

+
1 + exp (e-2t)  ’

where exp (u) = e” ;

F”(t) =
4[1 + e2t  + exp (e2t)]e2t  exp (e2t) 4[1 + e-2t  + exp (e-2t)]e-2t  exp (ew2’)

-[l + exp (e2t)]2 [l + exp (e-2t)]2
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3. (a) -3
( b )  x2 -y2
(cl 0

4. (a) (1 + 3x2  + 3~4(xi  + rj) - (x2  + y2)%, or any scalar multiple thereof
(b) cos 0 = -[l + (1 + 3(x2  +~~))~]-!d; cos 0 + -iJ2  as (x, y, z) -+ (0, 0,O)

5. U(x, y) = 4 log (x2  + r2) ; V(x, v) = arctan  Q/x)
6. (b) No
8 . x/x0  + y/y0  + z/z0  =  3
9 .  x+y+2z=4,  x-y-z=-1

10. c = *J3

8.22  Exercises (page  275)

af1. (b) ~~  = -2x sin (x2 + y2)  cos [cos (X2  + y2)lesin[cos  W + ya)1

aF laf  laf. aF
2 .  2&=

I af 1 af
zzG++z2  q=-z;i;+zz

aF  afaX  afar aF  afaX  afaY
3 .  (4 x=zb+qx; ;i;=zz+%z

a2F  a2faXaX
(C) ZZ 3XGTt +

azfayay  af a2x af av
+t$cGz+zas++mi

aF  af af aF  af af a2F  ay ay ,?f4 .  (a) x=g+tG;  ~=z+s%; B=z2+2tmy+t=p;

a2F  azf a!f_ _  p?fa2F  ay-=- -=-
ax2 + 2saxay  +' ay2  ; asat

azf ?f af
at2 ax2 + (' + ')axay + 'Cp + 5

ay S a?f  af 1 af-=st----+----
asat ax2 t3 ay2  ax t2ay

a2F  1 azf 1 azf 1 i?f a2F  1 8f 1 azf 1 a*f---_-
-=5Z2+ZZFy+;i~;  af2=4ax2  2axay+4vas2

azv
5*  p = co@  (j Ef  + ~0s  /j  sin e azf azf

ax2 ax  av  + ay  ax
+ sin2 0 Ef  .

ay2  3

azq
-r cos 8 sin e Ef + r cos2  e ay w

ZFe=
- -

ax2 ax  ay r sin2 e ayx
+ r cos e sin 8 Ef

aY2

-sin 8 af + cos 8 af ;ax aY



af  af af  aF
9. (a) g = 2s~--  + 2s- + 2t z ; z =

aY
2t af _ 2t af  + zs afax

ay  aZ

aF  af af  . aF  Jf af  aF  af  af
( b )  ,r=z+2rq,  ~=~+2sq;  ,t=;r++tay

13. (a) f(x, y, z) = xi + yj + zk, plus any constant vector
(b) f(x, y, z) = P(x)i  + Qf$)j + R(z)k, where P, Q, R are any three functions satisfying
P’=p,Q’=q,R’=r

14. (a)

@I

w

15. (a)

(b)

(4

&X+z?J 2F+2’
m”(x,  y)  =

2 cos (y + 2x) cos 0, + 2x)1 ; &du,u,w) = [-iu “,” ‘;‘I
,,(u,  v, w)  = eu+2va+3ws+4V-2uz~ I + sin (2~  - u2 + 2u + 4u2 + 6w3)j

- 3 0 9
Dh(1,  -1, 1) =

0  - 6 c o s 9  18cos9I
U2W2 2uvw2 2uv2w

2x 1 1
Df(x,  y, z) = 2 1 2z ; Mu, u,  w) =[ 1 0 w2 cos u 2w sin v

2ue’ u2e* 0 I

h(u, v, w) = (u2v4w4  + w2 sin v + u2ev)i  + (2uu2w2  + w2 sin v + u4e2V

2u w2 + u2 0
Dh(u, 0, w) =

4u3 w2  + 2u4 I0
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8.24 Miscellaneous exercises (page 281)

1. One example: f(x, y) = 3x when x = y,f(x, y) = 0 otherwise
2. D,f(O,  0)  = 0 ; D,f(O,  0)  = -1; D,,,f(O,  0) = 0 ; D, 2f(0,  0) does not exist
3 .  ( a )  Ifa =(a1,a2j,thenf’(O;aj  =a$,2ifa,  #O,andf’(O;a)  =Oifa, = 0

(b) Not continuous at the origin

4. af 1 af 1z = z e+U-&dyW  ; _ = z e-XY-J4y-?4
aY

5. ?f ?f- ?fF”‘(t)  = ax3 W’(t)13  + 3 may W’(t)12  Y’(f) + 3 ax  ay2  X’(f)[  Y’(r)]2

w ?f+ - [ y’(t)13  + 3 g-2  X’(t)xyt)  + 3 ?f
aY3

- W”(t) Y’(t) + x’(t)  Y”(t)]ax  ay

?f af af+ 3 ay2  Y’(f) Y”(t)  + ?& x,,,(t)  + 5 Y(t),

assuming the mixed partial derivatives are independent of the order of differentiation
6. 8

7 (a) ag =?fv + af,  % af af a28 ?f w
au ax aY

-=-; au ax"  -3";  aj =uvQ + (U2 -V2)my

- .va"r  + af
ay2  ax (b) a=&, b=-4

10. (a) v’(t)  = A’(t) J,Btt) f [A(t), y]  dy  + B’(t) j$(t)  f [x, B(t)] dx
(b) a)‘(t)  = 2tet2(2et2  - ea  - eC)

13. A sphere with center at the origin and radius ,/i
14. f(x) = x2

Chapter 9

9.3 Exercises (page 286)

1. f(x, yj  = sin (x - $yV,
2. f(x,  y) = ex+5r’2  - 1
3. (a) u(x,  yj = x2y2Py

(b) v(x, yj = 2 + log ;
I I

5. A = B = C = 1, D = -3; f(x,  y) = q5(3x  + y) + v2(x  - yj
6 .  G(x,y)  = x - y

9.8 Exercises (page 302)

I. ax/au  = (1 + xuy(x  - yj ; aY/au = (1 - yv)/(x  -y) ; aY/av  = (1 + yuj/~  - xj
2. ax/a,  = --(I  + xuji(~  + 4 ; av/au  = (1 - yvj/(l  + yu); av/ay  = (1 - xj/(l  + uj

aX a(F,  G>
3 .  x=-

I
a(F,  G)a(F,  G) . aY a(F,  Gj

I
a(F,  Gj aY a(F,  G)

acY,  vj acx,  yj 3 ZG = -acu,  xj a(x,y>  ; Z =- -
ah XI Iacxl  Y)

4. T = f -k (24i - 4J? j + 3J? k)
J
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5 .
6 .
8 .
9 .

10.

11.

12.

2i + i + J? k , or any nonzero  scalar multiple thereof
ax/au = 0, ax/au = 42
n=2
aflax  = -1/~2~ + 2z + 1); aflay  = -2~~ + z)i(2y  + 2z + 1);
ay(axay)  = 2/(2y  + 2z + 1)s
azz/caxay) = [sin (X  +Y)COS~ (,Y + Z) + sin (y + Z)COS~ (X  +y)l/~~~s(y  + Z)

af D,F + 2xD,F af D,F + 2yD,F
-=-
ax

-=-
D,F + 2zD,F  ’ ay D,F + 2zD,F

D,F=f’[x  +g(y)];  D,F=f’[x  +g(y)lg’(y); Dl~F=f”[x+g(~)];
D,,,F = f v [x + g(y)]g’(y) ; D,,,F = f N [x + g(y)] [g’iy)12  + f ‘Ix  + g(J)&/(y)

9.13 Exercises (page 313)

1.
2 .
3.
4 .
5.
6 .
7 .
8.

9 .
10.
11.
12.
13.

14.
15.
17.
18.

19.

21.

22.

Absolute minimum at (0, 1)
Saddle point at (0, 1)
Saddle point at (0,O)
Absolute minimum at each point of the line y = x + 1
Saddle point at (1, 1)
Absolute minimum at (1,O)
Saddle point at (0,O)
Saddle points at (0,6)  and at (x, 0), all x; relative minima at (0, y), 0 < y < 6 ; relative
maxima at (2,3)  and at (0, y) for y < 0 and y > 6
Saddle point at (0,O); relative minimum at (1, 1)
Saddle points at (nn + a/2, 0) , where n is any integer
Absolute minimum at (0,O); saddle point at (-$, -3)
Absolute minimum at (-26,  -,“,);  absolute maximum at (1, 3)
Absolute maximum at (p/3, 7~13);  absolute minimum at (2~/3,2a/3);  relative maximum at
(n, n); relative minimum at (0,O); saddle points at (0, r) and (v, 0)
Saddle point at (1, 1)
Absolute maximum at each point of the circle x2 + y2 = 1 ; absolute minimum at (0,O)
(c) Relative maximum at (2, 2); no relative minima; saddle points at (0, 3),  (3,0),  and (3, 3)
Relative maximum & at (4,  4)  and (-4, -4); relative minimum -& at (4,  -4)  and (-4, $);
saddle points at (0, 0), ( fl, 0), and (0, *l); absolute maximum 1 at (1, -1) and (-1, 1);
absolute minimum - 1 at (1, 1) and ( - 1, - 1)
(a) a = 1, b = -f
(b) (I = 6log2  - 3a/2,  b = v - 3log2

1 7Z
Let x* = -

n c
xj, y* = ;$Yj,

i=l i=l

ui =xi - x * . T h e n a  =  ($Y~LQ)/($u~),
i=l 61

andb =y* - ax *

uj =xi -x*, vi = yi - y* , and let
i=l i=l

, where the sums are for i = 1,2,  . . . , n. Then
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1 2 ‘izi 2 uivi

(I  = .-

A >izi 2 v;

,  b  =z c~izi  c~” ,  c=z* - a x *  -by*

25. Eigenvalues 4 , 16, 16; relative minimum at (1, 1, 1)

9.15 Exercises (page 318)

1. Maximum value is &; no minimum
2. Maximum is 2; minimum is 1

3. (a) Maximum is J--a2  + b2 J-at (b(a2  + b2)-‘h,  a(a2  + b2)-p”)  ; minimum is - ~a2  + b2  at

a b a b

( -b(,a2 + b2)-N, -a(a2  + b2)-‘h)

(b) Minimum is a2b2/(a2  + b2) at
ab2 a2b
--
a2  + b2  ’ a2  + b2

; no maximum

4.

5 .
6 .
7 .
8 .

Maximum is I + $/2  at the points (PDT  + n/8, n VT - ~$3))  where n is any integer; minimum
is 1 - &/2 at (na + 5x18,  TZTT  + 3a/8),  where n is any integer
Maximum is 3 at (4,  -f, $); minimum is -3 at (-4, 3,  -$)
(O,O,  1) and (O,O, -1)

9.

10.
11.

12.

13.
14.

aabbcc a b C

(a + b + ~)a+~+~  at a + b + c ’ a + b + c ’ a + b + c

abet/?/2

5logr  +3logJ5

m2 = A + c - &A  - C)’ + 4B2
2(AC  - B2)

(4 f &NJ2
Angle is r/3 ; width across the bottom is c/3 ; maximum area is c2/(4J3)

10.5 Exercises (page 328)

1. -+$
2. -2pa2
3. &
4. Q

5. 0
6. 40
7. z..

Chapter 10

8 . +
9. 360

- 3 x -
10. -277
11. 0
12. ( a )  - 2  JZ r

(b)  -r
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256a3/1  5
2p2a3(1  + 25r2)

[(2  + ‘02)s - 2&/3
moment of inertia = 4a4
2~13

600 - 3642 - 49 log (9 - 4J2)

64[6J2  + log (3 + 2$)]

6ab2 6?rab2
x = 3a2  + drr2b2 ; J = - 3a2  + &2b2

10.9 Exercises (page 331)

1. +a
2 . 2a3

3 . a = (3c/2)%
4 . 0
5. 8&in  0 - cos 0)

6 . au314

7 . -JZ

8.
9 .

10.
12.
13.

14.

15.

16. 1% = (a2  + b2)x[na4 + (47~~  - n/2)a2b2  + 32a5b4/5]
Z, = (a2  + b2)‘h[?ra4  + (4 r3 + v/2)a2b2  + 32P5b4/5]

10.13 Exercises (page 336)

1. All except (f) are connected
6. (a) Not conservative

(b) (2e2=  - 5eR  - 5n - 3)/10
7. (b) 3
8. $

10. 4b2 - 8ab  + 4 ; minimum occurs when b = T

10.18 Exercises (page 345)

1 . &x, y) = $(x2  + y2> + c
2 . y(x, y) = x”y +  c

3 .  y(x,y)=x2eu+xy-y2+C
4. y(x,y>  =xsiny +ycosx +(x2  +y2)/2  +  C
5 . 9(x,  y) = x sin (xy) + C
6. p(x,  y, z) = (x2  + y2 + z2)/2  + C
7. q(x,  y, z) = x2/2  - y/2 + xz - yz + c
8. f is not a gradient
9. f is not a gradient

10. f is not a gradient
1 1 .  q(x,y,z)=y2sinx+xz3-4y+2z+C
12. q(x,y,z)  =x + 2x2y  - xaz2  + 2y - za + c

arnfl
1 3 .  ( b )  q(x,y) =n+l  + C i f n  # - 1 ;  v,(x,y)  =alogr  + C i f n  =  - 1

VP+2
15. p(x) = -

P+2
+ Cifp # - 2 ; q(x) = logr + Cifp = -2

16. P(X)  =g(r) + C

10.20 Exercises (page 349)

1 .  x2/2+2xy+y2/2=c
2. x”y = c
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3. $13 - xy -y/2 + (sin 2y)/4 = C
4. cos 2x sin 3y = C
5. Sy + 4x2y2  - 12eY  + 12ye’  =  C
6. j Q(X)e~P(z)dz  dx _ ye!P(z)dz  = C

8. (a) x + y = C’
(b) r’/$ - 3 log 1x1 =  C

9 .  ( a )  6(xy)!’  - (y/x)% = C ; (x5y)-”  is an integrating factor
(b) x + eB2 sin y = C ; eP cos y is an integrating factor

10. gy* + zX+y” = c, 10x3~~  + xsy5 = C, respectively; x2ys  is a common integrating factor

Chapter 11

11.9 Exercises (page 362)

1. 4
2. 1
3. 245 - v
4. ?r2/4
5. 2
6. 271

7. 6
8. tm3(eta  - et) + r2 - r1

10. 4

11.
12.

37 - J2)

13. (log 2)/6

11.15 Exercises (page 371)

1.
2.
3.
4.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

5. 44 - 0

6. 6
7. B#
8. (a) $ (b) 2 (c) 320~

-3n/2
Q + cos 1 + sin 1 - cos 2 - 2 sin 2
e - e-l
$log2
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19. s,‘[s,“-”  (x2  + y2)  dy] dx = +

2 0 .  y  = 0 ,  y  = x t a n c ,  x2 +y2 =a2,  x2 +y2 =b2

(b)  4es +  2e/3
2 2 .  m=2;  n = l

11.18 Exercises (page 377)

1.
2 .
3 .
4 .

5 .

6 .

7 .
8 .
9 .

10.

11.

12.
13.
14.
15.
16.
19.
20.
21.

22.
23.

_ 2a210ga-a2+1  _

x = 4(a log a - a + 1) ’
a(log a)2

’ = 2(a log a - a + 1)
- 1

jj =j7  =+

ia= jj = 256/(31%)
3 - v log 3

P = 8 IIA3lI)  7 = Q IlA’bll  ; assuming the x- and y-axes are chosen along sides AB and AD,
respectively

Z, = &b3(a - c) , Z, = &b(a3 - c3)
Z, = Iv = (1 - 5a/16)r4
z, = zg = Q
Z, = &[(4a  - l)e4= - 11,
z, = & , z, = $&~

I, = &[(a3  - 3a2  + 6a - 6)e2a + 61

fh[JZ  + log (1 + JZ,]
h2  + &r2

11.22 Exercises (page 385)

1. (a) - 4
(b) 4
td 8
td) 4~
(4 3n12
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2. 0
3. n=3
4. -77
9. &‘(x,y) = *[P2(x,y) + Q2(x,y)l’“’

-

*11.25 Exercises (page 391)

1. (b) 0
2. 0, 27r, -257
3. As many as three
4. As many as seven
5 . (a) - 3
6. 2a

11.28 Exercises (page 399)

cos 0, r sin 0)r  dr] d0

2. I::, [s,““”  f(r cos 0, r sin 0)r dr] d0

where g(e)  = l/(cos  0 + sin 0)

5. rl4s [I0 t&nesecef(r~os8,rsinO)rdr]dB  +~T~‘4[~~ef(r~~~0,rsinB)rdr]de0

+ j,“,,4  [jot”” e Se’  e f (r cos 0, r sin O)r  dr] de

7. +a”[$ + log (1 + J2)]

10. ‘f (r cos 0, r sin 0)r  dr] d0 + jiy  [/is” e f (r cos 0, r sin O)r  dr]dO

11 .  sr;‘,”  [/f”‘“f(r)rdr] de

12. I [I:I2 g:o, f(r cos EJ,  r sin O)r  dr1 de, where g(0) = I/(COS  e + sin e)

13.  JT [/~~~,,of(rcos  0,rsin  O)rdr]  d0

1 4 . 77413
15.  ( a )  u=~x-y, V=-5x+Y

(b) 60
17. (a) 1 + 2~
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18. (a) 4(u2  + u2)

Cc)  0

19. ep [(p2  + r2j1--P - ~~(l-~)] if p # 1 ; 57 log (1 + 9) if p = 1 .

I@,  r) tends to a finite limit whenp > 1

11.34 Exercises (page 413)

10.
11.
12.
13.
14.
15.

18.
19.
20.
22.
23.

16n/3
.lg

&xa%(3a2  + 2h2)
$,a3
+(b3  - a3)
$rR3(a2  + b2  + c2)-‘h

$T(SJS  - 4)
329
Qx(b5  - a5)
On the axis at distance Qh from the base
On the axis at distance #h from the base

3 b4  - u4
24. On the axis of symmetry at distance 8 . b33 from the “cutting plane” of the hemispheres

25. P = J = Z = -&h (assuming the specified corner is at the origin)
26. &M(u2  + 4h2)
2 7 .  $14R2
28. $W12

2 9 .  2%

Chapter 12

12.4 Exercises (page 424)

1. b2b3  - a3b2j(x  - x0)  + (a3bl  - alb3)(y - yo)  + (alb2  - a,b&z  - q)  = 0 ;

ar ar
; x z = (@, - u,b,ji  + (u,b, - a,b,jj  + (a,b,  - u,b,jk

2. x2/a2  + y2/b2  = z ; FU  x z = -2bu2  cos vi - 2~1.4~  sin vj + ubuk
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sin u cos v sin u sin v cos ll
x - = abc sin u i+a b j+ck

ar ar
4 . z = f(,/x2  + u2)  ; z x a~ = -uf’(u)  cos vi - f(u)  sin vj + uk

Zi ar
5 .  $‘g=l; -&x;= b sin vj + a cos vk

6 . (Jx” + y2  - a)2  + z2 = b2  ;

ar ar
a; x s = b(a + b cos u)(cos  u sin vi + cos u cos vj + sin uk)

sin2 u CO82  u sinh2 v s
7. label  cash u

[(
7 + 7

1
cosh2 v + -

c2 1
8. $28~~  +  4
9 . Iu  - VI J36u2v2 + 9(u  + v)~  + 4

10. Ju” + z42

12.6 Exercises (page 429)

2
3 ’  ;;y4,
4: 4

a2

5. (a) A circular paraboloid
(b) -2u2  cos vi - 2u2  sin vj + uk
(c) n = 6

6 .  ,/i =a214
7 .  27rJ6
8 .  2ra2(3$  - 1)/3
9 .  4n2ab

11. (a) A unit circle in the xy-plane; a unit semicircle in the xz-plane, with z I; 0 ; a unit
semicircle in the plane x = y with z 5 0
(b) The hemisphere x2 + y2 + z2 = 1, z 5 0
(c) The sphere x2 + y2 + z2 = 1 except for the North Pole; the line joining the North
Pole and (x, y, I) intersects the xy-plane at (u, v, 0)

12.10 Exercises (page 436)

1.
3 .
4 .
7 .
8.
9 .

10.
11.

4?r/3
f=ji=f=@

9
0
?TJZ
On the axis of the cone, at a distance $a(1  - cos c~)/[l  - cos (u/2)] from the center of the
sphere
vu% + &ah3 12 .  2n/3
3?ra3h  + +ah3 13. -813
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12.13 Exercises (page 442)

1. 0
2 . -77

3 . - 4
4 . +

12.15 Exercises (page 447)

1. (a) div F(x, y, z) = 2x + 2y + 22 ; curl F(x,  y, z) = 0
(b) div F(x, y, z) = 0 ; curl F(x,  y, z) = 2i + 4j + 6k
(c) div F(x,  y, z) = -x  sin y ; curl F(x,  y, z) = i + j
(d) div P(x,  y, z) = yeZv - x sin (xy) - 2xz sin (xzz) ;

curl F(x,  y, z) = z2 sin (xz2)j - [xFy + y sin (xy)]k
(e) div F(x,  y, z) = 2x sin y -I-  2y sin (xz) - xy sin z cos (cos z) ;

curl F(x,  y, z) = [x sin (cos z) - xy2 cos (xz)]i  - y sin (cos z)j + [y22  cos (xz) -
x2 cos y]k

2. 0
4 .  n = - 3
5 . No such vector field

10. One such field is ~(x,  y, z) = (xyzr2
11. div(V x r) =O; curl (V X r) = (c + 1)V
13. 16(u  + b)

k12.17  Exercises (page 452)

1. (3x - 2z)j - xk is one such field
2 . (x2/2  - xy - yz + z2/2)j + (x2/2  - xz)k is one such field
3 . (x2y/2  + z2/2)j + Vf(x,  y) for somefindependent of z

5. G(x, y, z) = ” * xzr(x2  -t  y2)  ’ - r(x2 + y2)
j satisfies curl G = r4r at all points not on the z-axis

6. f(r) = CrF3
9 . F(x,  y, z) = -i(z3i  + 2j + yk)  , G(x, y, z) = 6V(xay f r’z + z3x)

10. (c) 3?r/2

12.21 Exercises (page 462)

1. 3 3 . G-4 3 IV
2 . (a) 14477 (b) 9 IV2

(b) -1677
( c )  128~

15. 87-r

Chapter 13

13.4 Exerc@.es  (page 472)

2. A, u A, u A,  = (A,  n A; n A;)  v (A, n A$ u A3 ; kcl  4 = “ij’  (4 n fi *?  u *n
k=l 1=k+l

3. (9 (ii) (iii) (iv) (4

(a) A’ n B’ A nB' AuB (A n B’) u (A’ n B) A’ u B’

(b) 500 200 500 300
I

800
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6. a2 ={O,A,,A,,A,  uAz,A;,A;,A;  nA;,S)
7. ~3~  ={~zI,A~,A,,A,,A,  UA,,A,  uA,,A,  uA,,A,  uA,  uA,,A;,A;,A;,A;  nA4,

A; nAj,A;  nA;,A;  nA; nA;,S}  (ifn>3)

13.7 Exercises (page 477)

1. A E B'
2. x~A'nB'nc'
3 .  x~AnB'nc'
4. XEAUBUC
5. XE(A n B' n C') u (A' n B n C') u (A' n B' n C)
6. xE(A'nB')u(B'nC')u(A'nC')
7. XE(A nB) u (A n C) u(B n C)
8 xE(AnBnC')U(AnB'nC)U(A'nBnC)
9. xE(A nBnC)'

10. XEA  nC nB'
11. xeAnBnC
1 2 .  XEAUBUC
15. (a) 1 - a (d) 1 - c

(b) 1 - b (e)  1 --a+c
Cc) a+b-c (f) a - c

13.9 Exercises (page 479)

2. (a) A 5. &
(b) 3 6. &
(4 tl 7 . 27 *
(4 $I 8. (a) A/(A  + B)

3. (a) $g (b) B/(A + B)
0) % (c) (C + l)/(C  + D + 1)
(cl * (d) C/(C  -t- D + 1)
(4 2ii 9. (a) 8
(4 QQ @I it
(f) s Cc)  #

4. 4 (4 0
10. P,=l-P(A)-P(B)+P(A  nB), P, = P(A) + P(B) - 2P(A  n B), Pz =P(A n B)
12. (a) 5 to 9

(b) 45 to 46
(c) 10 to 81
(d) 36 to 55

13.11 Exercises (page 485)

;

3:

;(31;62),  (1,3),  (2, l),  (2,3),  (3, 11, (332))

54
4. {H, T}  x {H, T}  x {1,2,  3,4,  5,6}  ; 24 outcomes
5. 52!/(13!)4
6. 36

(4  18
(b) 12
(4 24
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7 . (a) 13 . 12, 11 . 72 = 123552 (not including triplets or quadruplets)
(b) 5148
(c) 36 (not including IOJQKA)
(4 4

8. (4 4(:3)/(y) (b) 36/(y)  Cc) 4/(y)

2.98! 98!
g. Cal  (49 (b)  ___48!. 50!

lo.  (zy(:“o”)
11. 16
12. nk

13.14 Exercises (page 490)

2. (a) P(A) = &; P(B 1 A) = &-  ; P(A n B) = 3%

98
50 )

26! .34!
6. (a) 1 -m=l

. .

(b)  1 _ (3 + C)
39

( >
( )

C
3(256)

(

39

>(

39

1 3 5 1 3 1

9. 4
1 5 . (a) P(A) = P(B) = P(C) = 4 ; P(A n B)  = P(A n C)  = P(B n c) = & ;

P(A n B n C) = 0

13.18 Exercises (page 499)

1. (a)  PW,  HI  =plp2 ; PW, T) =pl(l - p2)  ; P(T,  ff) = (1 - pl)pz  ;
P(T, n = (1 -p&l  -pz)
(b) Yes
(4 No
(d) HI and Hz,  HI and T2 , Hz  and TI,  T, and T2

2. (a) #
(b) i+&
(4 6



656 Answers to exercises

3.

10 5’ 390625
( 1 - -  -3 610  2519424

4. (a)  +j
(b) 4
(4 &

5 .  ( a )  (5!)2/10!  =  2$y
(b) !I

6. (a )  36p’O  - Sop9  + 4Sp8
(b) i&

7. It is advantageous to bet even money

15. (a>  f(p) = (1 -pj2 +p3

W (6.  - 4)/3

13.20 Exercises (page 504)

8 175  9938999

9 . 03 iiF=  1377495072

10  . 183
5 1 2

11. 1 - (19/20)10  = 0.4013
12. +s

14. 59 In I; 65

and

f(k) = 2k
f(k) = 3”
f(k) = pk , wherep,  is the kth prime 22
one such function is f(k) = (g(k), h(k)), where

g(k)  =
m2(k)  + 3m(k)

-k+2,  h(k)=k-
m2(k)  + m(k)

2 2 ’

m(k) =
&CT-l

2 1
where [x] denotes the greatest integer IX
(e) f(k) = 2g(k)3h(k), whereg(k)  and h(k) are as defined in part (d)

13.22 Exercises (page 507)

1 .  n=O: m a x = l , min = 4
n=l: max = $, min = 0
n =2: m a x  =&, min = 0
n =3: max = A, min = 0

3. (a) 1 - qp3  - pq3 4 .  (a)  3pqKpq  +  2)
0) % (b)  4
Cc)  % (c) 2 log 2 - 1

13.23 Miscellaneous exercises on probability (page 507)

1. T’1
2. (a) lig

W i%
3. (4 t

@I  I--

4. (a) $4(b) %f
(cl 1i:5

5 . -gi$

7 . 0.65

8. (a) 3
(b) 6
(4 8
Cd)  No

9 . p3  +

1 -pa

6p ( 1
2

10. np(1 - p)n-l  + npn-l( 1 - p)
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Chapter 14

14.4 Exercises (page 513)

1 .  ( b )  Xlb
2. (a) (0 I X(w)  E (a,  bl, Y(w)  E Cc,  41

(4 XSa, Y5d
(d) P(a  < X 5 b, c < Y I d)  = P(X I 6,  Y I;  d)  - P(X 5 a, Y 5 d) - P(XS  b, Y I;  c)
+ P(X I a, Y .S c)

3. (a) ((1, 6),  (2,5>, (3,4),  (4,3),  (5,2),  (6, l>>, {(5,6),  (6,5>>,  {(1,6),  (2,% (3,4),  (4,  3),
(5,2),  (6, l), (596)s  (69%)
(b) P(X = 7) = $ ; P(X = 11) = & ; P(X  = 7 or X = 11) = $

4 . Y = Xl + x, + x, + x, ; P(Y=O)=&;  P(Y=l)=i; P(Y<l)=&
5 .  Y=7X  ifO<X<lOO; Y=lOX-300 ifX>lOO
6. (a) Z = Y - 1

(b) U = Y,  + Y,  - 1

14.8 Exercises (page 523)

2 . t 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

3. (b) p( -2) = 4,  p(0) =p(2)  = t
(4 0, t,;, t, 190, a,  a

5. (a) c = *
(b) 6,6,8, !
( c )  F(t)=Ofort<O,  F(t)=$forOI,t<l,  F(t)=&forl <t<2,  F(t)=lfor

t22
(d) No such t
(e) t = 2

6. 6) k 1 0 1 2 3 4

p(k) 1 $$ $9  &,  8&I  &I p(t) = 0 for t # 0, 1,2,  3,4

(b) F(r)  = 0 for t < 0, F(t) = $9 on [O,  l), F(t) = fr$  on [l, 2), F(t) = # on [2,  3))
F(t) = ++ on [3,4), F(t) = 1 for t 2 4

(4 A, 3
7 .  ( b )  P(X=O)  =(l -P)~;  P(X=l) =2p(l  -p)

8. PXW  = A) ;
F (t) = [t1([tl  + 1)
x n(n  + 1)

for 0 It <n, where [t] denotes the greatest

integer It; F,(t) = 0 for t < 0; F,(t) = 1 for t > n

9. p(k) = e-‘z , k =0,1,2,3 ,...; c 20

p(t) = 0 for t # 0, 1,2,  3, . , .
10. (a) px(t)  = 4 at t = -1 and t = +l  ; px(t)  = 0 elsewhere

F,(t)  = 0 for t < -1 ; F,(t) = g for - 1 I t < 1 ; F,(r) = 1 for t 2 1
1 1 .  P(A)=Q;  P(B)=Q;  P(Ar,B)=Q;  P(BIA)=&;  JJ(AUB)=l
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14.12 Exercises (page 532)

1. (a) c = 1 ; f(t) = 1 if 0 5 t 5 1 ; f(t) = 0 otherwise
(b) O,Q,h

2 .  c=$; F(t)=Oift  < -r/2; F(t)=&costif-7r/2<r<O;  F(t)=1 -+costif
0 < t < T/2 ; F(t)  = I if t > a/2

3 . c=;; F(l) =  0 if t < 0 ; F(t) = $(3t2 - t3) if 0 5 t 5 2; F(t) = 1 i f t >2
4 . (a>  S

(b) i
Cc)  i

5 .  ( a )  f(t)=Oift<$; f(t)=&-liff<t<g; f(t)=7-8tif$<t<%; f(t)=0
i f t  >4

( b )  F(t)=Oift <$; F(t) = 4t2 - t if & 5 t < 4 ; F(t) = -4t2  + 7t - 2 if 4 5 t < 2;
F(t) = 1 if t 2 2

cc>  1,1,6,O,i%
6. (a) 0,9,$,*

(b) t = 1

7 . (a>  1k 5 1 0 1 5 20 25 30

(b) Let each Styx train arrive 5 minutes before a Lethe  train
8 . Fy  (t) = 0 if I < b ; F,(t) = (t - b)/a if b < I < b + a ; Fy(t)  = 1 if t > b + a
9. (a> 3%

(b) ++
(4 $8

t - b
10. F(t) = i + 1 arctan  a

?T

14.16 Exercises (page 540)

1. (a) 105
(b) 10.05

2 . (a) *(JZ - 1)

0) a(2 - $9
(cl m - 42)
(4 A(4 - 4%

3 . (a) 1 - e-l
( b )  em2
Ez F3-- O/e2

4 . F(t) = 0 if t < c ; F(t) = 1 - I+(~-~)  if I ;r c
6 . 1’=t/a,  c’=b+ac
9 . (a) 0.5000

(b) 0.1359
(c) 0.9974
(d) 0.0456

10. (a) 0.675
(b) 0.025

11. (a) 0.6750
( b )  0.025~
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12. (a) 0.8185
(b) 0.8400

13. 75.98 inches
14. mean = b, variance = a2
15. Fy(t) = Cl if t < 0 ; fy(t) = 0 if t < 0 ; fy(t) = e-t/2/J2nt if t > 0

14.18 Exercises (page 542)

(a) Fy(t) = 0 if t < 1 ; F,(t)=(t-1)/3ifl  <t<4;  F,(t)=lift>4;f,(t)=+if
1 < t < 4 ; f=(t) = 0 otherwise

(b) Fy(t) = 0 if t < -2 ; F=(t)  = (t + 2)/3 if -2 I t I 1 ; Fy(t) = 1 if t > 1 ;
fu(t) = 4 if -2 < t 5 1 ; fy(t) = 0 otherwise

( c )  F,(t)=Oift<O;  F,(t)=tWifO<t<l; Fy(t) = 1 if t > 1 ; ,fv(t) = (2t)-!”  if
0 5 t 5 1 ; fy(t) = 0 otherwise

(d) Fy(t) = et if t 5 0 ; Fy(t) = 1 if t > 0 ; fu(t) = et if t 5 0 ; fu(t) = 0 if t > 0
(e) Fu(t)  = et/2 if t < 0 ; Fy(t) = 1 if t > 0 ; fu(t) = &t/2 if t 5 0 ; fy(t) = 0 if t > 0
(f) F=(t)  = 0 if t < 1 ; Fy(t) =logt if 1 5 t se; Fy(t) = 1 if t > e; &(t) = l/t if

1 < t < e ; fu(t) = 0 otherwise
Let w be the inverse of p, defined on the open interval (a, b).
Then Fy(t) = 0 if t < (I; FY(t)  = F,[y(t)l  if a < t < b ;
fx[y(t>]y’(t)  if a < t < b ; fu(t) = 0 otherwise

Fy(t) = 1 if t 2 b ; f&(t)=

(a) fu(t) = 0 if t < 0 ; ,fu(t) = (2xt)-%e-t/2  if t > 0
(b) &(t) = 0 if t < 0; ,fu(t) = 4t(2v)-b6e-t”/2  if t 2 0
(C) &(t) = 0 if t < 0 ; ,fu(t) = (257t2)--lme-(10gt)2/2  if t > 0

(4 fy(t> = (277-‘m sec2 t e-(tan2  t’/2 if It) < 77/2 ; ,fu(t) = 0 if If ( 2 n/2

14.22 Exercises (page 548)

2. (a) P(X = x1) = P(X = x2) = P(  Y = yl)  = p(  y = 4’2)  = &cp + q)
(b) p = q = 4

3.  (a )  F(x ,y)  =  (z)($z) ifa Ix Ib and c  ly Id,

x-a
F(x,y)  = bifa I x  Ib a n d  y  >d,  F(x,y)  =‘ez i f x > b  a n d  c<y<d,

F(x,  y) = 1 if x > b and y > d, F(x,  y) = 0 otherwise
(b) F~(x)  = (X  - a)/(b  - a>  if a 5 x 5 b ; F,(x)  = 0 if x < a ; F,(x)  = 1 if x > b ;

Fy(y)=0,-c)l(d-c)ifcjyId;  F,(y)=Oify<c; F,(y)=lify>d
(c) X and Y are independent

5 .  P(Y=O)=i;  P(Y=l)=P(Y=2)=)
7 .  +,g
8. ;

9. (b)  f(x,y)  =$if(x,y)EQ; f&y)  =Oif(x,y)$Q;
f~(x) = 1 - 1x1 if 1x1  < 1 ; ,fX(x)  = 0 if 1x1  > 1 ;
f~(y)  = 1 - lyl if lyl I 1 ; fY(y)  = 0 if lyl > 1.
X and Y are not independent

10. g(u, u) =f(u + a, u + b)

14.24 Exercises (page 553)

1. (b) fv(o) = 1 + v if -1 5 v < 0 ; f&u) = 1 - v if 0 5 o 5 1 ; f&u) = 0 if 1~1  > 1
(c) U and V are not independent
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2 . (b) fv(t) = 2 - 2t if 0 I, t < 1 ; fv(t) = 0 otherwise
(c) U and V are independent

3 . (b) g(u. v) = UP if II > 0, 0 < u < 1 ; g(u, v) = 0 otherwise
(Cl fv(u) = ue-” if u > 0 ; &(u) = 0 if u < 0
(d) f”(u) = 1 if 0 < u < 1 ; f”(u) = 0 otherwise

4 . (b) g(u, v) = (v/2~)e-(1+U*)~*~2  if u 2 0
(4 f&4 =  [a(1  +  UT’

5. fi(t) = n-xemt*

6. (b) f&) = 0 if u < 0 ; f&u) = (u/u2)  exp F&t)=Oiff  < O ;

FU(t)=l  - e x p

14.27 Exercises (page 560)

1 .  E(X)=;,  Var(X)=g
7. (a) E(X) = Var (X) = A

(b) None
(c) E(X) = l/A,  Var (X) = l/A2
(d) E(X) = m, Var (X) = a2

8. (a) C(r) = (r - 1)/2
(b) Fx(t) = 4 ItI’-‘if t < -1 ; F’(t) = 4 if -1 5 t 5: 1 ; F,(t) = 1 -@r-rift  > 1
(c) P(X  < 5) = 1 - 5?-l/2 ; P(5 < X < 10) = (51~’  - l(W)/2
(d) X has a finite expectation when r > 2 ; E(X) = Cl

(e) Variance is finite for r > 3 ; Var (X) = (r - l)/(r - 3)
9. E(X)  = E(Y) = -A  ; E(Z) = - 1767/50653  ; E(X + Y + Z) = -4505/50653

10 .  E ( X ) +  a, asn+ co
12 .  ( a )  (2/m)%

( b )  ex

14.31 Exercises (page 568)

4 . 2 5 1
5 . 0
6 . Chebyshev’s inequality gives 4; tables give 0.0027
8 . (b) 0.6826
9 . (b) 0.0796

10. (a) 0.0090
(b) 0.0179

Chapter 15
15.5 Exercises (page 577)

2. (a) No
(b) Yes
(c) Yes
(4 No
(e) Yes
(0  No
(g, Y e s

3. (a) Neither
( b )  Seminorm
( c )  Seminorm
(d) Neither
( e )  Seminorm
(f) N o r m
(g) Neither
(h) Neither
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6. (4, W, 6)
8. (b) The polynomial in (a) plus g(Sx3  - 3x) JL1  (St3 - 3t)f(t)  dt + &(35x4  - 30x2  f 3)

x 51, (3V - 30t2 + 3)f(t)  dt
9. a = -3e/4  + 33/(4e),  b = 3/e, c = +f(e  - 7/e)

l&&l + 14x2 - 7x4)
:f: (b) Ilf - P1l2  = &@

n - l log2 n
12. (a) IIP  -fl12 = - - -

II n - l

1 2 6(n + 1)
(n - (n  1% n

4(n3  - 1) log n 6(n + 1)
(n _ 1)4 -(n--

IIP -flj”  = 36 log 2 - 28 log2 2 - 2; = 0.0007 when n =  2
,

1 3 (a) I/P -Sir2  = k [(n - 2)e2n  + 4en  - n - 21

(b) P(x) = (18 - 6e)x + 4e - 10; I/P -fjl” = 20e - Ge2  - -‘?$  = 0.0038

14. (b) Vk+l(x)  = J(2k  ; :“1” + 3)xPk(x)  - &JS PkVI(x),  where qk  =

pk/IIpkll

15. (b) ,$  f’;(x)  =pjf  P’,(xP~+,(x)  - P,+,(x)P;(~)]
k=O

15.9 Exercises (page 585)

1. (a) P(x) = $(x2 + 13x + 12)
(b) P(x) = 4(x” - 5x + 6)
(c) P(x) = --+(x3  - 6x2  + 5x - 6)
(d) P(x) = 2x3  + x2 - x - 2
(e) P(x) = -5x3  - x2 + 10x - 5

2. P(x) = &(9x“  - 196x2  + 640)
4. (4

(b)
5. (a>

(b)

19
7. (4

(b)
8. 0)

(4
12. (a)

@I
13. (d)

16. x

Q(x) = 2x3  + 3x2  - x - 3
Q(x) = 4x3 + 7x2  - 3x - 7
P(32) = g; f(32) - P(32) = g
P(32) = $+ ; f(32) - P(32) = -z
P(32) = g; f(32)  - P(32) = -&
P(32) = -$&  ; f(32) - P(32) = ++&+
L,(x)  = &(u  - l)(u  - 3)(u - 4)(u - 6) ;
L,(x) = &(u - l)(u

k(x)  = -&u(u  - 3)(u - 4)(u - 6) ;
- 4)(u - 6) ; L3(x) = +(u - l)(u  - 3)(u  - 6) ;

L4(x)  = &u(u - l)(u - 3)(u  - 4)
P(2.6) = 20
x 2 1.581
h 5 0.0006
a=O, b=l
c =  1, d  =  -2L;(xk)
Let B,(X) = 1 and let B,(X)  = (x - x0)(x - x0 - nh)n-l/n!  for n 2 1 ; the one and
only polynomial P of degree In satisfying the conditions P(x,)  = co, P’(xl)  = cl,
P”(x2) =c2,..., P(“)(x,)  = c, is given by P(x) = c,B,(x)  + . . + C,&(X)
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15.13 Exercises (page 593)

4 . (b) 8 -5040 13068 -13132 6769 -1960 322 - 2 8 1
~~____

9 40320 - 109584 118124 -67284 22449 -4536 546 - 3 6 1
________ ______~

1 0 -3628800 1026576 -1172700 723680 -269325 63273 -9450 870 - 4 5 1

(c) 1 + 2x + 2x2 - 3x3 + x4

5 . (c) 8 1 1 2 7
--~

9 1 255
~~

1 0 1 5 1 1

.-

-

966 1050

3025 6951

9330 1 34105 1 42525

266 28 1

2646 462 36 1

22827 5880 750 45
-

( d )  - 1 + 6 x(1) + 16,#)  + gx(3)  + $4)
7. (a) 4n3  + J--tn2  + S?n

(b) in4  + in3  + $,“z  + ;n
(c) &z”  + $2”  + +l” + ;n
(d) +” + +n4  + +n3  - &I

15.18 Exercises (page 600)

2 .  ( b )  T,(l)  =n2, T;(-1)  = (-l)n-$22

1 -x2
5. sin 8 sin n0 = n TX-4 ; degree = 12 + 1

7. Q(x) = x”+l  - 2-nT,+1(x)
8. Q(x) = -++ + fjx3  _ &” + iZ556x  _ ,+,

14.  ( b )  U,,(x)  =  1, o;(x)  =  2 x ,  U,(x) =  4x2  - 1 ,  U,(x) =  8x3  - 4x,
U,(x) = 16x4  - 12x2  + 1, U,(x) = 32x5  - 32x3  + 6x

15.21 Exercises (page 610)

1 . (a) 0.693773 - where 0.000208 5 E 5 0.001667. This4, gives the inequalities
0.6921 < log2 < 0.6936

(b) n = 578
2. (a) c = $13

0)
a+b b-ad3c , = - +  - - a+b b-a@

2  2 3, c2=2---  2  3

3. (a) c = JS/2

(b)
a+b  b-u@ a+b  b-u@

c l = - +  - -  ) c,=----
2 2 2 2 2 2

4 . u=2+$,  b=2-$
5. c = &

1



Answers to exercises 663

10. (a) log 2 = 0.693254 - E, where 0.000016 5 E < 0.000521 ; this leads to the inequalities
0.69273 < log 2 < 0.69324

(b) log 2 = 0.69315023 - E , where 0.00000041 5 E 5 0.00001334 ; this leads to the in-
equalities 0.693136 < log 2 < 0.693149

11. (d) log 2 = 0.693750 - E, where 0.000115 < E 5 0.003704 ; this leads to the inequalities
0.69004 < log 2 < 0.69364





INDEX

ABEL, NIELS HENRIK, 162
Abel’s formula for Wronskian determinants,

1 6 2
Absolute maximum, 304
Absolute minimum, 304
ADAMS, JOHN COUCH, 571
Adjoint  of a matrix, 122
Angles in a real Euclidean space, 18
Annihilators, 151

method of, 163
table of, 166

Approximate integration :
by Cotes’ rule, 612 (Exercise 11)
by Euler’s summation formula, 613,

615
by Simpson’s rule, 608, 609
by the trapezoidal rule, 604

Approximations :
by interpolation polynomials, 579
by Legendre polynomials, 29
by Taylor polynomials, 576
by trigonometric polynomials, 29
in a Euclidean space, 28
successive, 223

ARCHIMEDES, 571
Area :

as a line integral, 383
of a plane region, 368
of a surface, 424

Area cosine principle, 426
At random, 478
Attraction, gravitational, 335
Average density, 374
Average of a function, 374
Average rate of change, 253
Axioms :

for a determinant function, 73
for a linear space, 3
for an inner product, 14
for probability, 474, 506, 511

Ball in n-space, 244
Basis, 12
Bayes’ formulas, 549 (Exercise 6)
BERNOULLI, DANIEL, 182
BERNOULLI, JAKOB, 469, 495
Bernoulli trials, 495
BESSEL, FRIEDRICH WILHELM, 182
Bessel differential equation, 182
Bessel functions :

graphs of, 186
of first kind, 186
of second kind, 188

Binomial coefficients, 481
Binomial distribution, 521

approximation by normal, 538
Boolean algebra of sets, 471
BOREL, SMILE,  510
Bore1 set, 510
Boundary of a set, 245
Boundary point, 245
Bounded function, 357
Boundedness of continuous functions, 319
Bridge hands, 481

CAQUh,  J., 223
Cartesian product, 244,
CAUCHY, AUGUSTIN-LOUIS, 16, 142, 191, 530
Cauchy distribution, 530
Cauchy functional equation, 528
Cauchy-Schwarz  inequality, 16
CAYLEY, ARTHUR, 202
Cayley-Hamilton theorem, 203
Center of mass, 373, 374,431
Central limit property, 567
Central limit theorem, 566
Centroid, 374
Chain rule for derivatives :

of matrix functions, 194
of scalar fields, 264, 273
of vector fields, 272

665
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Change of variable:
in a double integral, 394
in a line integral, 327
in an n-fold integral, 408
in a surface integral, 433

Characteristic equation, 150
Characteristic polynomial, 103, 149
CHEBYSHEV, PAFNUTI LIWOWICH, 563, 596, 611
Chebyshev inequality, 563
Chebyshev integration formulas, 611
Chebyshev polynomials, 596
Christoffel numbers, 610 (Exercise 6)
Circulation, 330, 462
Clockwise (negative) direction, 389
Closed curve, 334, 379
Closed set, 246
Closure axioms, 3
Coefficient matrix, 58
Cofactor, 87
Cofactor matrix, 92
Coin-tossing games, 506, 558
Column matrix (column vector), 51
Combinatorial analysis, 481
Complement of a set, 246
Complex Euclidean space, 15
Complex linear space, 4
Components, 13
Composite functions, 37, 194, 250

continuity of, 250
differentiation of, 194, 264, 272

Composition of transformations, 37
Compound experiments, 492
Conditional probability, 486
Connected set, 332
Conservative field, 329
Constant-coefficient derivative operators. 148
Constant-coefficient difference operators, 595

(Exercise 8)
Content zero, 364, 406
Continuity of scalar and vector fields, 247
Continuous distribution, 525
Continuous random variable, 525
Continuously differentiable scalar field, 261
Contraction constant, 235
Contraction operator, 234
Convex combination, 377
Convex set, 344
Coordinates :

cylindrical, 409
polar, 274, 397
spherical, 293, 410, 414

COTES, ROGER , 612 (Exercise 11)
Cotes’ rule, 612 (Exercise 11)
Countable set, 502
Countably additive set function, 506
Countably infinite set, 502

Counterclockwise (positive) direction, 389
CRAMER, GABRIEL, 93
Cramer’s rule, 93
CRAMfR,  HARALD, 520
Curl of a vector field, 441
Curve  :

closed, 334, 379
in n-space, 324
Jordan, 379
piecewise smooth, 324

Cylindrical coordinates, 409

D’ALEMBERT, JEAN, 288
Del operator V, 259
DE MOIVRE, ABRAHAM, 469,567
Density function, 525

for Cauchy distributions, 531
for exponential distributions, 533
for normal distributions, 535
for uniform distributions, 527

Dependent sets, 9
Derivative :

and continuity, 260
directional, 254
of a matrix function, 193
of a scalar field with respect to a vector, 253
of a vector field with respect to a vector, 270
partial, 254
total, 258, 270

Determinants, 71
axiomatic definition of, 73
differentiation of, 80 (Exercise 6)
expansion formulas for, 86

Diagonal matrix, 48, 96
Diagonal quadratic form, 127
Diagonalizing matrix, 112
Difference of two sets, 246
Difference operator A, 590
Differentiable scalar field, 258
Differentiable vector field, 270
Differential equations, 142

first-order linear, 143
homogeneous, 146
nth-order linear, 145
partial, 283
power-series solutions of, 169, 220
systems of, 191

Dimension of a linear space, 12
Dimensionality theorem, 147
DIRAC ,  PAUL A.  M . ,  108 (Exercise 8)
Directional derivative, 254
Disconnected set, 333
Discontinuity, 366, 517
Discrete distribution, 521
Discrete random variable, 521
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Discriminant of a quadratic form, 134
Disk, 244
Distance in a Euclidean space, 26
Distribution function:

binomial, 521
Cauchy,  530
continuous, 525
discrete, 521
exponential, 533
joint, 543
mixed, 539
normal, 535
normal bivariate, 555 (Exercise 9)
of a function of a random variable, 541, 550
of a one-dimensional random variable, 515
of a two-dimensional random variable, 543
Poisson, 522
standard normal, 537
uniform, 526

Divergence of a vector field, 441, 460
Divergence theorem, 457
Dot product, 14
Double integral(s) :

applications of, 374
evaluation by repeated integration, 358, 367
existence of, 358, 363
in polar coordinates, 397
of a bounded function, 357
of a step function, 355
transformation formula for, 394

Doubly connected region, 391 (Exercise 3)

Eigenfunction, 99
Eigenspace, 98
Eigenvalue, 97
Eigenvector, 97
Element of a linear space, 3
Entries of a matrix, 45, 51
Equipotential lines and surfaces, 335
Equivalence of sets, 501
Error :

in Lagrange’s interpolation formula, 583
in linear interpolation, 584
in Taylor polynomial approximation, 573
in Taylor’s formula, 258, 270

Euclidean space, 15
EULER, LEONARD, 142, 182, 613
Euler’s constant, 618 (Exercise 2)
Euler’s gamma function, 184, 413,620 (Exer-

cises 7, 9)
Euler’s summation formula, 613, 615
Euler’s theorem for homogeneous functions,

287
Events, 476
Exact differential equation, 347

Existence theorem(s) :
for determinants, 90
for ftrst-order  linear differential equations,

1 4 3
for first-order linear systems of differential

equations, 213, 219, 220
for first-order nonlinear systems of differ-

ential equations, 229
for implicit functions, 237
for integral equations, 239
for interpolation polynomials, 580
for linear nth-order differential equations,

1 4 7
forlinearsecond-orderdifferentialequations,

1 4 3
for potential functions, 339
for Taylor polynomials, 572
for vector fields with prescribed curl, 448

Expectation (expected value) :
of a function of a random variable, 559
of a random variable, 556

Exponential distribution, 533
Exponential matrix, 197
Exterior:

of a Jordan curve, 380
of a set, 245

Exterior point, 245
Extreme-value theorem for continuous scalar

fields, 321
Extremum, 304

second-derivative test for, 312
with constraints, 314

Factorial polynomials (factorial nth powers),
592

FELLER, WILLIAM, 568
FERMAT, PIERRE DE, 469
Finite additivity, 470
Finite sample space, 473
Finite set, 502
Finitely additive measure, 472
Finitely additive set function, 470
Fixed point of an operator, 233
Fixed-point theoremforcontractionoperators,

235
applications of, 237

Flow integral, 330
Flux density, 432, 461
Forward difference operator A, 590
FOURIER, JOSEPH, 29
Fourier coefficients, 29
FRiCHET,  RENk  MAURICE, 258
FROBENIUS, GEORG, 181
Frobenius’ method, 180
FUCHS, LAZARUS, 223
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Function space, 5
Functional equation :

for the gamma function, 185
of Cauchy,  528

Functions of random variables, 541, 550
Fundamental theorems for line integrals:

first, 338
second, 334

Fundamental vector product of a surface, 420

GALLE, JOHANN, 571
Gamma function, 184, 413, 620 (Exercises

7,9)
GAUSS, KARL FRIEDRICH, 61, 78, 457
Gauss-Jordan process :

for calculating determinants, 78
for solving linear equations, 61

Gauss’ theorem (divergence theorem), 457
General solution :

of a linear differential equation, 148, 156
of a system of linear equations, 60

GOMBAUD , ANTOINE (Chevalier de Mere), 469
Gradient, 259
GRAM, J0RGEN  PEDERSEN, 22
Gram-Schmidt process, 22
GREEN, GEORGE, 379
Green’s formula, 387 (Exercise 8)
Green’s theorem :

for multiply connected regions, 387
for simply connected regions, 380

HADAMARD, JACQUES, 69
Hadamard matrices, 69 (Exercise 10)
HAMILTON, WILLIAM ROWAN, 202
Harmonic function, 445
Heat equation, 292 (Exercise 1)
HERMITE, CHARLES, 15, 114, 122, 178
Hermite  differential equation, 178 (Exercise 4)
Hermitian matrix, 122
Hermitian operator, 115
Hermitian symmetry, 15, 114
HERSCHEL, WILLIAM, 571
HESSE, LUDWIG OTTO, 308
Hessian matrix, 308
Homogeneous function, 287
Homogeneous linear differential equation, 146
Homogeneous system:

of differential equations, 200
of linear equations, 59

HUYGENS, CHRISTIAN, 469

Identity matrix, 54
Identity transformation, 32

Implicit differentiation, 294
Implicit-function theorem, 237
Independence :

in a linear space, 9
of eigenvectors, 100
of events, 488
of nonzero  orthogonal elements, 18
of parametrization, 327, 434
of path, 333
of random variables, 547

Independent trials, 495
Indicial equation, 183
Inequality:

Cauchy-Schwarz,  16
Chebyshev, 563
triangle, 17
Wallis’,  616

Infinite set, 502
Initial conditions, 143, 147
Initial-value problem, 193
Inner product, 14
Integral :

double, 357
line, 324
n-fold, 406
of a matrix function, 193
surface, 430
triple, 406

Integral equation, 239
Integrating factor, 349
Interior (inner region) of a Jordan curve, 380
Interior of a set, 244
Interior point, 244
Interpolation :

by Lagrange’s formula, 580
by Newton’s formula, 589

Interval in n-space, 405
Invariance property :

of Lagrange interpolation coefficients, 586
(Exercise 6)

of line integrals under change of parame-
trization, 327

of line integrals under deformation of the
path, 388

of surface integrals under change of parame-
trization, 433

Invariant subspace, 99
Inverse function, 39
Inverse matrix, 66
Inverse transformation, 39, 41
Invertible function, 40
Invertible transformation, 40, 41
Irrotational vector field, 445
Isometry, 129
Isomorphism, 53
Isothermals, 266
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Iterated integrals, 359, 367, 406
Iterated limits, 251 (Exercise 2)

JACOBI, CARL GUSTAV JACOB, 271
Jacobian determinant, 297, 394, 408, 420
Jacobian matrix, 271
Joint probability density, 546
Joint probability distribution, 543
Jointly distributed random variables, 543
JORDAN, CAMILLE, 61, 78, 379
Jordan curve, 379
Jordan curve theorem, 380
Jump discontinuity, 518

Kernel :
of a linear transformation, 33
of an integral equation, 239

Kinetic energy, 329
KOLMOGOROV, ANDRE1 NIKOLAEVICH, 470

LAGRANGE, JOSEPH LOUIS, 142,  315, 580
Lagrange interpolation coefficient, 209, 581
Lagrange interpolation formula, 580
Lagrange multipliers, 3 15
LAPLACE, PIERRE SIMON, 142
Laplace’s equation, 283, 292
Laplacian, 292, 444
Law of large numbers, 565, 566
Least-square approximation, 573
LEGENDRE, ADRIEN MARIE, 25, 171
Legendre polynomials, 25, 174

graphs of, 175
normalized, 26
Rodrigues’ formula for, 176
zeros of, 180 (Exercise 14)

Legendre’s differential equation, 171
LEIBNIZ, GOTTFRIED WILHELM, 142
Level sets (curves, surfaces), 266
LEVERRIER, JEAN JOSEPH, 571
LINDEBERG, JARE W., 567
Lindeberg’s condition, 568
Line integrals :

applications of, 330
first fundamenta1  theorem for, 338
independence of parametrization, 327
independence of path, 333
notations for, 324
second fundamental theorem for, 334

Linear combination, 8
Linear differential equation, 145
Linear differential operator, 146
Linear interpolation, 584

Linear operator (transformation), 31
Linear space (vector space), 3
Linear subspace, 8
Linear system, 58, 192
Linear transformation, 31
LIOUVILLE, JOSEPH, 143, 191,223
LIPSCHITZ, RUDOLF, 229
Lipschitz condition, 229
Lorentz transformation, 69 (Exercise 6)
Lower integral, 358
LYAPUNOV, ALEXSANDR MIKHAILOVICH, 567

Mapping, 31, 393, 550
MARKOV, ANDRE1 ANDREEVICH, 470
Mass, 330, 373, 414, 431
Mass interpretation of probability, 511,

5 4 5
Matrix :

adjoint,  122
adjugate, 92
algebraic operations on, 52, 54
block-diagonal, 84
cofactor, 92
conjugate, 122
definition of, 46
diagonal, 48, 96
exponential, 197
Hermitian, 122
minor of, 87
nonsingular, 65
orthogonal, 123
representation, 46
self-adjoint, 122
series, 194
singular, 67
skew-Hermitian, 122
skew-symmetric, 124
symmetric, 124
trace of, 106
transpose of, 91
unitary, 123

Max norm, 575
Maximum of a function :

absolute, 304
existence of, 321
relative, 304
tests for, 311, 312

Mean :
of a function, 374
of a random variable, 535, 556

Mean-value theorem for scalar fields, 254
Measurable sets, 510
Measure :

finitely additive, 472
probability, 474, 506
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Minimum of a function :
absolute, 304
existence of, 321
relative, 304
tests for, 311, 312

Minor of a matrix, 87
MISES, RICHARD VON, 470
MSBIUS, AUGUSTUS FERDINAND, 455
Mobius band, 455
Moment of inertia, 331, 374, 414, 431
Multiple integrals:

applications of, 373, 414, 431
definition of, 357, 406
evaluation of, 358, 406
existence of, 363
transformation formulas for, 394, 408

Multiply connected region, 384

NAPIER, JOHN, 572
Negative definite quadratic form, 310
Negative (clockwise) direction, 389
Neighborhood, 244
Neptune, 571
NEWTON, ISAAC, 142, 335, 571, 589
Newton’s interpolation formula, 589
Newtonian potential, 335
n-fold integral, 405
Nonlinear differential equation, 228
Nonorientable surface, 456
Nonsingular matrix, 65
Norm :

in a Euclidean space, 17
in a linear space, 233
max, 575
of a matrix, 195
square, 575

Normal approximation to binomial dis-
tribution, 538

Normal bivariate distribution, 555 (Exercise 9)
Normal derivative, 386
Normal distribution, 535
Normal vector to a surface, 267, 423
Norrned linear space, 233, 574
Null space, 33
Nullity, 34
Numerical integration :

by Chebshev formulas, 611
by Cotes’ rule, 612 (Exercise 11)
by Euler’s summation formula, 613, 615
by Simpson’s rule, 608, 609
by the trapezoidal rule, 604

Odd man out, 508 (Exercises 10, 11)
Odds, 480

One-element set (singleton), 475
One-to-one correspondence, 501
One-to-one function, 40
Open ball, 244
Open set, 244
Operator:

contraction, 235
curl, 441
derivative, 32
divergence, 441
forward difference, 590
gradient, 259
identity, 32
integration, 32
Laplacian, 292
linear, 31

Ordered basis, 13
Ordinate set, 360, 368
Orientable surface, 456
Orientation of Jordan curve, 389
Orthogonal basis, 19
Orthogonal complement, 27
Orthogonal decomposition theorem, 27
Orthogonal elements, 18
Orthogonal functions, 18
Orthogonal matrix, 123
Orthogonal operator, 138
Orthogonal projection, 28
Orthogonal trajectory, 267
Orthogonalization theorem, 22
Orthonormal set, 18
Outcome, 476

PAPPUS OF ALEXANDRIA, 376, 426
Pappus’ theorems, 376, 428
Parallel-axis theorem, 378 (Exercise 17)
Parametric surface, 420
PARSEVAL, MARK-ANTOINE, 20
Parseval’s formula, 20
Partial derivative, 254, 255
Partial differential equation, 283
Partition of a rectangle, 354
PASCAL, BLAISE, 469
Path in n-space, 323
PAULI,  W O L F G A N G , 107 (Exercise 4)
Pauli  spin matrices, 107 (Exercise 4)
PEANO, GUISEPPE, 223, 611
Petersburg problem, 562 (Exercise 10)
PICARD, C H A R L E S  SMILE,  223
Picard’s method, 223, 227
Piecewise linear interpolation, 603
Piecewise smooth path, 324
POISSON, SIMiON  DENIS,  522
Poisson distribution, 522
Polar coordinates, 274, 397
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Polar moment of inertia, 375
Polynomials :

Chebyshev, 596
interpolation, 579, 589
Legendre, 26, 176, 577
Taylor, 572

Positive detinite quadratic form, 310
Positive (counterclockwise) direction, 390
Potential energy, 336
Potential function, 335

construction of, 338, 342
existence of, 339
Newtonian, 335
on convex sets, 344

Power series solutions :
of linear differential equations, 169
of homogeneous linear systems, 220

Probability :
conditional, 487
definition of, 474, 506, 511

Probability density function, 525, 546
Probability distribution, 515, 543
Probability mass function, 520, 545
Probability measure, 474
Probability space, 474
Projections, 24, 28
PTOMELY, CLAUDIUS, 57 1
PUTZER, E. J., 202
Putzer’s method, 205
Pythagorean formula, 10, 20, 27

Quadratic form, 127, 310
extreme values of, 137
negative definite, 310
positive definite, 310
reduction to diagonal form, 129

Radius of gyration, 557
Random variable(s), 512

continuous, 525
discrete, 521, 545
functions of, 541
independent, 547
jointly distributed, 543

Range of a linear transformation, 32
Rank, 34
Rate of change, 253
Rational function, 249
Real linear space, 4
Regular point of a surface, 421
Regular ‘singular point, 18i
Relative maximum. 304
Relative minimum,’ 304
Repeated experiments, 492

Repeated integrals, 359, 406
Repeated trials, 495
RICATTI, VINCENZO, 142
Ricatti’s differential equation, 142
RIEMANN, GEORG FRIEDRICH BERNHARD, 539,

619
Riemann zeta function, 619 (Exercise 3)
RODRIGUES, OLINDE, 176
Rodrigues’ formula, 176
Rotation, 129
Roulette, 558

Saddle point, 304
Sample, 476
Sample space, 473
Sampling, 483, 484
Saturn, 571
Scalar, 4
Scalar field, 243

total derivative of, 258
SCHMIDT, ERHARD, 22
SCHWARZ, HERMANN  AMANDUS, 16
Second-derivative test for extrema, 311, 312
Self-adjoint matrix, 122
Seminorm, 574

interpolation, 575
Taylor, 574

Sequential counting, principle of, 483
Series of matrices, 194
Series solutions :

of homogeneous linear systems, 220
of linear differential equations, 169

Set function, 470
Similar matrices, 111
Simple closed curve, 379
Simple parametric surface, 420
Simply connected set, 384
SIMPSON, THOMAS, 608
Simpson’s rule, 608, 609
Singleton (one-element set), 475
Singular point:

of a differential equation, 146, 181
of a mapping, 396
of a surface, 421

Skew-Hermitian matrix, 122
Skew-Hermitian operator, 115
Skew-symmetric matrix, 124
Skew-symmetric operator, 115
Smooth path, 323
Smooth surface, 421
Solenoidal vector field, 450
Solid angle, 463 (Exercise 13)
Sphere :

area of, 427
volume of (in n-space), 411
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Spherical coordinates, 293,410, 414
Standard deviation, 557
Standardized normal distribution, 537

table of values of, 536
Standardized random variable, 567
Stationary point, 304
Step function, 354,406

integral of, 355, 406
STIRLING, JAMES, 572, 593
Stirling formula for n factorial, 616
Stirling numbers :

of first kind, 593 (Exercise 4)
of second kind, 594 (Exercise 5)

Stochastic, 512
Stochastic independence, 488
Stochastic variable, 512
STOKES, GEORGE GABRIEL, 438
Stokes’ theorem, 438, 455
Strong law of large numbers, 566
Sturm-Liouville operator, 116
Subspace, 8
Summation formula of Euler, 613, 615
Surface :

area of, 424
closed, 456
equipotential, 335
nonorientable, 456
of revolution, 428
orientable, 456
parametric, 420
smooth, 421

Surface integrals, 430
applications of, 431
independence of parametrization, 434
notations for, 434

Symmetric difference, 473 (Exercise 10)
Symmetric matrix, 124
Symmetric operator, 115
Systems :

of differential equations, 197
of linear algebraic equations, 58

Tangent plane to a surface, 268, 424
TAYLOR, BROOK, 571
Taylor’s formula :

for scalar fields, 258, 308
for vector fields, 270

Taylor polynomials, 571
Torus, 376
Total derivative :

of a scalar field, 258
of a vector field, 270

Trace of a matrix, 106
Trajectory, orthogonal, 267

Transformations:
linear, 31
of double integrals, 394
of n-fold integrals, 408

Trapezoidal rule, 604
Triangle inequality, 17
Trigonometric polynomial, 29
Triple integrals :

applications of, 414
in cylindrical coordinates, 410
in spherical coordinates, 411

Uncountable set, 502
Uniform continuity, 321
Uniform distribution :

over an interval, 526
over a plane region, 549 (Exercise 9)
over a square, 547

Uniqueness theorem for determinants, 79
Uniqueness theorems for differential equa-

tions :
first-order linear systems, 226
first-order nonlinear systems, 229
linear equations of order IZ,  147
matrix differential equations, 198

Unit sphere in n-space, 135
volume of, 411

Unitary matrix, 123
Unitary operator, 138
Unitary space, 15
Upper integral, 358
Uranus, 571

Variance, 556
binomial distribution, 557
Cauchy distribution, 561 (Exercise 7)
exponential distribution, 561 (Exercise 7)
normal distribution, 558
Poisson distribution, 561 (Exercise 7)
uniform distribution, 557

Variation of parameters, 157
VEBLEN, OSWALD, 380
Vector equation of a surface, 418
Vector field, 243

total derivative of, 270
Vector space, 4
Volume :

of an ordinate set, 360, 369
of an n-dimensional sphere, 411

WALLIS, JOHN, 616
Wallis’ inequality, 616
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Wave equation, 288 YOUNG, w.  H., 258
Weak law of large numbers, 565
Winding number, 389
Work : Zeros :

and energy principle, 329 of Bessel functions, 188 (Exercise 3)
as a line integral, 328 of Chebyshev polynomials, 597

WRONSKI, J. M. HO&N~$  95 (Exercise 8),  159 of Legendre polynomials, 177
Wronskian determinant, 161 Zeta function of Riemann, 619 (Exercise 3)
Wronskian matrix, 95 (Exercise 8),  159 ZUCKERMAN, HERBERT S., 559




